
April 2014

Never memorize what you can look up in books.

 - Albert Einstein

Page 1

Table of Contents
About this book ...30
Book Release History...31
What is Business Process Management?..33
Overview of IBM Business Process Manager..33

History of IBM Business Process Manager...33
IBPM Usage...34
Modeling a process..35
Integrating with IT Systems...35

Architecture..35
Process Applications..35

Process Instances...37
Archiving Process Applications..37
Process Applications state management...38
Changing Process Application settings...38

Toolkits..39
Tasks..41

Task Priority..42
IBPM Components..42
Component – Process Server...42
Component – Process Center...43

Starting Process Center...46
Component – Process Designer...46

Play back sessions...47
Starting IBPM Process Designer...47
Working in the Designer view..51
Working with the Library...52
Adding managed files...54
Tagging...56
Smart Folders..59
Validation errors...61
Working as part of a team...62

Component – Performance Data Warehouse...64
Component – Process Center Console...64
Component – Process Portal..64
Component – Process Admin Console..64

IBPM Knowledge...65
Product Documentation...65
Web Sites...65
Public Forums..65
IBM RedBooks..65
IBM Community..66
developerWorks on IBM BPM..66
TechNotes..68
Requirements and Enhancements..80

Product Installation and Configuration..82
Part Numbers...82
Prerequisites...83
Installing Integration Designer..83

Page 2

Installing Business Process Manager Advanced in typical mode..90
Performing a custom Install of Process Manager Advanced...96
Using BPMConfig to create servers..117
Using the PMT to create servers..118
Using the command line to create server profiles..137
Installing to (DBA) managed databases..139

DB2...139
MSSQL...141
Common for all Databases..144

Installing Process Designer..146
Starting BPM...151
Stopping BPM..151
Resetting the databases..152
Un-configuring BPM...152
Hiding the sample applications..152
Frequently Asked installation Installation Questions..153

Business Process Definition - BPDs...154
Pools and Lanes...157
Sequence Lines..159
Activities..162

Activity Appearance in the BPD diagram...165
Data Mapping..166
Conditional Activities...166

Start Event..168
End Event...168
Message Start Event...169
User Task...170

Automatic Flow...171
Assigning Activities – Mapping staff to work..172

Re-Assigning Tasks and changing group members...175
Assignment Examples..175
The Four Eyes Example...175
Assigning a task to a named user...176

Timer Events..177
Tracking Intermediate Event...180
Ad-hoc Start Event...181
Message Intermediate Event..182
Message End Event..185
Terminate Event...186
Error Intermediate Event...186
Error End Event...188
Gateways, Conditionals and Joins...188
Modeling sub-processes...194
Modeling Linked Processes...195
Modeling Event Sub-processes..195
Script Activities...197
External Implementation..198

Completing an External Implementation – REST API...200
Completing an External Implementation – Web Service API..202

Application Loops..205

Page 3

Simple Looping...205
Multi-Instance Looping...206

Looping through a map data type...208
BPD Diagram Notes..208
Due dates for process and activities...209

Time and Holiday Schedules..209
Generating Reports..210
BPD Settings..211

Exposing the Process..211
Process Instance Name..212

BPD and BPMN...212
Concept of a Token...212
Deviations from BPMN..213

BPD Flow Control...215
Rework a set of steps..215

Services...218
Caching the results of a service...220
Human Service...221

Exposing the Human Service for starting...221
Canceling outstanding Human Tasks..224
Informing a user that their task has been canceled...226
Timing out a Human Service..227
Escalating a Human Task..227
Notifying a user that a task is ready for work...229
Semantics of closing a browser window...229

Ajax Service...230
Integration Service...235
Advanced Integration Service..236
General System Service...236
Decision Service..236

Business Action Language (BAL) Rule..238
Decision Table..239
Integrating with WODM...241

Service Components..241
Coaches...243
Server Scripts..243
Server Scriptlet..244
Modify Task..244
Postpone Task...245
Decision Gateway...246
End Event..246
Note...246
Error End Event..247
Error Intermediate Event...247
Invoke UCA..248
Catch Exception..248
Intermediate Tracking Event...249
Stay On Page Event...249
Nested Service...249
Send Alert...250

Page 4

Web Service Integration..251
Java Integration...253
Stay on Page Event...253

Variables – Process and Service...254
System of Record data vs Business Intelligence data..255
Creating new Data structures...256

Simple Types...257
Business Object Types..258

List Variables...260
Setting defaults on variables..261
Making variables search-able..261
Defining and using shared objects...262
BPD Variables and Service Variables - Mapping...265
Variable identity and UUID...266
Exposing Business Data for Searches..268
Accessing variables from JavaScript...269
Environment Variables..270
Exposed Process Values (EPVs)..271
Pre and Post Assignments..273
Variables and XML...274
Using Variables..275
Determining the type of a variable..276
The case of the mysteriously changing variables..276

User Interfaces and User Interaction..280
Coach Views..281

General Coach View settings..281
Visibility Coach View Settings...282

IBM supplied stock Coach Views Controls...284
Button..284
Checkbox..285
Date Time Picker..285
Decimal...287
Horizontal Section...287
Image...289
Integer...290
Output Text...291
Radio Buttons..291
Select...292

Select Sample 1 – Selection based on other selection..294
Table..297
Tabs...299
Text...299
Text Area...300
Vertical Section...301
Content Box..303
Custom HTML..305

Styling with CSS..305
Making Left Labels...309
Adding a TextBox icon...310
Styling a Dojo button for BPM...310

Page 5

Data Validation..311
Boundary Events..315
Dynamically controlling visibility based on user..315
IBM sample Coach Views...316

Data Change Boundary Trigger..316
Data Change Boundary Trigger - Updating one list when another changes......................317

Building new Coach View types...317
Coach View Event Handlers...322

Load event handler...323
View event handler...323
Unload event handler..324
Change event handler...324
Validate event handler..324

Coach View Context...325
context.bindingType()..325
context.bpm.system..325
context.bpm.team...325
context.broadcastMessage()...326
context.cancelBoundaryEvents()..326
context.containDiffLoopingContext()..326
context.createView(domNode, index, parentView)...326
context.deleteView(domNode)...326
context.element...326
context.getDomNode()...326
context.getInheritedVisibility()..326
context.getSubview(viewId, requiredOrder)..326
context.htmlEscape(<string>)..326
context.isTrustedSite()...326
context.parentView()..326
context.refreshView()...326
context.setDisplay(isDisplay, domNode)...326
context.setUniqueViewId()..327
context.subscribeValidation()...327
context.subview[viewid]..327
context.trigger(callback)...327
context.triggerCollaboration(payload)...327
context.unsubscribeValidation()...327
context.viewid..327

Coach View global data..328
com_ibm_bpm_global.topLevelCoachViews..328
com_ibm_bpm_global.coachView.byControlId()..328
com_ibm_bpm_global.coachView.byDomId()..328

Coach View data binding and configuration...328
Working with Coach View list data...331
Dis-allowed Coach Binding data types..333

IBM supplied Coach View utility functions...333
Generated HTML..333
Custom JavaScript in Coach Views..334
Using JavaScript libraries other than Dojo...334
Generated content in a control..335

Page 6

Making Ajax and REST requests from a Coach View...335
Navigating and access to Coach Views on a Coach page...337
Learning resources to build new Coach Views...338
Debugging Coach Views..339
Coach View Construction Tips...342

DOM root access in a Coach View..342
Editing JavaScript for Coach Views..342
Adding a label..343
Working with visibility..343
Using a Dijit Widget in a Coach View...344
Including a custom Dijit Widget in a Coach View..344
Describing a Dojo based page declaratively..346
Accessing images by CSS..347
Commonly used AMD loaders...348

Sample Coach Views..348
Sample Coach View – trivial "hello world"...348
Sample Coach View – Data Change Boundary Trigger...351

Coach View Templates...352
Dashboard Coach Views..352

Batch Modify Dialog Control...353
Chart Control...354
Chart with Time Selector Control...361
Dialog Control...362
Floating Layout Control..364
Gantt Chart Instance Details Control..364
Gantt Chart Process Overview Control...365
Navigation Controller Control..366
Process Diagram Control..367
Process Due Date Control...368
Process Instances List Control..368
Process Summary Control...369
Search Control...370
Stream Control..371
Task List Control..371
Tasks Due Control..374
Team Roster Control...374
Team Summary Control..376
Zoom Control..376

Exposing a Human Service as a portlet...377
Page Flow/ Screen Flow Solutions..378

Screen Flow using BPD..380
User Interface fragments..380

Embedding another HTML page..380
Error Handling..381

Error Handling in JavaScript...383
BPD Events..384
Undercover Agents (UCAs)...385

Event Initiated UCAs...386
Schedule initiated UCAs..388
UCAs and queued events...389

Page 7

Disabling UCA processing..389
UCAs and Toolkits..389

Token Management..391
Security...396

Security Groups...396
Teams...398
Securing Access to the repository..402
Securing development of a Process Application...402
Securing the ability to start an application...405
Securing ability to work with tasks (Human Services)..405
Securing Process Portal capabilities..405
Securing access to publish Integration Designer projects...408
Lightweight Directory Access Protocol - LDAP...409

Tivoli Directoy Server..409
Apache Directory Server...414

Installation of Apache Directory Server...414
Apache Directory Server Studio...419

Installation of Apache Directory Studio...419
Installation of Apache Directory Server Studio Eclipse Plugins.......................................421

Installation of JXplorer...426
Getting locked out of WAS...428
Configuring WAS for LDAP..428
Configuring LDAP for IBPM...432
Debugging LDAP...433

User Attribute Definitions..434
Process Admin Console..437

Process Admin - IBM BPM Admin...438
Task Cleanup...439

Process Admin - User Management..439
Group Management...441
Bulk User Attribute Assignment...441

Process Admin - Monitoring...442
Process Admin - Event Manager...443

Event Manager > Monitor...443
Event Manager > Blackout Periods..443
Event Manager > Synchronous Queues..444
Event Manager > Event Managed JMS Error Queue...444
Admin Tools > Manage EPVs..444

Process Admin – Saved Search Admin...446
Process Admin – Process Inspector...447
Process Admin - Installed Apps...449
Customizing the Process Admin Console..449

Process Portal...451
Process Portal – My Tasks...454
Process Portal – Saved Searches..460
Starting Ad-Hoc entry points...461
In-line Tasks in process portal...462
Team Performance...463

Team Tasks...464
Process Performance..465

Page 8

Quick Stats..466
Turnover Rate...466
Average Duration..467
Instances In Progress...467
Diagram View...468
Gantt View..468
Set Path View..469

Searching in Process Portal..469
The data used to populate the Process Performance dashboard..470
Customizing Process Portal look and feel...470

Customizing the login screen..473
Versioning Solutions..475

Snapshots...475
Managing Snapshots...476

BPMDeleteSnapshot..476
BPMSnapshotCleanup..476
BPMShowProcessApplication...477

Migration of in-flight BPMN process instances..478
BPD Integrations..483

Outbound Web Services..483
Setting up security for outbound Web Services..491

Inbound Web Services...491
Testing an Inbound Web Service with soapUI...494
Invoking a BPD as a Web Service..497
Invoking an IBPM Web Service from a Java POJO...498
Web Services and data types...501

Simple Data Type...502
Complex Data Type..503
Nested Complex Data Type...504
Array of Complex Data Type...505

Java Message Service – JMS...513
JMS – Sending and receiving from queues...513
JMS – Triggering a UCA..515
JMS Client Tools..517

Hermes JMS...523
WebSphere Default Messaging...530

REST Integration...531
The REST Functions...532
Handling REST errors...534
The REST API Tester...534
Working with REST Search Queries..537
Working with REST Task Instance Queries...541
Working with REST Task Instances...543

Getting Task and Instance details through REST..543
Getting a template for a task...546
Finishing a Task...547
Starting a Task..547
Claiming a task...548
Re-assigning a task...549
Getting Task variable values..549

Page 9

Getting the client details of a task..549
Working with REST Processes...550

Starting a process from REST..550
Getting details of a process instance using REST..551
Getting details of a process model from REST..552
Starting a UCA from REST..553
Moving a token within a process using REST...553
Retrying a failed instance...553
Listing and starting Ad-Hoc Events from REST..554

Working with REST Services...554
Starting a service from REST...554
Getting data from a Service..555
Setting data into a Service..555
Getting a Service Model using REST..556

Working with Exposed Items..559
Getting Exposed Processes...559

Working with REST Users and Groups..559
Working with Process Apps..561
Working with REST and heritage process document attachments...561

Heritage - Adding a document to a process instance using REST.....................................562
Heritage – Getting a list of attached documents...562

Working with REST Asset Lists...562
Getting Project branchIds and Snapshots...563
Getting Business Object definitions...564

Working with REST retrieved diagrams...565
Process Visual Model...565

Executing JavaScript in the context of a process from a REST request.................................570
Calling REST from Java...571
REST encoded UUIDs/GUIDs...572
REST input and output data types...573
REST Security...573

Database Integration..576
Integration with supplied DB connectors..576
Using LiveConnect and JDBC..578
Example – Selecting rows from a table..579
Security with Database Interaction...579
JDBC definitions needed to access databases...579
Service to Insert a row..580
Service to Delete a row...580
Service to Update a row..581
Calling stored procedures..581
Mapping IBM BPM Data types to DB data types..582

Java Integration..583
Java source level Debugging...587

eMail..591
Sending an email...591
Receiving an email..592
Send an email and receive a response...594
Installing hMailServer as a test EMail provider...595

WPS and SCA..603

Page 10

Asynchronous Invocation of an SCA Module..603
Process Scheduling with Job Scheduler...610

The nature of a IBPM Job..610
The Job Scheduler Java API..610
An illustrative solution...610

Debugging..626
Debugging with Inspector..626
Debugging the environment...632
Browser tabs and Process Inspector...632
Logging..633
Tracing Web Service SOAP traffic...634
Working with IBM Defect Support...635
Raising defects with IBM..635

Development...636
Sharing projects with others..636
Naming conventions and recommendations..636
Documentation...637

Operations...639
Configuration Files..639
Networking..640
WAS Server...640

Stopping the server..640
Windows Services...640
Port Numbers..640
WAS Admin Console..640
JDBC Resources...641
WAS Security...641
The wsadmin command..641

Java programming for admin commands...641
Changing Passwords..642
File Structures..642
Operational Databases...642

Process Server Database...643
Performance Data Warehouse Database...643
Defining custom databases..643

SI Bus Resources...647
Cleaning/removing completed processes...648
Adding and removing Process Servers from Process Center..650
Deployment of applications to servers...650

Offline Application Deployment..650
Un-Deployment of applications from servers...654

Modification of Process Instance data...655
Performance...656

The Event Manager - Tuning attributes..656
Monitoring using the Process Admin Console...657

Process Admin Console – Monitoring > Instrumentation..657
Process Admin Console – Monitoring > Process Monitor...658

DB2 Database Performance..660
Monitoring DB2..660

Useful scripts and tools..662

Page 11

Viewing database table contents...662
Recovery options...664

JavaScript in IBPM...665
Editing JavaScript..665
IBPM JavaScript name spaces...665
Reusing JavaScript...666
BPD Data Types..666

Data Type – ConditionalActivity..667
Data Type – Map...667
Data Type – NameValuePair..668
Data Type – ProcessSummary..668
Data Type – Record..668
Data Type – SQLResult..669
Data Type – String..670
Data Type – TaskListData..670
Data Type – TaskListItem...671
Data Type – TaskListInteactionFilter...672
Data Type – TaskListProperties..672
Data Type – Team...673
Data Type – TeamDashboardSupport...673
Data Type – TWAdhocStartingPoint..673
Data Type – TWDate..674
Data Type – TWDocument...676
Data Type – TWHolidaySchedule..677
Data Type – TWLink..678
Data Type – TWManagedFile...678
Data Type – TWModelNamespace...678
Data Type – TWObject...679
Data Type – TWParticipantGroup..680
Data Type – TWProcess...680
Data Type – TWProcessApp...681
Data Type – TWProcessAppSnapshot..681
Data Type – TWProcessInstance..682
Data Type – TWProcessPerformanceMetric..683
Data Type – TWReport...684
Data Type – TWRole..684
Data Type – TWSearchColumn..685
Data Type – TWSearchColumnMetaData..687
Data Type – TWSearchCondition...687
Data Type – TWSearchOptions..688
Data Type – TWSearchResults...688
Data Type – TWSearchResultRow...688
Data Type – TWService..688
Data Type – TWServiceTypes..689
Data Type – TWStep...689
Data Type – TWTask..690
Data Type – TWTeam...691
Data Type – TWTimePeriod...692
Data Type – TWTimeSchedule...692
Data Type – TWTimerInstance...694

Page 12

Data Type – TWUser..695
Data Type – XMLDocument..695
Data Type – XMLElement..696
Data Type – XMLNodeList..696

JavaScript Libraries...697
JavaScript package - tw.system.*...697

Method: executeServiceByName(name, inputValues)..699
Method: retrieveTaskList()...699

JavaScript Package - tw.system.step.*..700
JavaScript Package - tw.system.org.*...700
JavaScript Package - tw.system.model.*..701

Getting a list of Process Apps..701
JavaScript Package - tw.object.*...702
JavaScript Package - tw.system.model...702

Creating Business Object instances in JavaScript...704
Variables in a service...705
The Dojo Toolkit for JavaScript..705
Searching for processes and tasks from JavaScript...706
Calling Java through LiveScript..709
Working with XML in JavaScript...709
Working with document attachments in JavaScript..710
Working with JSON in IBPM..711
JavaScript Fragments...712

Starting a new process...713
Getting the current process instance...713
Getting the current userid..713
Starting an external application...713
Returning the owner of a task...713
Extracting a managed file...714
Generating a Random Number or string...714

Key Performance Indicators (KPIs)...715
Custom KPIs..715
Associating KPIs with BPD activities...717

Service Level Agreements (SLAs)...717
Creating SLAs..718

Dash-boarding..721
Architecture...721
Tracking data...721

Tracking Groups Overview...725
Database Structure for a Tracking Group...727
Database Structure for TRACKINGGROUPS view..728
Database Structure for TRACKINGPOINTS view..728
Database Structure for TASKS view..728
Database Structure for PROCESSFLOWS view..729

Miscellaneous Tracking Data Notes..730
Removing tracking data tables..730
Minimizing Tracking Group entries...731

Timing Intervals...731
Performance Data Warehouse (PDW) SQL Snippets...734

How many have started but not finished (in progress)...734

Page 13

Number of items of different types/day...735
Getting the last state of a process...736
Breakdown of how many in which step...736
Last Autotracked row...737
Counts of processes started vs completed over an interval..737

General DB/SQL useful functions for reports..737
Date formatting...737
Mapping BPM date types to DB TIMESTAMP types...738
Number of items in the current week...738
Counting when a column equals a value..738
Selecting records within a date range...738

Reporting with Microsoft Excel..738
Developing Custom Dash-boards..738

A Sample Dashboard..739
Generating sample data..743

Simulation and Optimization..744
Defining simulation values..744

Fixed distribution type..745
Uniform distribution type..745
Normal distribution type...746
Gateways and simulation..746

Arrival rate of simulation items...747
Simulating the cost of execution..747
Available staff members for tasks...748
Simulation Analysis Scenarios..749
Simulation Profiles..750
Running Simulations..751
Optimizing a Process...754
Simulation Tutorials..757

Experiment 1 – A basic start...757
Experiment 2...760
Experiment 3...761
Experiment 4 – Path analysis..763

IBPM Web API – Web Services API Access..765
Starting a Process...770

Notes on Object Factory...772
Executing a search...772
Getting the details of a task..773
Web API Data types..773

CustomProperty..773
ExternalActivity..773
ExternalActivityAttachment...774
ExternalActivityData..774
Parameter..774
Process..774
Search..774
SearchColumn...775
SearchColumnMetaData...775
SearchCondition..776
SearchMetaData..776

Page 14

SearchResults..776
SearchResultRow..776
Task...776
TaskStatus...777
User...778
Variable...778

Variable..780
Exposed item types..780
Testing Web API services with soapUI...780
Building a Java Client..783
Building a Flex Client..785

System Data Toolkit...791
IBM Supplied Business Process Definitions...791

Send SLA Violation Email...791
IBM Supplied General System Services..791

Default BPD Event..791
Default System Service...791
Extract XML Validation Results...791

IBM Supplied Historical Analysis Scenarios..791
IBM Supplied Human Services...791

Default Human Service...791
lsw Conditional Activity Selection Coach..792
Fire Default BPD Event..793

IBM Supplied Integration Services..793
Read Text File...794
Send E-mail via SMTP...794
SLA Send Alert Email..794
SQL*...794
Update ALL SLA Statuses..794
Update SLA Status..794
Write Text File..794

IBM Supplied KPIs..795
IBM Supplied Layouts...795
IBM Supplied Participant Groups..795
IBM Supplied Server Files..795

Integration.jar..795
IBM Supplied Tracking Groups..795
IBM Supplied Undercover Agents..795
IBM Supplied User Attribute Definitions..795
IBM Supplied Variable Types...795

Cookbook Scenarios...796
Scenario - Asynchronously starting one process from another...796
Scenario – Making a process extensible by others..797
Scenario – Starting a process from an external browser..797

Additional Toolkits...800
Kolban JavaScript Toolkit...800

Blueworks Live..802
Creating a Space..803
Creating a Process..804
Discovery Map...805

Page 15

The Process Diagram...811
Working with Sub processes..812
Editing mode vs Viewing mode...813
Sharing the solution...814
Creating a Process from a Template Library...814
Automating a Process..817
Accessing processes from Blueworks in Process Designer...818

___..821
IBM Business Process Manager – Advanced...822
Information Sources...823

Redbooks...823
DeveloperWorks..824

Other..832
Integration Designer...832
Inter-operating between a BPMN process and an SCA module..836

Interface Types Exchange..841
Data Types Exchange..842
BPDs exposed to an AIS..843
Deploying for testing from ID...844
Returning faults from an AIS...847
Manually un-deploying an SCA module...847

Service Component Architecture...849
SCA Interfaces and References...852
The SCA Import Component...854
The SCA Export Component...855
SCA Interfaces...856
SCA Business Objects...858
SCA Event Sequencing..860
SCA Store and Forward...862
SCA Versions..862
Installing an SCA Module through scripting...862

SCA Java Components...864
Calling a Reference..864
Java Component Error Handling...864

Client Programming with Java Components..865
BPEL - Business Process Execution Language..867

BPEL Activities...868
The notion of a BPEL Process..868
Variables in BPEL..869
Receive Activity..869
Reply Activity...870
Invoke Activity...871
Assign Activity...871
Wait Activity...871
Choice Activity...872
While Loop Activity...872
Repeat Until Loop Activity...872
For Each Loop Activity...872
Parallel Activities Activity..873
Scope Activity...873

Page 16

Generalized Flow Activity..873
Terminate Activity..873
Throw Activity..873
In-line Human Task Activity..874
Snippet Activity..874

BPEL Transactionality...874
BPEL and AIS...875

BPMN compensations using BPEL..875
Mediations and ESB...882

Service Message Object (SMO)..882
Mediation Primitives..885

Input primitive...885
Callout primitive...885
Business Object Map primitive...885
Custom Mediation primitive...885
Data Handler primitive..886
Database Lookup primitive...887
Endpoint Lookup primitive...888
Event Emitter primitive...888
Fail primitive...888
Fan In primitive...888
Fan Out primitive..888
Flow Order primitive..889
Gateway Endpoint Lookup primitive..889
HTTP Header Setter primitive..890
JMS Header Setter primitive...890
Message Element Setter primitive..890
Message Filter primitive...891
Message Logger primitive..891
Message Validator primitive...891
MQ Header Setter primitive..891
Policy Resolution primitive..892
Service Invoke primitive...892
Set Message Type primitive..893
SLA Check Primitive..893
SOAP Header Setter Primitive..893
Stop primitive..893
Subflow primitive...893
Trace primitive..893
Type Filter primitive...893
UDDI Endpoint Lookup Primitive..893
Mapping primitive...894

Core transformations..894
XSLT and XPath functions..896
Calling Java..896
The catalog of Data Maps..896

The Service Gateway pattern...897
Proxy Gateways..898

SOAP Message Attachments...900
Tracing...901

Page 17

Business Calendars...903
JCA Adapters..903

Flat File Adapter..903
Sample – Reading a Flat File with delimited data..903

JDBC Adapter..921
Advanced Web Services...925

WS-Notification...925
Subscribe Request...926
Publishing a message..929
Topics for WS-Notification..932

Simple Topic Expression..932
Concrete Topic Expression..932
Full Topic Expression..932

Building a Notification Subscriber...932
A WS-Notification Sample...934

Implementation notes...945
Bugs and Fixes...946
References – WS-Notification..946

WS-Addressing..946
WS-Security...948

Building a secure Web Service...953
Testing Web Services security with TCP/Mon...954

JAX-WS...955
JAX-WS Java SE stand alone Service Provider...955

Business Space...956
Administering SCA Modules...958
Exercises and Case Studies..959

Exercise – Education class enrollment..959
Looking for home …..964
Human Task Manager..965

Work Baskets...965
Work Basket Roles..966
Work Basket Business Space widgets..966
Human Task Definition for Work Baskets...968

Business Categories...969
Parallel Tasks...969

Completion Selection..970
Work Items..971
Authorization and Staff Resolution...971
Staff Resolution Criteria (aka Verbs)..972

Verb Descriptions...972
Group Search...972

Group Members..973
Dynamic user selection...974
Staff Resolution plugins..974
Custom Human Task staff resolutions..974
Staff resolution plugin language – The Staff Query...978

User registry queries...979
LDAP queries...979

XSLT Mapping to Staff Resolution plugin language...981

Page 18

Programming tips...986
Caching of staff resolutions..986
Tracing Staff resolution..986
Worked Examples...987

Group and User List intersection..987
Group and Group intersection..989

StaffQueryResultPostProcessorPlugin...990
Replacement Expressions..991

Stand-alone Expressions...991
Getting data from Tasks...994

Human Task User Interfaces..994
Human Task API Event Handlers..994

Query Tables..1006
Query Table Editor..1006

Installation of Query Table Editor..1006
Query Table programming...1009
Using Query Tables with Business Space...1010

Business Objects...1022
SDO Programming Model v1.0...1023
SDO Programming Model v2.0...1023
Recording changes...1023
Splitting namespaces across projects...1023
Business Object Programming...1024

Sequenced Objects..1024
Nested BOs...1024

Business Object Inheritance...1026
Application Specific Information (ASI)..1027
SDO Programming..1027

Walking a DataObject...1027
Create and Populate a DataObject..1028
IBM DataObjectUtils..1028

SCA Business Objects...1029
Creating an SCA Business Object..1029
Converting to/from XML..1029
XML documents with no namespace..1030

SCA..1030
Asynchronous processing..1030
SCA Import and Export protocol bindings..1030

Web Services...1031
SOAP/HTTP...1031
SOAP/JMS...1031

JMS...1035
HTTP...1035
MQ..1035

MQ Correlation messages..1037
Testing MQ bindings..1038
MQ messages and XML...1038

EJB SCA Bindings..1039
Auto-generated WSDL to Java Bridge Component...1039

DataHandlers...1040

Page 19

XML Data Handler...1040
Default XML Data Handler serialization...1043
XML Documents that are different from Business Objects...1045

Fixed Width DataHandler...1046
Custom DataHandlers...1048

DataHandler/DataBinding properties...1050
BindingContext..1051
Creating a Business Object...1052
The Binding Registry...1052
Calling a DataHandler from a DataBinding...1052
Creating a UI Configuration class..1053
HTTP DataBinding...1056
References..1056

DataObjects..1057
Creating an SCA Business Object..1057
Converting to/from XML..1057

XML documents with no namespace...1058
Advanced BPEL...1058

Variable initialization..1058
Scope...1059
BPEL - Java Mapping...1059
Variable Properties..1059

Endpoint References..1060
BPEL Endpoint Reference variable type..1060
JavaSnippet access..1061

getServiceRefFromPartnerLink..1061
Query Properties..1061

Implementation...1062
Performance..1062

Activities..1062
Inline Human Tasks..1062

Previous task owners..1062
Invoke..1063

Expiration...1063
JavaSnippet...1065

Standard Functions...1067
Custom Properties..1068

References..1068
BPEL Process Migration...1068

References..1068
Versioning..1068
User Interfaces..1069

Business Space...1069
Events ...1069
Custom Widgets..1069

iWidget Mode...1070
iWidget Structure...1070
iWidget Modules/Data Structures..1072
Misc..1079
iWidget editor...1079

Page 20

BSpaceWidgetRegistry..1082
BSpaceGeneralHelper..1083
Registering Widgets...1084
The Catalog File...1085
Registry Endpoints XML...1088
JavaScript for a new widget...1089
Modes...1090
HTML rewriting...1090
Debugging iWidget JavaScript...1091
Event handling..1091
Dojo Level Workarounds...1093
Debugging and Problem determination..1093

Custom Widget Walk through..1094
Using RAD 8.0.3 to create an iWidget...1105
Mashup Center..1107
Multiple Browser instances and BPM..1107

Business Space Supplied Widgets...1109
Business Configuration...1109

Business Rules..1109
Human Task Management..1109

Escalations List...1110
Human Workflow Diagram..1110
My Team's Tasks..1111
My Work Organizer...1111
Process Definitions List..1111
Processes List...1111
Task Definitions List..1111
Task Information..1111
Tasks List...1111

Problem Determination...1112
Solution Administration..1112
Solution Operation..1112
User Management...1112
Viewers...1112

Web Viewer..1112
Script Adapter...1112

Visual Step..1112
JSPs..1112
WebSphere Portal..1112
Liferay..1113

Installing Liferay on WAS..1113
Using the Liferay Tomcat bundle...1114
Developing Liferay Portlets..1114

Lotus Forms...1115
Dojo...1115

Custom Dojo development environment..1115
Flex and Business Space..1116

Widgets that use Flex...1116
Flex Custom Widgets in Business Space..1116
Building a new Custom Widget for Flex..1117

Page 21

Environment of the Flex application...1120
Widget Instance Configuration...1121

var attributes:Object...1121
event: endConfigure...1121

Making REST requests...1122
Handling returned XML..1124
Cross domain security...1124
Problems with PUT and DELETE requests..1125
Widget to Widget Event Handling..1125

Sending Events...1125
Receiving Events..1126

Working with WPS Human Task / Process Data..1127
Mapping Data types and controls..1129

String..1129
Int..1129
Date..1129

Working with repeating/array data...1130
Working with AnyType..1130
Performing input validation..1130
Single User Workflow..1130
Flex related REST Problems...1130
Elixir..1131

References – Elixir...1131
References – Flex Widgets...1131

Custom Process Portals..1132
Types of Custom Portal...1133
Generic Widgets for Custom Portals..1134

The Task List Widget...1134
The Task Table Widget..1136
The CoachViewer widget...1137
Determining when the current Coach has completed...1137
Using the Custom Portal widgets...1138

Writing custom portals using Coaches..1140
Apache Flex...1140

Flex for Mobile...1140
Installing FlashDevelop..1141

Google Charts..1143
Providing data to Google Charts...1143
Google Chart – Gauge...1143

Google Web Toolkit – GWT...1143
Making REST calls from GWT..1144
Working with JSON in GWT..1145
Building GWT Apps in Eclipse..1145
Notes on GWT Widgets..1149

RootPanel...1149
DockPanel..1150
DialogBox..1150
DisclosurePanel..1150
Composite...1150
ListBox...1150

Page 22

FlexTable..1150
Grid...1151
HTML...1151
PushButton...1151
FileUpload..1151

GWT Cell processing..1151
Cell Selection...1153
Adding Data to a Cell widget...1153
CellList notes..1154
CellTable notes...1154
DataGrid Notes...1155
Cell Tree Notes...1155

GWT Modules...1155
Naming conventions and recommendations...1156
The Entry-Point class...1156
Source Path...1156
Public Path..1156
Module declaration files...1156
Working with resources..1157

GWT Layouts and resizing...1157
RootLayoutPanel..1157
StackLayoutPanel...1157
TabLayoutPanel..1158
Things that seem to scroll ok..1158

UIBinder – XML descriptions of screens...1158
Using CSS for changing the appearance of UI...1159
The GWT Editor Framework – Mapping data to widgets..1160
Working with XML in GWT..1160
Integrating with native JavaScript...1160
Building custom GWT Widgets..1160

Adding Event Handling..1160
Using Google Charts with GWT...1163
Deploying a GWT application..1165
Debugging and Logging GWT applications...1170
GWT Libraries – Smart GWT..1170

Smart GWT – ListGrid...1171
Smart GWT – DataSource..1172
Smart GWT – Drawing..1174

Integrating GWT with IBPM Coaches..1174
Using tables with GWT..1175

Kolban's GWT BPM Utils...1176
Visual Task Lists...1176
REST wrappers and helpers..1177
Examples...1178

Showing a visual data table..1178
Starting a process from GWT...1180
Showing a Coach within GWT..1181

___..1181
IBM Business Monitor...1182
Installation of Business Monitor..1184

Page 23

Creating a profile...1189
Augmenting an existing profile with Business Monitor..1207

Information Sources for Business Monitor..1214
InfoCenter for Business Monitor...1214
Redbooks...1215
DeveloperWorks for Business Monitor...1215

Introducing the Monitor Model..1216
Monitoring Context..1219

Key Fields...1219
Inbound Event..1220
Metric...1221
Key...1223
Counter...1223
Stopwatch...1223
Trigger...1223
Outbound Event...1223

Key Performance Indicators...1225
Alerts and Actions..1228

Action Service templates...1228
Notification Templates..1228

Monitor SVG Diagrams...1236
SVG Action – Set Color..1238
SVG Action – Set Text..1239
SVG Action – Hide Shapes...1239
SVG Action – Set Diagram Link...1239
SVG Action – Send Human Task Notification When Clicked..1239
SVG Action – Send Notification When Clicked...1239

Generating events from a BPMN process..1239
The IBM_BPM_EMITTER_SERVICE application...1242

Diagnosing problems...1242
BPM side definitions...1242
Monitor side definitions..1243
Configuring CEI on BPM...1243

Configuring for remote Monitor ↔ BPM..1243
Event data format...1246

Common patterns..1248
Examining events issued from BPM...1248
Capturing additional data from BPM...1249

Capturing the Task ID of a task..1250
Capturing the Process ID of a process..1250

Capturing the Process Name of a process...1250
Compiling Monitor Models..1250

Versioning Monitor Models...1252
Building Monitor models using the Model Editor...1253

Monitor Process Start event...1253
Correlating BPMN process events...1254
Monitor Tracking point data..1254
Closing the Monitoring Context..1256
Removing monitor 'Problems' view errors and warnings..1256

Page 24

Debugging Monitor Models...1257
Recorded Events Management..1257
Using the Monitor Model debugger...1258
Integrated Test Client...1260

Uninstalling Monitor Apps...1262
Using Monitor REST APIs...1264

The Monitor REST Event catcher...1264
The Monitor REST request..1264
The Monitor REST response...1264
Sending a Monitor REST request from Java...1265

Monitor REST Security..1265
REST API Components...1266

Getting models..1266
Getting monitoring contexts..1266
Get Metrics..1266
Get instances...1267
Getting KPI Contexts..1268
Getting KPI Lists..1269
Getting KPI Value...1269
Creating new KPI definitions..1272

Time Filters..1277
Get Historical KPI data...1278
Get Dashboard Alerts..1280
Get Alert Subscriptions...1280
Create Alert Definition..1280

Useful Monitor/REST JavaScript..1283
Building a map of Instance data..1283

Monitor Security...1283
Advanced Model development...1285

Expressions..1285
Data functions...1285
String functions...1286
Math functions..1286
Time functions..1286
IBM Monitor extensions...1287

Authoring User Defined XPath functions..1288
Two Stage Modeling..1291

Monitor and Cognos...1291
Cubes, Categories, Dimensions and Levels..1292
Cognos Charting...1294

Business Space Widgets for Monitor...1296
KPIs...1296
Report Viewer Business Space Widget...1298

Generated Monitor Models for a Process Application...1300
Instance Metrics...1302

BPD level..1302
<BPD> Steps Level...1303

KPIs...1304
Working with Changed Variables..1304

Sample Monitor Solutions..1307

Page 25

Task Escalation alerts..1307
Monitor Notes...1308
___..1308
WebSphere Application Server..1309

Profile Management...1309
References – Profile Management...1309

Command line profile management..1309
Switching a server from production to development mode..1309

Recovering from a failed adapter install..1310
Recovering from XA recovery..1310
WAS Security..1310

Virtual Member Manager..1311
WebSphere Application Server WEB 2.0 Feature Pack..1311

AJAX Proxy..1314
JAX-RS – REST Services in Java...1315

JAX RS in WebSphere Application Server..1319
Deploying Java EE applications to WAS..1323
WAS Messaging..1324

Foreign Connections...1324
___..1325
Enterprise Content Management Integration – ECM...1326

Content Management Interoperability Services – CMIS...1326
Configuring IBM BPM for an external ECM..1328
The Document List Coach View...1330

Document List – Search service..1334
The Document Viewer Coach View..1336
Content Integration node...1337

Description of a Document (ECMDocument)..1338
Description of a Search Result (ECMSearchResult)..1338
Description of an ECMID...1339
Description of Document Info (ECMDocumentInfo)...1339
Description of a folder/document property (ECMProperty)...1339
Description of a folder (ECMFolder)..1339
Description of a Content Stream (ECMContentStream)...1340
Description of an object type definition (ECMObjectTypeDefinition)................................1340
Content Integration node - Add document to folder...1342
Content Integration node - Cancel check-out document...1342
Content Integration node - Check-in document..1342
Content Integration node - Check-out document..1342
Content Integration node - Copy document..1342
Content Integration node - Create document..1342
Content Integration node - Create folder..1342
Content Integration node - Delete document..1343
Content Integration node - Delete folder..1343
Content Integration node - Get all document versions...1343
Content Integration node - Get documents in folder...1343
Content Integration node - Get document...1344
Content Integration node - Get document content..1344
Content Integration node - Get folder...1344
Content Integration node - Get folder by path..1344

Page 26

Content Integration node - Get folder tree..1344
Content Integration node - Get type definition...1344
Content Integration node - Get type descendents...1344
Content Integration node - Move document...1344
Content Integration node - Move folder...1344
Content Integration node - Remove document from folder..1344
Content Integration node - Search..1344
Content Integration node - Set document content...1349
Content Integration node - Update document properties..1349
Examples of Content Integration nodes..1350

Finding documents in a specific folder..1350
Inbound ECM events...1350

ECM event REST requests...1351
Debugging ECM calls..1351

CMIS Tools...1352
CMIS Workbench...1352

API Programming for ECM...1353
Uploading a new document..1353

ECM Providers..1353
IBM BPM Document Store...1354
FileNet...1354

FileNet Information Sources..1354
FileNet Installation...1355

Alfresco...1374
Alfresco Installation...1374
Alfresco debugging..1383

___..1383
WebSphere Operational Decision Management - WODM..1384
WODM Installation..1384

Creating an instance of a Decision Server...1389
Creating an instance of Decision Server Events..1389

Augmenting an existing App Server with Decision Server Events......................................1390
WODM Documentation...1396

IBM Product Documentation...1396
Web Page Information Sources...1396
DeveloperWorks..1397
Redbooks...1397

WODM Architecture..1397
WebSphere Decision Center..1397
WebSphere Decision Server..1397

WODM Terms..1398
Rule Designer...1398

Project Structure..1398
Learning WODM...1399
Rule Projects..1400
Running a test execution..1401
Defining a Rule Execution Server configuration...1402
Categories..1405

The Vocabulary..1406
The Business Term..1407

Page 27

Categories...1408
Functions..1408
Execution Object Model (XOM)..1408
Business Object Model (BOM)..1408

BOM Class category..1409
BOM Member category...1410

BOM Data types..1411
BOM implementation files..1412

Working with XSDs...1412
Rule Sets...1416

Rule Set Parameters...1416
Rule Flow...1417
Business Policies..1420
Business Action Language...1420

BAL Definitions..1421
BAL Conditions...1421
Rule Actions..1422

Business Rules..1423
Decision Tables..1424
Decision Trees..1425
WODM – Event Processing...1429

Event Processing Architecture...1429
IBM Decision Server Events – Knowledge...1430

InfoCenter...1430
Installing the Event Processing Business Space widgets...1430
Creating an Event Project..1430
The DES console...1431

The Rule Execution Server...1431
Rule Execution Server Console...1431
Hosted Transparent Decision Services – Web Services..1433

Rule Application...1433
Deploying a RuleApp..1436
RuleApp Properties..1440

WODM – Decision Center...1440
Configuring Decision Center...1440

___..1444
Business Process Management scenarios...1444

Scenario: Exception Handling...1445
Advanced IBPM Troubleshooting..1445

Data Studio..1445
DB2 Troubleshooting..1453

Eclipse..1456
Unix Notes..1457

X-Windows..1457
Database Installation..1457

MS SQL Server 2008 Installation..1457
Java Programming..1478

Writing XML documents...1478
Working with Apache POI..1478

Reading an Excel Spreadsheet with POI...1478

Page 28

Writing an Excel Spreadsheet with POI...1478
Demo – Book Order Fulfillment..1479

Part I – A simple start..1480
Part II – Billing problems..1485
Part III – Starting process instances...1488
Part IV – Check Stock...1491
Part V – Advanced UI..1493
Part VI – Business Monitoring..1493

POC Considerations...1494
Choice of server hosting environment...1494
Choice of developer environment..1494
Software choices..1494
Environment Checklist..1494

DB...1494
Process Center...1495

Kolban's Projects..1496
Apache Velocity Integration..1496

The Velocity Template Language...1496
XSLT DataHandler..1498

Converting a BO to a plain XML..1498
IBM BPM 7.5 Coach Auto-save..1499
Process and Task Data Explorer..1499
Out of Office support...1501

Tutorials..1502
Starting a business process on a schedule..1502
Building a Monitor Model for BPMN events..1506

Glossary..1529
Ideas..1529
Areas to write about and work to do..1529
Quick Links..1531
The End?...1531

Page 29

About this book ...
As an IBMer who's job it is to work with IBM Business Process Management products my style of
learning is to learn something and then to write down what I have learned. I do this for two primary
reasons. The first is that as I get older, I can't remember information for as long as I would like.
The second reason is that I am a firm believer in writing down information and sharing it with
others in the hope that all can benefit from things learned as much as I benefit from reading the
words that others have laid down.

Over the last six years, I had been a heavy contributor to IBM's internal Wikis on IBM BPM
products. Unfortunately, despite hundreds of new pages and several hundreds of hours invested in
that medium, I was forced to abandon that experiment and decided to write my thoughts in the form
of a book.

I've written books before and had them published and swore I would never go down that road again.

This time I am approaching it with a different technique. There is no publisher for this book and
there may never be. Instead, I have chosen to make it available inside IBM and to consumers of the
product for benefit and value to all IBMers and consumers.

The content within represents innumerable hours of study and tinkering mostly in the evenings and
weekends. It is a loosely related set of articles and notes and little time has yet been spent in
polishing the content for clarity and quality … this means it is pretty darn raw. I also don't claim
accuracy or best practices on any of the material found within so use and leverage at your own risk.

When this book was first released back in December 2010, it focused exclusively on the WebSphere
Lombardi Edition (WLE) product. With the release of IBM Business Process Manager, every page
has (hopefully) been re-read and modified to reflect the change to the new product. However, there
will undoubtedly be places where the old material was not updated but this will rectified over time.

With these disclaimers in place, I sure hope you find some value within.

The book will most definitely continue to be updated over the time ahead and will be refreshed on
a monthly basis as new knowledge is covered, mistakes corrected and the product(s) evolve. A
permanent web page was created to host access to the book. The link for this page is:

http://www.neilkolban.com/IBM

Readers should check back there periodically to validate that they have the latest version available.

Lastly, these notes represent my best understanding of a story or technology, there may be errors or
misunderstandings. Beware :-)

Neil Kolban
(kolban@us.ibm.com)

Page 30

http://www.neilkolban.com/IBM

Book Release History
The book is written using Apache Open Office Writer. I had previously used IBM Lotus
Symphony 1.3 which I had thought to be awesomely good word processor. In January 2012 IBM
announced that there would be no further substantial enhancements to Symphony and all effort
would be focused on Apache Open Office. Downloading and working with Open Office, I found
that it was (to all intents) identical to Lotus Symphony. Digging further, it seems that Lotus
Symphony was itself a branch from an original Open Office. The PDF versions of this book are
generated from the in-built PDF generation capabilities found in Open Office.

Screen shots are captured with Snagit v11 from a software producer called TechSmith.

Custom drawings were built with Microsoft Photo Draw v2 (circa 2000). This is arguably one of
the best drawing packages ever created and contains features which I have never subsequently seen
in any other drawing package. Unfortunately this product was discontinued by Microsoft a long,
long time ago.

Cross references within the book are being added slowly but the desire is for more comprehensive
cross referencing as time permits. The cross references are hyper-link-able within the PDF
versions.

Below is the history of release and some of the page counts in each release. Some releases have
seen the page count fall as old materials are pruned or replaced. Even if the page count falls or
maintains the same, each monthly release will an improvement over the previous one as materials
will have been polished or clarified.

Date Description

02/01/14 Page count 1498.

01/01/14 Page count 1475. Continued to remove redundant information. Removed pre-8.0 BPM Coach information.

12/01/13 Page count 1540. Removed all Dojo programming information into new Worklight book.

11/01/13 Page count 1585

10/01/13 Page count 1606.

09/01/13 Page count 1593.

08/09/13 Page count 1581.

07/01/13 Page count 1550.

06/03/13 Page count 1514.

05/03/13 Page count 1508.

04/01/13 Page count 1504.

03/01/13 Page count 1482.

02/01/13 Page count 1477.

01/02/13 Page count 1482.

12/01/12 Page count 1453.

11/01/12 Page count 1407.

10/01/12 Page count 1392.

09/01/12 Page count 1391.

08/01/12 Page count 1380.

07/01/12 Page count 1331.

06/01/12 Page count 1292. Started migration to 8.0.

05/07/12 Page count 1256.

04/01/12 Page count 1215.

03/01/12 Page count 1163. Bunches more stuff on GWT and a start on JAX-RS thinking.

02/07/12 Page count 1146. Released late.

Page 31

http://en.wikipedia.org/wiki/Microsoft_PhotoDraw
http://www.techsmith.com/snagit/

01/01/12 Page count 1099.

12/01/11 Page count 1033. Started migration to 7.5.1.

11/01/11 Page count ???.

10/01/11 Page count 1006.

09/01/11 Page count 1009.

08/01/11 Page count 992.

07/01/11 Walk through of installs including PMT. Page count 822.

06/03/11 1st release for IBM BPM v7.5 product. Page count 786.

01/01/11 January 2011 release. Page count: 504. General cleanup; start of rework (where necessary) for 7.2; inclusion of Dojo recipes.

12/03/10 First release of material. Page count: 395.

Page 32

What is Business Process Management?
Business Process Management or BPM is discussed in great detail in other literature and web sites.
The purpose of this book is to describe IBM's Business Process Manager (IBPM) product and not to
provide theory on BPM in an abstract sense. This book will cover the usage of IBPM to achieve the
goal of BPM.

Overview of IBM Business Process Manager
IBM Business Process Manager (IBPM) provides a platform on which Business Processes can be
described, implemented, executed and monitored.

History of IBM Business Process Manager
To truly understand IBM Business Process Manager (IBPM), one should first start with the path
that IBM has traveled to get to where they are today. Without an understanding of the market and
product evolutions, some aspects of IBPM may seem odd or strange. Let us start back in 2005 with
the release of an IBM product called WebSphere Process Server (WPS). WPS was the preceding
Business Process Management product from IBM. It was designed to answer all the needs of a
customer from a BPM perspective. Its core design followed a Service Oriented Architecture
paradigm. What this meant was that customers would have "business services" and those services
could then be aggregated together to build "business solutions". In practical terms, a "business
service" would be an application or coarse grained functional component that exposes itself as a
reusable service. Commonly it would be exposed as a Web Service but almost any technology to
execute such a service could be used. By building out a set of re-usable services, if we could now
describe the rules that govern the execution of these services, we would have a solution.

Historically, such rules had been described in application code with the likes of programming
languages such as Java or C#. By the time WPS came along, a new player in the story had arrived.
This was an open and industry standard called Business Process Execution Language (BPEL).
BPEL promised to be the core glue that would solve all Business Choreography needs. Without
(yet) going into detail, think of BPEL as a language that described the order in which steps of a
process would execute including branching, variable updates, and more. This language could be
visualized in a flow chart style diagram. The WPS product provided IBM's implementation of
BPEL. Coupling together WPS, its SOA integration capabilities, BPEL and a host of other
functions, IBM brought a product to market that appeared to solve the majority of BPM problems.

Unfortunately, despite IBM's best efforts, WPS did not capture 100% of the market. Competitors
arrived on the scene and market share became split between IBM and others. What also became
apparent was that the expectations of customers was changing. IBM had seen BPM as being
extremely closely married to SOA principles and that manifested itself in many aspects of WPS.
Competitors were focusing much closer on the Business Users and not as deep on the technology
users. WPS was arguably the most powerful SOA engine in the market but its leanings were
distinctly technical. Business users could not sit down at its development tooling (a product called
WebSphere Integration Developer (WID)) and describe/capture their business processes.

To counter this problem, IBM produced additional products such as IBM WebSphere Business
Modeler (Modeler) which was aimed at business users. However, modeler, although awesome for
describing business processes was distinct from WPS requiring migration work from the model
through to WPS for execution. Changes reflected in the process made by technical staff in WID
had challenges being brought back into Modeler. Something had to change.

A 3rd party company called Lombardi marketed a product called TeamWorks which was a stiff
competitor to IBM's WPS. In 2010, IBM acquired Lombardi and the product previously known as

Page 33

TeamWorks was re-named as WebSphere Lombardi Edition (WLE) . The first release of this
occurred in June 2010 with the 7.1 release. In December 2010, the WLE 7.2 version hit the streets.
Although the transition from TeamWorks to WLE was quite transparent, on occasion the original
name of the product showed through in a few places. For example, package names and variable
names still begin with "tw" (TeamWorks).

WLE continued to be extremely successful for IBM post acquisition and quickly became a staple of
IBM's BPM products. However, it didn't take anyone long to realize that IBM had two BPM
products in the market. These were, of course, WPS and WLE. Since prior to the acquisition, IBM
and WLE had been rivals competing against each other for the same consumer projects, something
further had to change.

The answer came in June 2011 with the release of the product called IBM Business Process
Manager (IBPM). IBPM is a single product that brings together all the features and functions of
both WPS and WLE in one environment. It needs to be immediately said that IBPM is not the two
products known as WPS and WLE dumped into one box … far from it. IBPM is truly the
integration of all the best parts of WPS and the best parts of WLE brought together in a single run-
time environment, with identical models of development and deployment.

All this being said, despite the version of the product being labeled 7.5, this is the first release of
IBPM to market. The core code built and tested by developers is extremely mature as its heritage
are the mature WPS and WLE ancestor products. To maintain backwards compatibility for
previous WPS customers and previous WLE customers, IBPM does surface many of the concepts
that were found in WPS and WLE by themselves. Putting it another way, the nature of its heritage
show up on occasion.

IBPM Usage
Business Processes usually exist in the minds and practices of staff a business enterprise. Capturing
them for automation in a BPM product is a relatively new endeavor (say within the last ten years).
Business Analysts and BPM Analysts could spend extensive amounts of time studying the operation
of a business before ever coming close to being able to translate that into automation design or
implementation. One of the primary strengths of IBPM is to be able to considerably shorten the
duration through a series of interactive sessions where the process is directly captured in IBPM as
an intuitive diagram. After having captured the "flavor" of the process, the process can be "played
back" to parties who understand its nature to validate that what has been captured is correct with
respect to how the business operates today or how it should operate in the future. If parts are found
to be in error or misunderstood, they can be changed in real-time and the solution played back
again. This can be repeated until the process has been correctly captured. This interactive and real-
time iterative walk-through capability is significant differentiator for IBPM compared to other

Page 34

products in the marketplace.

Modeling a process
One of the first parts of building an IBPM solution is to model the Business Process. Modeling the
process is the notion of capturing the existing process or the new process that is desired to be
created. This task is usually performed by a Business Analyst in conjunction with key individuals
involved with the process who may know details about certain areas.

The outcome of this phase of activity is a model of a process.

During this period, we are interested in capturing the logical flow of steps in the process and the
coarse grained nature of those steps themselves. What we are not interested in capturing (at this
time) are the mechanics of how those steps are to be performed … that is vitally important
information, but will come later.

IBPM allows us to capture the model of a process using a powerful drawing technique that is based
upon the prevailing Business Process Model and Notation (BPMN) standard. This drawn diagram
represents steps in the processes as "boxes" with lines drawn between them to describe the flow of
work. Each box represents a step and is labeled with its description in the diagram.

By capturing a diagram of the process, the diagram can be discussed for accuracy with other people.
It can be used as the basis of the important question "Is this how we work today?". During these
discussions, it is common to catch errors or misconceptions that were made while the diagram was
being originally drawn. It is a trivial matter to change the diagram at this stage as needed.

In other BPM products, the step of modeling the business process also occurs. Where IBPM differs
is that the model captured here is exactly the model that will be refined in the future for
implementation. There is no concept of exporting the model from one tool and importing into
another. That is simply not needed. Because the model is shared between design and
implementation, it is simply not possible for the two to diverge from each other. This eliminates the
"round-trip" problems seen in other environments.

Integrating with IT Systems
Although many business processes involve only routing work from one user to another, the vast
majority involve interacting with existing IT applications that may be located on a variety of remote
systems. IBPM provides the ability to include these IT systems as part of the process. Integration
can be achieved through Web Services or other communication calls.

See also:
• Business Process Definition - BPDs

Architecture
IBPM is composed of a number of functional components. These components and how they
interact with each other constitute the architecture of IBPM.

Process Applications
A Process Application is the container for a solution. You can loosely think of it as a project. The
Process Application is initially created through the Process Center console. It is given a name and a
tag called an acronym. The acronym must be unique and can be no more than seven characters in
length.

Page 35

Once the Process Application container has been created, artifacts can then be further created within
it using the IBPM Process Designer (PD) tooling. The Process Application and its artifact contents
are stored within a repository hosted and managed by a component called the Process Center.

Process Applications can be created from the Process Center console either from its web page
interface or from within IBPM PD. The main Process Apps page has a button to create a new
Process Application.

The creation of a new Process Application will open a dialog and prompt for a name for the new the
application as well as its acronym value.

The "state" of a Process Application at a given point in time can be recorded in a "snapshot". This
state consists of all the artifacts and their content at the time that the snapshot was taken. As
changes are made to the Process Application after the snapshot was made those changes are not
reflected in the snapshots that occurred in the past. Additional snapshots can be taken at anytime.

Process Applications commonly contain one or more Business Process Definitions (BPDs). These
can be thought of as models of the process that will eventually be executable. In this book I switch
between the phrases BPDs and BPMN processes as I see these as synonyms for each other.

See also:

Page 36

• Business Process Definition - BPDs

• Snapshots

Process Instances

A BPD in a Process Application reflects a template of a process as opposed to an instance of a
running process. When a process is started, a new instance of the process is created from the
template. An actual process instance can be thought of having a current state and can only be in one
state at a given point in time. The potential states are:

• Active – The process instance is active (running).

• Completed – The process instance has completed.

• DidNotStart – The process instance did not start.

• Failed – The process instance has failed.

• Suspended – The process instance has been suspended and can be resumed. (See Error:
Reference source not found).

• Terminated – The process instance was explicitly terminated prior to completion. (See
Error: Reference source not found).

In addition to the processes execution state, there is also the concept of the state of any variables
that may have been created.

When a process instance is created, it is given a unique integer process id value. This value is
unique amongst all the process instances within the environment. Some customers have used this
value as a key in 3rd party databases and have had problems when migrating processes to a new
version of the product where the instance ids are reset. They remain unique in the environment just
not globally unique across time.

Archiving Process Applications

Once created in PD, the definition of a Process Application is usually never deleted. This may
seem odd at first but if we think about it, the only resource being consumed by a non-deployed
Process Application is some disk space within the back-end Repository database which is usually
relatively small. In addition, Process Applications are extremely coarse grained concepts and there
should be no obvious need to create too many of these. A Process Application can be hidden from
overt viewing by flagging it as archived. Archiving a process application removes it from view
from the list.

Even though a Process Application has been archived, it still remains within the Repository. A
filter on the Process Center console can be used to view archived applications and restore them to

Page 37

their visible state.

When a Process App has been archived, it is eligible for deletion. Deleting a Process App is not a
recoverable command. Once deleted, it is gone forever. In versions of the product prior to 7.5.1,
this capability was simply not present and Process Apps and Toolkits remained forever.

See also:
• Video Tutorial: Deleting a Process App or Toolkit - 2012-03-01

Process Applications state management

A Process Application can be manipulated or worked with as follows:

• Cloned – The process application is duplicated with the new one being given a new name

• Archived – Archiving an application simply means "hiding" it from normal view

• Import – Bring in a previously exported Process Application from a .twx file (Note: The
file suffix TWX used to mean "Team Works Export" when the product was historically called
TeamWorks).

• Export – Export a Process Application to a .twx file. A .twx file is a file format used to
store the content of a Process Application in a computer file. The .twx file can be transferred
to other systems running Process Center for subsequent importation.

Changing Process Application settings

Some core settings of a Process Application can be changed within the Process Designer. From the
primary menu pull down, an entry for Process App Settings" can be chosen:

After selecting this, an editor is shown in which some key settings can be changed.

Page 38

https://vimeo.com/37754671

These include the name of the Process Application, its Acronym and the textual description. Note
that the Process App Acronym can be changed here if needed.

Toolkits
Similar to Process Applications, a Toolkit can also be thought of as a container for artifacts used in
solutions. Unlike a Process Application, a Toolkit does not result in a deployable application.
Instead, the contents of the Toolkit can be "included" or "used" by one or more Process
Applications.

When Process Center is installed and configured, an IBPM supplied Toolkit called "System
Data" is automatically imported into the repository. See System Data Toolkit.

This toolkit is marked as read-only and is implicitly a dependent on all other Process Applications
and Toolkits. It is the System Data toolkit that contains the core definitions for data structures and
other items common across all Process Applications.

Toolkits have their own tabs in the Process Center consoles. From there new Toolkits can be
created, Toolkits exported and otherwise managed in a similar fashion to those of the Process
Applications.

Page 39

Just like Process Applications, Toolkits can have Snapshots taken off them allowing all the artifacts
in a Toolkit to be considered a specific version.

To add a Toolkit as a dependency to a Process Application, the Toolkit must first have a snapshot
associated with it. This is because the dependency added to the Process Application is not just the
Toolkit's name but is instead a specific snapshot of that Toolkit. Once a snapshot of the Toolkit has
been taken, a dependency can be added in the Designer view of PD by clicking the icon to the
side of the Toolkits entry. A list of potential Toolkits and their associated snapshots is shown for
toolkit selection.

Smart filtering is available in this list but is interestingly keyed off snapshot names and not toolkit
names.

The following diagram summarizes the story of process apps and their relationship to toolkits. A
Process Application can have a dependency (shown by the arrow) on a Toolkit. Multiple Process
Applications can have dependencies on the same Toolkit and Toolkits can have dependencies on

Page 40

each other.

The nesting of toolkits opens up some interesting semantic questions. For example, if Toolkit A
has a dependency on Toolkit B then if Process Application C depends on Toolkit A does that also
mean that the artifacts defined in Toolkit B are visible to Process Application C? The answer
appears to be no. If Process Application C wanted to utilize artifacts in Toolkit B it would have to
have a dependency on that toolkit to enable access those artifacts directly.

See also:
• System Data Toolkit

• Additional Toolkits

Tasks
A task is a piece of work to be performed by a human being. Typically, this is achieved by the
creation of an activity in the BPD which is then associated with a Human Service. When a process
reaches a Task, that branch of the process pauses or suspends until the task has been completed. A
task has a state associated with it. A task can only be in only one potential state at any given point
in time. The states associated with a task are:

• New

• Received

• Replied

• Forwarded

• Sent

• Actioned

• Closed

Page 41

• Special

• Deleted

Task Priority

Associated with a task is the concept of a priority which indicates how important this task is relative
to other available tasks. The Task Priority could be used by user interfaces to determine a display
or sort order for tasks and show the tasks with the highest importance first. The choices available
for the task priority are:

• Highest

• High

• Normal

• Low

• Lowest

Within a Human Service, the current task can be found from the variable:

tw.system.currentTask

This object contains a field called priority which is the priority of this task. Changing this
value results in the task's priority being changed.

See also:
• Data Type – TWTask

IBPM Components
At a high level, IBPM is comprised of a number of coarse grained components. Taken together,
these are the IBPM product. Each component serves a unique and distinct purpose and are
employed at different stages in the development or operation of an IBPM solution. Breaking IBPM
down into these constituent components both aids in the understanding of the product as well as
providing a practical differentiation between phases and pieces of operation.

Component – Process Server
Process Servers are the components/engines which run the business processes described by BPDs.
During development, the processes run on an instance of a Process Server located at the Process
Center. When it comes time to put the applications that have been built in the test and production
environments, they will be installed on other Process Server instances.

A Process Server is implemented by a WebSphere Application Server (WAS) with the IBPM
product integrated within it. The IBPM run-time consists of IBM written Java product code
engineered to conform to and utilize the Java EE framework.

For users of IBPM Advanced, the Process Server also contains a large set of additional functions
including Service Component Architecture (SCA), BPEL processes and mediations (to name but a
few).

Page 42

Component – Process Center
One of the core concepts of IBPM is that there is only ever one definition of the solution you are
building. This may sound obvious but comparing IBPM to other products, we find that those other
products have different "representations" and "copies" of the solution being built depending on what
is being done. For example, some products store modeling data in one format/location, process
development data in a different format/location and monitoring data in yet another format/location.
The result of this is that a plethora of different data structures and sources exist with little
interoperability between them. A change in a model, for example, may need to be manually
reflected as a change in the implementation of the process. Because the different tools and products
don't use the same underlying data and conversions from one product to another must happen,
mistakes and misinterpretations can easily occur. The result can be a complex mess.

IBPM on the other hand utilizes a concept that is called the "shared model". In simple terms this
means that no matter what is being done within the overall solution, there is only one common
repository and a single representation of that solution. Because of this, it is impossible to get two
phases of the same solution out of synch with each other.

This shared model is realized by an IBPM component called the "Process Center". Part of the
process center is a data repository which is simply called the "Repository". Within the repository,
there exists the representation of the solution. The IBPM PD tooling connects as a client to the
IBPM Process Center to obtain copies of the solution for working upon. When a user makes a
change and saves those changes, the results are written back to the repository.

Another way of saying this is that the IBPM PD does not maintain the artifacts of a solution on the
user's workstation. Instead, they are retrieved from Process Center to IBM PD for editing and when
the edit has completed, the changes are saved back to Process Center. Contrast this with other
products where when a developer makes a change, the change is made locally on the user's
workstation and no-one else sees that change. In order for others to see it, copies of the artifacts are
passed around resulting in potential inconsistencies.

Page 43

The Process Center repository is implemented as tables within a database (commonly DB2). The
content of these tables are opaque and access to the repository information is achieved through the
tools and web pages. One should never attempt to access these tables directly through database
tools.

The Process Center is actually comprised of three component. It has the Process Center repository
which is responsible for managing the solution's artifacts and it has an instance of a Process Server
and a Performance Data Warehouse both used for unit testing.

The Process Center can be accessed either through IBM PD or through a web based interface. Here
is a screen shot of the web access:

Page 44

and here is the same interface in the IBPM PD desktop client tooling:

As can be seen, they are virtually identical from an appearance stand point providing a consistent
view of the models.

Page 45

Starting Process Center

The Process Center component runs within a WebSphere Application Server (WAS) server so
starting Process Center is actually the task of starting a WAS server which has been configured to
host Process Center. During install of IBPM, a WAS server that runs Process Center is registered
with the Windows Services systems. An icon is added to the start menus to launch Process
Center/WAS:

The Process Center server starts up quietly. A recommendation is to use a tail tool that can be
applied to the WAS console log to follow the start-up information until start-up has completed. The
console file for this log file can be found at:

<IBPM Install>/profiles/ProcCtr01/logs/server1/SystemOut.log

This is the default WAS log. The location where the log file is written can be changed through the
WAS admin console but it is recommended to leave it as the default unless there is a compelling
reason to change.

Component – Process Designer
The IBM Business Process Manager Process Designer (PD) is the development time tooling used to
design, model and build processes. It is implemented under the covers using the Open Source
technology called Eclipse but has a very non-Eclipse like skin applied over it. Unless you knew
otherwise, you would never know that it is Eclipse based. This is both good and bad. It is good in
that it builds upon the proven robustness and maturity of Eclipse and leverages a whole host of
trusted functions under the covers. The down side is that because it doesn't "feel" like Eclipse, it
loses one of the major strengths of an Eclipse hosted application which is the consistency and
familiarity of the framework. The decision to hide the Eclipse nature of PD was extremely
deliberate. It was felt that the visual complexity of Eclipse was too overwhelming for business
users. As such, even though it was just mentioned that under the covers PD is Eclipse based, you
should now put that out of your mind as it will serve no further purpose.

Page 46

IBPM PD can be downloaded from the IBPM Process Center and installed on a user's Windows
based workstation. It is delivered as a 270 MByte (plus) ZIP file. Once extracted, the program
called "eclipse.exe" can be executed to start the tool. Note that IBM charges a per-seat license for
installing the Process Designer so just because one can simply click a button and install it on a
workstation doesn't mean that you are licensed to do so. Discuss this with your IBM sales
representative if you have any questions.

IBPM PD connects to a single instance of a Process Center and there is no exposed ability to change
which Process Center instance against which it should communicate. This is by design as the intent
is that there only ever be one Process Center in any given environment.

At a high level IBPM PD allows us to describe business processes using the BPMN notation.
Processes are "drawn" visually on the screen canvas and the technical skills needed to achieve this
task are as low as can possibly be made.

When drawing items on the canvas, holding down the keyboard CTRL key in combination with
cursor arrow keys will move any selected elements pixel by pixel. This provides a great way to
align the components into a pleasing visual layout.

Play back sessions

One of the key strengths of IBPM is the ability to incrementally build out and demonstrate the
business processes being constructed. Rather than having to complete a phase (such as modeling)
before seeing how it "feels" during further development, a concept called a "play back" can almost
immediately be applied. A play back is the real-time execution of the process without having to
explicitly compile and deploy a solution. Think of a play back as the ability to quickly build a
"skeleton" of a business process and run it to see what it looks like. The real-time nature of change
and play back allows us to enter a step, test it, realize that something is missing, change the process
and re-test all without missing a beat or having to "flip" from one development tool or environment
to another.

Starting IBPM Process Designer

After installing IBPM, the IBPM Process Designer can be launched from the Windows start menu.
Before starting IBPM PD, ensure that the Process Center that it will connect to has been previously
started. Remember that IBPM PD is basically a client to the Process Center server. If Process
Center is not running, IBPM PD will not function.

Page 47

This is actually just a shortcut to Eclipse installed by IBPM. This is usually found at:

<Install>/ProcessDesigner/v8.0/eclipse.exe

Once launched, the IBPM PD will ask for authentication information with a userid/password pair.
The default/initial administrator userid and password are commonly:

admin/admin

IBPM PD will then connect to the Process Center to retrieve the information it should display and
start showing the appropriate application windows:

Page 48

Note that the currently logged in user is shown in the title of the window. To be able to login to the
IBPM PD, the user must be authorized to access the Process Center repository. See: Securing
Access to the repository.

As mentioned, although IBPM PD is actually Eclipse, it looks nothing like a standard Eclipse
environment. Gone are the classic Eclipse concepts of perspectives, views and editors.

In the IBPM PD interface there are the following major "views" only one of which is shown at a
time:

• Process Apps – Selection of available/existing Process Apps

• Toolkits – Selection of available/existing Toolkits

• Servers – List of the Process Server instances

• Admin – Administration tasks

• Designer – Design/construction of a solution

• Inspector – Debugging/monitoring a solution (usually in test)

• Optimizer – Examining performance characteristics

The screen shot previously shown shows the Process Apps view. Access to the views for Toolkits,
Servers and Admin is obtained by clicking on the appropriate tab at the top of the screen. Access to
the other views is a little more subtle.

An application can be opened in the Designer view by selecting the link to the right of the
application name. Alternatively, there is a button that will take you to the Designer view:

Page 49

From the Designer view, access to the Designer, Inspector and Optimize view can again be easily
navigated in a single click using the names at the top of the window.

A button called "Process Center" will return us to the previous view (Process Apps).

At the bottom right of the designer view there is a status icon that shows two things. Firstly, it
shows the network host name of the machine running Process Center. This is the instance of
Process Center to which IBPM PD is connected. Secondly, it shows the status of the connection
between the PD client and the Process Center server. A green icon means the connection is good
while a red icon means that the server is probably down. The icon may also be colored yellow or
orange to show that connections are possible but slow.

Although not formally exposed or supported, the host name and port number to which PD expects
to find the Process Center is contained in the file called eclipse.ini. Look for an entry called:

Page 50

-Djava.naming.provider.url=corbaname:iiop:<hostname>:<port>

This is where Process Center lives. Formally, one should download a copy of PD from the Process
Center to which the PD is to connect even if this means that you have multiple copes of PD on your
disk.

Working in the Designer view

The majority of the time spent in IBPM PD will be spent in the Designer view. This is where the
bulk of the description of the process is performed. The Designer view is shown in the following
screen shot:

The Designer view contains a number of screen "areas" that change based upon what task is being
performed. In summary, the view is built from four major areas.

In the top left we have a list of all the artifacts of the solution. In the top right, we have an editor
for the current artifact being worked upon. In the bottom left we have a history of the changes and
snap-shots available to us. In the bottom right we have some tab sheets the most important of
which is the one called Properties.

Tip:

Page 51

The two left windows can be hidden or shown by using the icon in the bottom left of the window:

This is a toggle-able button. One click hides and a second click shows. Use this button to give
your environment more visual space if the resolution of the screen is low or you wish to see more
of your project while editing.

Working with the Library

Within IBPM, you may be working with a large number and a wide variety of artifacts. Trying to
manage these artifacts in a way that you can easily locate them can be a challenge. Classic user
interface designs have provided folders in a tree structured diagram. IBPM has provided an
alternative to this model. Although definitely non-standard it has managed to achieve a high degree
of ease of use.

When working in the Designer mode, you can see the area called the "Library". The library is
the list/catalog of all artifacts that you are working with or have visibility to.

The major (top level) entries are:

• The current Process Application

• Toolkits

• Blueworks live defined processes

Page 52

• Smart Folders

The Library contains high level categories and within each category are the artifacts associated with
those categories.

Here is a break-down of the items in the library:

Processes category

Business Process Definition – see Business Process Definition - BPDs

Participant Group

Historical Analysis Scenario

Simulation Analysis Scenario

User Interface category

Human Service

Coach View

Ajax Service

Localization Resource

Implementation category

Integration Service

General System Service

External Implementation

IBM Case Manager Integration Service

Undercover Agent

Web Service

Advanced Integration Service

Event Subscription

Decisions category

Decision Service

Service Level Agreement

Data category

Business Object

Exposed Process Value

User Attribute Definition

Performance category

Tracking Group

Timing Interval

Key Performance Indicator

Setup category

Page 53

Localization Resource

Files category

Web File

Server File

Design File

Items defined in the library are local to just that Process Application. To move or copy items from
one Process Application to another, the context menu of the item to be moved or copied can be
used. It contains menu entries for both Move and Copy. The target is a different Process App or
Toolkit.

Adding managed files

On occasion, files that were originated outside of IBPM PD may need to be included in the solution.
IBPM PD provides the ability to include such files for packaging within a Process Application.
Examples of files you may wish to package include image files, HTML files and JAR files.

Page 54

There are three “types” of files that can be defined as server managed … these are:

• Web File – Web based artifacts such as CSS style sheets, images and other web loaded
assets

• Server File – Server files such as Java JAR files and Java Script files

• Design File – Product specific files such as XSLT style sheets used in Coach
transformation

After a file has been added, its properties are shown:

These files are deployed with the Process Application. The files can be accessed from JavaScript
code. The following fragment retrieves a JavaScript TWManagedFile object:

tw.system.model.findManagedFileByPath("<file name>", TWManagedFile.Types.Web);

The TWManagedFile has a number of properties including one called "url". This property
contains the web URL that can be used to access the file over a network.

If the managed file is a ZIP, appending the name of the file in the ZIP to the URL can be used to
retrieve the specific file.

See also:

Page 55

• Error: Reference source not found

Tagging

When working with artifacts such as BPDs, services, and more, it can sometimes be a challenge to
find the parts you are looking for. PD provides an elegant solution to this problem through the
technique known as tagging. A tag is a keyword that you make up. Think of it as the name of a
collection or set. Each artifact that you care about can then be tagged with this keyword. Once
tagged, you can then ask IBPM PD to show you the tags of the artifacts or use this attribute in a
search or sort filter.

Here is an example. Looking at the BPDs in a Process Application, we may initially see the
following list:

In the top left of the list there is a pull-down that allows us to show how the elements in the list are
categorized. By default, they are categorized by type. We can change this to Tag and now the
elements are categorized by their tags. Initially, none of the artifacts have any tags associated with
them and we see that they belong to the category called "No Tags".

By right-clicking on an entry, we expose its context menu. In that menu there is an entry called
Tags. This is where we can associate the entry with one or tag values. If we want to create a new
Tag, we can select the New... entry:

Page 56

Here we see the creation of a new tag:

After having tagged an entry, when the lists is shown again, we see that it is part of the grouping for
the tag value:

An artifact can be tagged with multiple tags in which case it will appear in the list multiple times,
once for each tag.

Page 57

To remove a tag from an artifact, again go to its tag settings where there will be a check mark for
each tag associated with the artifact. Un-checking the tag from the artifact will remove it from the
tag set:

By combing tags with Smart Folders (see: Smart Folders) we can create a folder that only contains
tagged artifacts:

The Smart Folder definition for this may look like:

Page 58

Smart Folders

Smart folders are a way of organizing your work and seeing only those artifacts that you need to see
at a particular time in a convenient manner. By default, four folders are pre-created for you:

• Favorites – Artifacts tagged as favorite

• Changed today – Artifacts that were changed today

• Changed this week – Artifacts that changed this week

• Validation errors – Artifacts that contain validation errors

To add an artifact as a favorite, bring up the context menu of the artifact that you wish to flag and
select Favorite from the menu. A star icon will appear next to the artifacts you have marked as
favorites.

Page 59

In addition to these pre-defined folders, you can create your own custom folders. Clicking the add
button to the right of the Smart Folders label, you can create a new folder.

You would give the folder a name and then provide one or more rules that describe the types of
artifacts that the folder should contain. These rules contain:

• Category

• Currently Changed

• Currently Changed by other

• Currently Open

• Exposed

• Favorite

Page 60

• Last Modified By

• Last Modified Date

• Last Modified by me

• Name

• Tag

• Type

• Validation Error

• Validation Warning

For example, to create a folder that shows all the artifacts that are tagged "My PoC", you might use:

One particularly good use of smart folders and tagging is to create a tag called "ToDo" which is
used to identify artifacts that still need work before the solution can be deployed. As a solution is
built, it is common to build a number of artifacts as place holders for further implementation.
Remembering to work on these is the challenge. If a tag called "ToDo" is created and a smart
folder defined which shows these items, one can immediately see if there is work outstanding.

See also:
• Validation errors

Validation errors

When ever changes made to a Process Application are saved, the solution as a whole undergoes an
automated correctness validation. This will attempt to catch development time errors that may have

Page 61

been introduced. Validation errors may include such things as missing artifacts, duplicate named
service components or no longer supported component types.

The Smart Folders section contains a visual indication of the number (if any) of validation errors
detected.

Selecting this folder will show a list of artifacts that are flagged as containing errors. When an
artifact is opened that contains an error, the Validation Errors tab will show the details of
those errors:

Validation only occurs when artifacts are saved to the Process Center. All validation errors should
be corrected before attempting to deploy a Process Application.

See also:
• Smart Folders

Working as part of a team

It is extremely common for a team of people to be working on a single Process Application solution

Page 62

at the same time. Some may be developers, some may be analysts and some may be performing
other roles. Since each user of IBPM is using PD to connect to the same Process Center
Repository, we need some form of shared notification to ensure that users do not step on each
others work and get notified when changes are complete.

IBPM PD provides a highly elegant solution to the problem.

When multiple users open the same Process Application at the same time, the list of users that have
that Process Application open is shown at the bottom of PD.

The following illustrates that there are two other users who also have this same Process Application
open in their IBPM PD tools.

Clicking on a user brings up details of what that user has open for editing or has recently worked
upon:

It is permissible for multiple users to open the same artifact at the same time, in which case a
notification that another user has it open will be shown:

If another user makes a change to the artifact, then it will be made read-only for everyone else until
the changes are completed or discarded. The indication that it is being edited by another is
immediate:

Page 63

When the changes are completed, the artifact immediately becomes unlocked for the others and
changes made by others are also reflected in the open editors of all the other users.

Component – Performance Data Warehouse
The Performance Data Warehouse is a database responsible for collecting and managing data
originated by Process Server instances. Think of this as the repository for information about the
history of the system as is used for reporting of the outcome of processes. The sourcing of data for
reporting comes from the single Performance Data Warehouse database which may be associated
with multiple Process Server instances. This architecture allows aggregation of information from
multiple servers to be achieved. Since generation of reporting knowledge can be computationally
expensive, the separation of the Process Servers from the Performance Data Warehouse also allows
for reports to be generated without impacting the operation of running processes.

Component – Process Center Console
The Process Center Console provides a web based interface for managing the Process Center
maintained projects. This capability is also available within the IBPM PD thick client tool.

Component – Process Portal
The IBPM Process Portal provides the primary end user interface for users to start process instances
and see work tasks awaiting their attention.

Component – Process Admin Console
The Process Admin Console is a web based interface for system administrators. It provides a
wealth of functions for system operations.

See also:
• Process Admin Console

Page 64

IBPM Knowledge
There are a variety of sources of knowledge and information related to IBPM. This section captures
some of the more important ones. When a question or puzzle on using the product comes to light,
the chances are extremely high that the answer can be found in the existing documentation, forums,
TechNotes, RedBooks and articles. The real challenge is searching for the answer is the mass of
information available.

Product Documentation
The documentation for much of IBPM can be found in the v8.5 InfoCenter.

The InfoCenter can be executed off-line using the IEHS package (IBM Eclipse Help System). To
achieve that, download and un-compress the IEHS. The download for the documentation for the
8.5.0 release can be found here:

http://www-01.ibm.com/software/integration/business-process-manager/library/documentation/

See also:
• TechNote: 4031355 - IEHS is not in the downloadable image and DVD for IBM Business Process Manager (7.5.1)

Web Sites
Some commonly visited web sites on the Internet related to IBPM are:

• IBM BPM Home Page - The IBM Internet web page related to the BPM product

• IBM BPM Wiki - A fantastic resource of articles on all versions (past and present) on the
IBPM product

• IBM Education Assistant – The free IBM Education Assistant website provides articles on
various IBM products including the IBM BPM suite.

Public Forums
IBM's public Internet accessible developerWorks website has a forum dedicated to IBM Business
Process Manager. This is a very active forum and is used by most IBPM consumers and is watched
on a best effort basis by most specialists within IBM itself. Support through the forum is provided
on a best effort basis and should not be confused with formal PMRs (support requests) through IBM
product support.

https://www.ibm.com/developerworks/community/forums/html/forum?id=11111111-0000-0000-
0000-000000002382

IBM RedBooks
RedBooks have been a staple of knowledge on IBM products for decades. These are free-of-charge
down-loadable books that are commonly written by IBM staff outside of their normal work jobs. In
addition, RedBook authoring is also open to customers who wish to work closely with the product
and other IBM teams. These books are written by practitioners who use the product on very
frequent basis and, as such, the books represent real-world experiences and practices. Here is a list
of IBPM related RedBooks:

Page 65

https://www.ibm.com/developerworks/community/forums/html/forum?id=11111111-0000-0000-0000-000000002382
https://www.ibm.com/developerworks/community/forums/html/forum?id=11111111-0000-0000-0000-000000002382
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.bpm/plugin_coverpage.html
http://wiki.lombardi.com/display/Dashboard/HOME
http://www-01.ibm.com/software/integration/business-process-manager/
http://www-01.ibm.com/support/docview.wss?uid=swg24031355
http://www-01.ibm.com/software/integration/business-process-manager/library/documentation/
http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r5m0/index.jsp

• Leveraging the IBM BPM Coach Framework in Your Organization – SG24-8210-00 - 2013-02-11

• Discovering the Decisions within Your Business Processes using IBM Blueworks Live – REDP-4993-00 - 2014-01-30

• Business Process Management Deployment Guide Using IBM Business Process Manager V8.5 – SG24-8175-00 - 2015-01-15

• Empowering your Ad Hoc Business with IBM Business Process Manager - REDP-4995-00

• Creating a BPM Center of Excellence (COE) – REDP-4898-00 - 2012-09-13

• Implementing an Advanced Application using Processes, Rules, Events, and Reports – SG24-8065-00 - 2012-09-11

• IBM Business Process Manager Security: Concepts and Recommendations – SG24-8027-00 - 2012-09-04

• IBM Business Process Manager (BPM) 7.5 Performance Tuning and Best Practices – REDP-4784-00 - 2012-01-27

• IBM Business Process Manager V7.5 Production Topologies – SG24-7976-00 - 2011-10-20

• Scaling BPM Adoption from Project to Program with IBM Business Process Manager – SG24-7973-00 – 2011-09-27

• IBM BPM for Dummies – Although not a redbook, a good overview of BPM and because it is a book, added to this list

IBM Community
Within internal IBM, there is a community that includes a forum and a Wiki for discussing the
IBPM product. This can be found at the following URL. This is only available to IBM employees.

http://w3.ibm.com/connections/wikis/home?
lang=en_US#/wiki/W09eab198c214_436e_a456_02c99b7b475f

or at the much more intuitive/readable URL of:

http://www.ibmbpmcommunity.com

developerWorks on IBM BPM
IBM's DeveloperWorks is a public Internet based web portal for technical discussions. A large
number of papers have been written on IBPM usage. These papers are commonly written by IBM
staff when they hear common questions and queries from product users. These papers are of
particularly high quality. The current link for developerWorks papers on IBM BPM is:

http://www.ibm.com/developerworks/bpm/
• Teams in Business Process Manager V8.5, Part 1: Modeling teams with IBM Process Designer - 2014-02-19

• Integrating RESTful web services into a business application in IBM Business Process Manager - 2013-12-11

• Enable WS-Security and Transport Layer Security in IBM Business Process Manager Standard - 2013-08-28

• BPM Voices: BPM and Lean -- a powerful combination for process improvement - 2013-08-28

• Configuring cross data center BPM deployment environment to achieve faster disaster recovery – 2013-08-28

• Create a mobile BPM application by integrating IBM Worklight and IBM Business Process Manager - 2013-08-28

• Using the new features of IBM BPM 8.5 dashboards for better views of your business processes - 2013-06-19

• Deploying IBM Business Process Manager packages to offline process servers - 2013-03-27

• Designing and implementing a custom inbox and My Team Performance task list with IBM Business Process Manager V8 - 2013-03-27

• Developing a transactional Advanced Integration Service with IBM Business Process Manager, Part 4: Execution cases - 2013-04-03

• Developing a transactional Advanced Integration Service with IBM Business Process Manager, Part 3: Implementing the Advanced Integration
Service - 2013-03-27

• Developing a transactional Advanced Integration Service with IBM Business Process Manager, Part 2: Defining the business process – 2013-
03-13

• Developing a transactional Advanced Integration Service with IBM Business Process Manager, Part 1: Introduction and setting up the
databases – 2013-03-06

• Using WebSphere Adapters with IBM Business Process Manager to communicate with external systems – 2013-03-06

Page 66

http://www.ibm.com/developerworks/bpm/library/techarticles/1303_li/1303_li.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1303_randone/1303_randone.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1303_randone/1303_randone.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1303_randone2/1303_randone2.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1303_randone3/1303_randone3.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1303_randone3/1303_randone3.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1304_randone4/1304_randone4.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1303_atgur/1303_atgur.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1303_venn/1303_venn.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1306_venn/1306_venn.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1308_gabutti/1308_gabutti.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1308_zhang/1308_zhang.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1308_col_schume/1308_schume.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1309_balakrishnan/1309_balakrishnan.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1312_hyakuna/1312_hyakuna.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1402_dermler1/1402_dermler1.html
http://www.ibm.com/developerworks/bpm/
http://www.ibmbpmcommunity.com/
http://w3.ibm.com/connections/wikis/home?lang=en_US#/wiki/W09eab198c214_436e_a456_02c99b7b475f
http://w3.ibm.com/connections/wikis/home?lang=en_US#/wiki/W09eab198c214_436e_a456_02c99b7b475f
https://www14.software.ibm.com/webapp/iwm/web/signup.do?source=sw-app&S_PKG=bpmebk&S_TACT=109J85RW&S_CMP=web_ibm_ws_bpm_herolt_bpmgrfam
http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg247973.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247976.html
http://www.redbooks.ibm.com/redpieces/abstracts/redp4784.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg248027.html
http://www.redbooks.ibm.com/redpieces/abstracts/SG248065.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/redp4898.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/redp4995.html?Open
http://publib-b.boulder.ibm.com/abstracts/sg248175.html?Open
http://publib-b.boulder.ibm.com/abstracts/redp4993.html?Open
http://publib-b.boulder.ibm.com/redpieces/abstracts/sg248210.html?Open

• BPM Voices: Insight at the edge – 2013-02-13

• BPM Voices: Evaluating BPM applications: BPM design reviews and Rubik's Cubes – 2013-02-13

• Configuring IBM Business Process Management Human Task Management widgets for use in WebSphere Portal – 2013-02-13

• Implementing a negotiation process in IBM Business Process Manager using web services – 2013-02-13

• Deploying a BPM pattern on IBM PureApplication System – 2012-12-12

• Care process management: Using BPM tools and methodology in the healthcare environment – 2012-12-12

• Deploying process applications in IBM Business Process Manager V8 – 2012-12-12

• Automating your business process application test cases using Java in IBM Business Process Manager - 2012-12-05

• Integrating business applications with IBM Process Center using WebSphere Adapters - 2012-12-05

• Configuring error handling for Advanced Integration Services in IBM Business Process Manager Advanced V8 - 2012-10-19

• Data4BPM, Part 3: Modeling processes with business entities using extended BPMN - 2012-10-17

• Creating custom widgets for Business Space using REST services - 2012-09-26

• Sharing toolkits across Process Centers in IBM Business Process Manager V8 - 2012-09-26

• Leveraging business data attributes in IBM Business Process Manager V7.5 and V8 - 2012-09-26

• Realizing the value of IBM Business Process Manager in the WebSphere Portal environment, Part 3: Agile development of custom user
interfaces using Web Experience Factory - 2012-09-26

• Linking business processes and enterprise services together using IBM Business Process Manager Advanced - 2012-09-26

• BPM Voices: Where does BPM end and SOA begin? - 2012-09-26

• Invoking a process deployed in IBM Business Process Manager V7.5 using WebSphere MQ - 2012-07-18

• A practical approach to integrating JMS and IBM Business Process Manager - 2012-07-10

• Designing event-driven business processes in IBM Business Process Manager - 2012-06-27

• Implementing Java integration components for IBM Business Process Manager V7.5.1 - 2012-06-13

• What's new in IBM Business Process Manager V8 - 2012-06-13

• Using Dojo to extend business processes to the mobile space - 2012-03-14

• Best practices and patterns for customizing human task forms in IBM Business Process Manager V7.5 - 2012-02-15

• Integrating a host application with an IBM Business Process Manager business process - 2012-02-15

• Integrating business process applications with CICS in IBM Business Process Manager Advanced V7.5 - 2012-02-15

• Developing an application that integrates business process management and case management - 2012-02-15

• Mobile business process management, Part 1: Extending BPM processes to mobile workers - 2012-02-15

• Integrating a business process application in IBM Business Process Manager V7.5.1 with an external system using the REST API - 2012-02-
08

• Associating WebSphere Lombardi V7.2 attributes with users defined in OpenLDAP and routing tasks - 2012-01-18

• Modeling your business processes with IBM WebSphere Lombardi Edition, Part 5: Customize the user experience with Coaches - 2012-01-11

• Configuring the IBM Business Process Manager V7.5 environment for a typical installation – 2011-12-14

• Implementing the facade pattern using IBM Business Process Manager Advanced V7.5 – 2011-12-14

• Monitoring business processes with IBM Business Process Manager and IBM Business Monitor – 2011-12-14

• BPM Voices: What is BPMN 2.0 and why does it matter? - 2011-12-14

• Capturing and analyzing interface characteristics, Part 1: Capturing integration complexity for BPM and SOA solutions – 2011-12-07

• Enabling event flow in BPM solutions and best practices for monitor model deployment, Part 1: Configuring and verifying event flow between
a clustered Process Server and IBM Business Monitor server - 2011-11-16

• Creating and sending alerts with IBM Business Process Manager V7.5 - 2011-10-26

• IBM BPM V7.5 orchestration scenarios, Part 2: Straight through processing using IBM Integration Designer - 2011-11-02

• Integrate an LDAP user registry into a WebSphere Lombardi Edition business process - 2011-10-31

• Using the Undercover Agent with a message event in WebSphere Lombardi Edition V.7.2 - 2011-10-26

• Using the SQL integration service with WebSphere Lombardi Edition V7.2 and WebSphere Application Server V7 - 2011-10-12

Page 67

http://www.ibm.com/developerworks/websphere/tutorials/1110_phi/index.html
https://www.ibm.com/developerworks/websphere/tutorials/1110_phi2/
http://www.ibm.com/developerworks/websphere/tutorials/1111_balani/index.html
http://www.ibm.com/developerworks/websphere/tutorials/1111_iyengar/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1111_perepa/1111_perepa.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1111_kohli/1111_kohli.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1111_kohli/1111_kohli.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1111_kohli/1111_kohli.html
http://www.ibm.com/developerworks/websphere/techjournal/1112_clark/1112_clark.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1112_col_jensen/1112_jensen.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1112_walden/1112_walden.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1112_pacholski/1112_pacholski.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1112_cheng/1112_cheng.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1201_wang/1201_wang.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1201_balakrishnan/1201_balakrishnan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1202_olivieri/1202_olivieri.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1202_pacholski/1202_pacholski.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1202_bist/1202_bist.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1202_dragoni/1202_dragoni.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1202_gabutti/1202_gabutti.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1202_gao/1202_gao.html
http://www.ibm.com/developerworks/websphere/techjournal/1203_noiret/1203_noiret.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1206_pacholski/1206_pacholski.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1206_olivieri/1206_olivieri.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1206_mcelroy/1206_mcelroy.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1207_chandra/1207_chandra.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1207_chandra2/1207_chandra2.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1209_col_jensen/1209_col_jensen.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1209_mcelroy/1209_mcelroy.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1209_richter/1209_richter.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1209_richter/1209_richter.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1209_cline/1209_cline.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1209_iyengar/1209_iyengar.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1209_walden/1209_walden.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1210_nandi/1210_nandi.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1210_agrawal/1210_agrawal.html
http://www.ibm.com/developerworks/websphere/tutorials/1212_palai/index.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1212_olivieri/1212_olivieri.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1212_iyengar/1212_iyengar.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1212_dickman/1212_dickman.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1212_iyengar2/1212_iyengar2.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1302_husain/1302_husain.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1302_schuetz/1302_schuetz.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1302_col_simmons/1302_col_simmons.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1302_col_jensen/1302_col_jensen.html

• BPM Voices: The evolution of business process management - 2011-09-29

• Integrate external services with IBM Business Process Manager Standard or Express applications - 2011-09-29

• Realizing the value of IBM Business Process Manager in the WebSphere Portal environment - 2011-09-29

• IBM BPM V7.5 orchestration scenarios, Part 1: Top-down design using IBM Process Designer and IBM Integration Designer - 2011-09-14

• Setting up a clustered topology for IBM Business Process Manager V7.5, Part 1: A step-by-step guide for BPM Standard - 2011-09-07

• Using the REST APIs in IBM Business Process Manager V7.5 - 2011-08-31

• Systems integration with WebSphere Lombardi Edition V7.2, Part 1: Architecture and solution overview - 2011-07-13

• Common business process modeling situations in WebSphere Lombardi Edition V7.2, Part 1 – 2011-06-29

• Common business process modeling situations in WebSphere Lombardi Edition V7.2, Part 2 – 2011-07-13

• Common business process modeling situations in WebSphere Lombardi Edition V7.2, Part 3: Executing an activity multiple times in parallel in
a business process - 2011-08-03

• Secure integration of an LDAP user registry with WebSphere Lombardi Edition - 2011-06-29

• Business spaces for human-centric BPM, Part 1: Introduction and concepts – 2011-06-29

• Business spaces for human-centric BPM, Part 2: Interacting with BPD processes and Human Services – 2011-06-29

• Business spaces for human-centric BPM, Part 3: Interacting with federated processes and human tasks – 2011-06-29

• Business spaces for human-centric BPM, Part 4: Using custom form renderer for human tasks - 2011-06-29

• IBM Business Process Manager V7.5 development topology recommendations - 2011-06-29

• Best practices when using IBM Integration Designer and IBM Process Designer together - 2011-06-29

• Introducing IBM Business Process Manager V7.5 - 2011-06-29

• WebSphere Lombardi exception handling and logging - 2011-05-25

• WebSphere Lombardi Edition V7.1: Integrating with the JMS queue, Part 1: JMS integration with the queue hosted on a local Service
Integration Bus – 2010-12-08

• WebSphere Lombardi Edition V7.1: Integrating with the JMS queue, Part 2: JMS integration with the queue hosted on a remote Service
Integration Bus - 2010-12-09

• Configuring a data source in WebSphere Lombardi Edition V7.1 - 2010-10-13

• Integrating WebSphere Process Server V7 and Lombardi Teamworks – 2010-06-30

TechNotes
TechNotes are IBM hints, tips and warnings about IBM products published as web updates at IBM's
support web site. To find the latest list of TechNotes, do the following:

1. Visit the IBM support web site at: http://www.ibm.com/support

2. Pick IBM BPM from the list of products

Page 68

http://www.ibm.com/support
http://www.ibm.com/developerworks/websphere/library/techarticles/1006_fasbinder/1006_fasbinder.html
http://www.ibm.com/developerworks/websphere/tutorials/1010_iyengar/
http://www.ibm.com/developerworks/websphere/library/techarticles/1012_mamindla2/1012_mamindla2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1012_mamindla2/1012_mamindla2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1012_mamindla1/1012_mamindla1.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1012_mamindla1/1012_mamindla1.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1105_ragava/1105_ragava.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1106_fasbinder/1106_fasbinder.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1106_taylor/1106_taylor.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1106_pacholski/1106_pacholski.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1106_schwarze/1106_schwarze.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1106_baader/1106_baader.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1106_friess2/1106_friess2.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1106_friess/1106_friess.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1106_yang/1106_yang.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1108_olivieri/1108_olivieri.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1108_olivieri/1108_olivieri.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1107_olivieri/1107_olivieri.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1106_olivieri/1106_olivieri.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1107_glen/1107_glen.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1107_glen/1107_glen.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1108_thaker/1108_thaker.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1109_chilanti/1109_chilanti.html
http://www.ibm.com/developerworks/websphere/tutorials/1109_iyengar/index.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1109_harris/1109_harris.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1109_cheng2/1109_cheng2.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1109_col_perepa/1109_perepa.html

3. Click Search Support at the location shown below. "Enter BPM" as the search keyword.

4. You now see a list of all things related to Support for the product

5. Select TechNotes as a filter here:

And now you get the list of TechNotes that you were looking for

Page 69

There are TechNotes available for IBPM. The following table lists the important IBPM TechNotes
for v7.1, v7.5 and beyond.

ID Description Published

1633278 Snapshot deployment for IBM Business Process Manager (BPM) fails, but returns a success
message

10/04/13

1651507 IBM Business Process Manager (BPM) notification emails are not being sent 09/30/13

1651217 The Event Manager for IBM Business Process Manager (BPM) does not respond or process
any tasks

09/26/13

1638298 A ServiceRuntimeException is thrown by IBM Business Process Manager (BPM) Advanced
and WebSphere Process Server (WPS)

09/23/13

1648774 The migration process for IBM Business Process Manager (BPM) fails with a TWU-0038
message while updating the LSW_OPTIMIZER_DATA.STRING_VALUE table

09/10/13

1646787 Applications in cluster members for IBM Business Process Manager (BPM) might fail to start 08/28/13

1647104 A group manager for IBM Business Process Manager (BPM) cannot assign or re-assign tasks
to users from external security provider

08/19/13

1644435 Understanding UTLS0002E error messages emitted during application installation 08/15/13

1646097 IBM Business Process Manager (BPM) does not resolve nested group LDAP members with
Tivoli Directory Server

08/15/13

1620729 Start up problems occur after a fresh installation of IBM Business Process Manager (BPM)
V8.0

08/14/13

1641188 A WorkflowProcessItemException occurs when updating the properties of a FileNet
document from IBM Business Process Manager (BPM)

08/09/13

1645818 Tasks assigned to default lane participant group in the Process Portal for IBM Business
Process Manager (BPM) can be re-assigned to any users on the system

08/08/13

1645543 Setting the task complete or due date in the Process Portal to a locale other than US English
in IBM Business Process Manager (BPM) Version 8.0 and 8.0.1

08/05/13

1644109 For IBM Business Process Manager (BPM), the Process Portal URL changes to the cluster 08/05/13

Page 70

http://www-01.ibm.com/support/docview.wss?uid=swg21644109
http://www-01.ibm.com/support/docview.wss?uid=swg21645543
http://www-01.ibm.com/support/docview.wss?uid=swg21645818
http://www-01.ibm.com/support/docview.wss?uid=swg21641188
http://www-01.ibm.com/support/docview.wss?uid=swg21620729
http://www-01.ibm.com/support/docview.wss?uid=swg21646097
http://www-01.ibm.com/support/docview.wss?uid=swg21644435
http://www-01.ibm.com/support/docview.wss?uid=swg21647104
http://www-01.ibm.com/support/docview.wss?uid=swg21646787
http://www-01.ibm.com/support/docview.wss?uid=swg21648774
http://www-01.ibm.com/support/docview.wss?uid=swg21638298
http://www-01.ibm.com/support/docview.wss?uid=swg21651217
http://www-01.ibm.com/support/docview.wss?uid=swg21651507
http://www-01.ibm.com/support/docview.wss?uid=swg21633278

member host and port when accessing the Process Portal through the OnDemand router
secured port

1634645 The "You have been automatically logged out for security reasons" error is seen with IBM
Business Process Manager (BPM)

08/02/13

1634857 IBM Process Designer fails to connect to the Process Center for IBM Business Process
Manager (BPM)

07/31/13

1635594 Multiple selection items load in the wrong order on the coach for IBM Business Process
Manager (BPM)

07/30/13

1643703 The IBM Business Process Manager (BPM) BPMMigrateCluster command fails to run with
the Oracle RAC database

07/30/13

1628037 Duplicated tables show on the coach when dropping a variable of type List into a Vertical
Section in IBM Business Process Manager (BPM)

07/25/13

1619620 A SqlIntegrityConstraintViolationException occurs during the group replication process for
IBM Business Process Manager

01/07/13

1615408 A "javax.xml.ws.soap.SOAPFaultException: Error when executing the ruleset" error occurs
when integrating IBM Business Process Manager (BPM) and IBM Operational Decision
Manager V8.x

01/04/13

1619258 Changing the tw_admin password in IBM Business Process Manager (BPM) after installation 12/06/12

1619260 Application fails to deploy because of a difference in the tw_author password between
Process Server and Process Center in IBM Business Process Manager

12/04/12

1618486 A CWLLG2229E message and a NumberFormatException exception occurs when a web
service invokes a business process for IBM Business Process Manager

11/30/12

1618958 Deployment environment generation process fails with a NullPointerException in IBM
Business Process Manager (BPM) Advanced V8.0

11/30/12

1617817 A NullPointerException occurs when working with complex business objects (BO) while
calling Ajax services from Coach views in IBM Business Process Manager

11/29/12

1614992 Submitting a SOAP Request to IBM Business Process Manager (BPM) or WebSphere
Lombardi Edition using the SOAPUI results in a no deserializer error

10/24/12

1614220 The override endpoint address might not seem to work during web services invocation for
IBM Business Process Manager (BPM)

10/18/12

7036415 Webcast: IBM Business Process Manager (BPM) Security 10/17/12

1613989 Reading and decoding instrumentation files for Teamworks, WebSphere Lombardi Edition
(WLE), and IBM Business Process Manager (BPM) products

10/16/12

1613695 What must I do if I cannot log in to the Process Center perspective in IBM Integration
Designer?

10/11/12

1610883 IBM Business Process Manager (BPM) runtime migration support 10/09/12

1611013 Disabling tracking data generation for a Process Server or Process Center in IBM Business
Process Manager (BPM)

10/04/12

1612503 Announcing: IBM Business Process Manager, IBM Business Monitor, and IBM Integration
Designer Version 8.0.1 products

10/02/12

1608265 Using Business Action Language (BAL) rules in a decision service when the input or output
parameters are lists in IBM Business Process Manager (BPM) Advanced

10/02/12

1612772 The server start up process for IBM Business Process Manager (BPM) cannot find
LSW_PRI_KEY, LSW_USR, or LSW_USR_XREF tables

10/01/12

1612759 Viewing tasks in Process Inspector for IBM Business Process Manager (BPM) results in date
error

10/01/12

1610113 Querying LDAP databases using IBM Business Process Manager (BPM) V8.0 09/17/12

1605686 An administrator is unable to reassign tasks through the Process Portal for IBM Business 09/14/12

Page 71

http://www-01.ibm.com/support/docview.wss?uid=swg21605686
http://www-01.ibm.com/support/docview.wss?uid=swg21610113
http://www-01.ibm.com/support/docview.wss?uid=swg21612759
http://www-01.ibm.com/support/docview.wss?uid=swg21612772
http://www-01.ibm.com/support/docview.wss?uid=swg21608265
http://www-01.ibm.com/support/docview.wss?uid=swg21612503
http://www-01.ibm.com/support/docview.wss?uid=swg21611013
http://www-01.ibm.com/support/docview.wss?uid=swg21610883
http://www-01.ibm.com/support/docview.wss?uid=swg21613695
http://www-01.ibm.com/support/docview.wss?uid=swg21613695
http://www-01.ibm.com/support/docview.wss?uid=swg21613989
http://www-01.ibm.com/support/docview.wss?uid=swg21613989
http://www-01.ibm.com/support/docview.wss?uid=swg27036415
http://www-01.ibm.com/support/docview.wss?uid=swg21614220
http://www-01.ibm.com/support/docview.wss?uid=swg21614220
http://www-01.ibm.com/support/docview.wss?uid=swg21614992
http://www-01.ibm.com/support/docview.wss?uid=swg21617817
http://www-01.ibm.com/support/docview.wss?uid=swg21618958
http://www-01.ibm.com/support/docview.wss?uid=swg21618486
http://www-01.ibm.com/support/docview.wss?uid=swg21619260
http://www-01.ibm.com/support/docview.wss?uid=swg21619258
http://www-01.ibm.com/support/docview.wss?uid=swg21615408
http://www-01.ibm.com/support/docview.wss?uid=swg21619620
http://www-01.ibm.com/support/docview.wss?uid=swg21628037
http://www-01.ibm.com/support/docview.wss?uid=swg21643703
http://www-01.ibm.com/support/docview.wss?uid=swg21635594
http://www-01.ibm.com/support/docview.wss?uid=swg21634857
http://www-01.ibm.com/support/docview.wss?uid=swg21634645

Process Manager (BPM)

1609973 Making the role binding effective immediately for IBM Business Process Manager (BPM)
V8.0

09/04/12

1589168 WSDL discovery fails for the IBM Business Process Manager (BPM) Process Designer when
the Process Center and Process Designer are on different machines

08/03/12

1595333 IBM Business Process Manager (BPM) Advanced installation fails when installing on an
existing WebSphere Application Server (WAS) Network Deployment V8 installation

07/17/12

1601072 No email is received even if email notification has been enabled in IBM Business Process
Manager (BPM)

07/12/12

1601069 A java.lang.RuntimeException is thrown when saving the participant group rules definition
for IBM Business Process Manager (BPM)

07/12/12

1600149 Federation reports invalid attribute after removing it from a backend system 07/02/12

1595098 Launchpad does not open on AIX or Linux operating systems for the IBM Business Process
Manager (BPM) 7.5.x and IBM Business Monitor V7.5.x products

06/29/12

1600168 A UOWManager NoClassDefFoundError is displayed in Process Designer for the IBM
Business Process Manager (BPM) products

06/29/12

1599828 The StartService REST API fails to start a service with the IBM Business Process Manager
(BPM) V8.0 products

06/27/12

1599349 NullPointerException occurs when testing the Advanced Integration Service In IBM Business
Process Manager (BPM) Advanced 7.5.1

06/27/12

1593461 Collect troubleshooting data for web services problems in IBM Business Process Manager 06/26/12

1597901 IBM Business Process Manager (BPM) Advanced cannot connect the Process Inspector to the
Process Server

06/08/12

1507414 A performance delay occurs when creating an adhoc human task on a WebSphere Process
Server (WPS) or IBM Business Process Manager Advanced clustered system

06/08/12

1597552 "TypeError: 'handleBidi' undefined" error is seen in Process Portal for IBM Business Process
Manager (BPM)

06/05/12

1597258 The BPMInstallOfflinePackage Admin Task fails for IBM Business Process Manager (BPM) 06/04/12

1590115 Configuring a routing server for IBM Business Process Manager (BPM) Process Portal in a
three or four cluster topology

06/04/12

1595949 Modifying the full name of an internal user does not take effect for IBM Business Process
Manager (BPM)

05/24/12

0 Configuring a routing server for IBM Business Process Manager (BPM) Process Portal in a
three or four cluster topology

06/04/12

1591751 A CWLLG2101W message indicates that new transactions are not started for IBM Business
Process Manager (BPM)

05/21/12

1593299 IBM Business Process Manager (BPM) Advanced and IBM Business Process Manager
Standard internal custom repository user name fails with a CWLLG2015E error message

05/18/12

1593277 A typical installation for IBM Business Process Manager (BPM) does not work 05/18/12

1593423 Error messages about database unique constraints can occur when starting an IBM Business
Process Manager (BPM) clustered server

05/18/12

0 IBM Business Process Manager (BPM) installation of IBM Process Designer fails with
"Access is denied" message

05/18/12

0 A task assigned to a rule-based participant group cannot be run from the Process Designer
Inspector after being upgraded by certain users in IBM Business Process Manager Advanced
(BPM)

05/18/12

0 Test connection problem occurs for the Business Process Choreographer messaging engine
data source for IBM Business Process Manager (BPM) Advanced

05/18/12

Page 72

http://www-304.ibm.com/support/docview.wss?uid=swg21593423
http://www-304.ibm.com/support/docview.wss?uid=swg21593277
http://www-304.ibm.com/support/docview.wss?uid=swg21593299
http://www-304.ibm.com/support/docview.wss?uid=swg21591751
http://www-304.ibm.com/support/docview.wss?uid=swg21595949
http://www-01.ibm.com/support/docview.wss?uid=swg21590115
http://www-01.ibm.com/support/docview.wss?uid=swg21597258
http://www-01.ibm.com/support/docview.wss?uid=swg21597552
http://www-01.ibm.com/support/docview.wss?uid=swg21507414
http://www-01.ibm.com/support/docview.wss?uid=swg21597901
http://www-01.ibm.com/support/docview.wss?uid=swg21593461
http://www-01.ibm.com/support/docview.wss?uid=swg21599349
http://www-01.ibm.com/support/docview.wss?uid=swg21599828
http://www-01.ibm.com/support/docview.wss?uid=swg21600168
http://www-01.ibm.com/support/docview.wss?uid=swg21595098
http://www-01.ibm.com/support/docview.wss?uid=swg21600149
http://www-01.ibm.com/support/docview.wss?uid=swg21601069
http://www-01.ibm.com/support/docview.wss?uid=swg21601072
http://www-01.ibm.com/support/docview.wss?uid=swg21595333
http://www-01.ibm.com/support/docview.wss?uid=swg21589168
http://www-01.ibm.com/support/docview.wss?uid=swg21609973

1595333 IBM Business Process Manager (BPM) Advanced installation fails when installing on an
existing WebSphere Application Server (WAS) Network Deployment V8 installation

05/18/12

1593555 Start menu items for starting, stopping, and administering profiles are lost after upgrading
IBM Business Process Manager (BPM)

05/18/12

1593313 Testing a Human Service in IBM Process Portal 05/18/12

1595478 Some Business Space page management features do not work after restarting the server if the
Java Virtual Machine (JVM) is stopped or abruptly terminated in IBM Business Process
Manager (BPM) Advanced or in IBM Business Monitor

05/18/12

1594799 The IBM Business Process Manager (BPM) configureNode command fails to create a cluster
if a password contains prohibited special characters

05/18/12

0 IBM Business Process Manager (BPM) installation path on Windows must be kept short to
create a network deployment environment

05/18/12

1593114 A SRVE0068E error occurs when an LDAP user is added to the tw_admins group when
using IBM Business Process Manager (BPM) Advanced and IBM Business Process Manager
Standard

05/18/12

1594811 Slow performance when importing or using Process Applications or Toolkits in IBM
Integration Designer (IID)

05/18/12

0 Profile creation fails in Business Space when the database password has a combination of '
(single quote) and " (double quote) in IBM Business Process Manager (BPM) Advanced and
IBM Business Monitor

05/18/12

0 Trust store problem when connecting from Process Designer to Process Center in IBM
Business Process Manager (BPM)

05/18/12

0 IBM Business Process Manager (BPM) Advanced users who use an IP address to access
Process Portal might need to log in a second time when opening a task

05/18/12

1592969 "Type reference is unresolved" error after bringing a Process Application or Toolkit into an
IBM Integration Designer (IID) workspace

05/18/12

1594923 The default values for an Oracle database do not work when configuring Business Process
Choreographer using the bpeconfig.jacl command in IBM Business Process Manager (BPM)
Advanced

05/18/12

0 When using IBM Business Process Manager (BPM) with Microsoft SQLServer, deadlocks
can occur if process applications, toolkits, and tracks are created concurrently

05/18/12

1594756 In an environment that includes IBM Business Process Manager (BPM), creating a profile
without IBM Business Process Manager can cause Business Space to be replaced by Process
Portal

05/18/12

0 Installing the required fixes for the IBM Business Process Manager V8.0 products and IBM
Business Monitor V8.0

05/17/12

1594714 Server startup problems occur when using IBM Business Process Manager (BPM) with
Lightweight Directory Access Protocol (LDAP) for a large number of groups

05/17/12

1585928 Timeout Error or Thread Hang occurs with WebSphere Process Server (WPS) and IBM
Business Process Manager (BPM) Advanced during an unused staff query cleanup

05/16/12

1592494 Password limitations exist for IBM Business Process Manager (BPM) when running specific
batch commands during installation of process applications to an offline Process Server

05/09/12

1580089 A "CWLLG0095W: The repository contact failed with a status of: 302" error occurs with
IBM Business Process Manager (BPM)

05/09/12

1592149 The "Read E-Mail via IMAP" integration service for the IBM Business Process Manager
(BPM) products does not support SSL

05/09/12

1591697 Changing ownership of an IBM Business Process Manager (BPM) Process Center or Process
Server

04/25/12

1591625 Problem enabling communication between Process Designer and Process Center for IBM 04/24/12

Page 73

http://www-01.ibm.com/support/docview.wss?uid=swg21591625
http://www-01.ibm.com/support/docview.wss?uid=swg21591697
http://www-304.ibm.com/support/docview.wss?uid=swg21592149
http://www-304.ibm.com/support/docview.wss?uid=swg21580089
http://www-304.ibm.com/support/docview.wss?uid=swg21592494
http://www-304.ibm.com/support/docview.wss?uid=swg21585928
http://www-304.ibm.com/support/docview.wss?uid=swg21594714
http://www-304.ibm.com/support/docview.wss?uid=swg21594756
http://www-304.ibm.com/support/docview.wss?uid=swg21594923
http://www-304.ibm.com/support/docview.wss?uid=swg21592969
http://www-304.ibm.com/support/docview.wss?uid=swg21594811
http://www-304.ibm.com/support/docview.wss?uid=swg21593114
http://www-304.ibm.com/support/docview.wss?uid=swg21594799
http://www-304.ibm.com/support/docview.wss?uid=swg21595478
http://www-304.ibm.com/support/docview.wss?uid=swg21593313
http://www-304.ibm.com/support/docview.wss?uid=swg21593555
http://www-304.ibm.com/support/docview.wss?uid=swg21595333

Business Process Manager (BPM)

1432275 Database transaction log space full error when deleting a process instance 04/20/12

1591154 Bootstrap for the IBM Business Process Manager (BPM) products fail with SQLCODE=-
964, SQLSTATE=57011

04/19/12

0 Imported BPMN 2.0 file fails with a NullPointerException in the SystemOut.log file with the
IBM Business Process Manager (BPM) products

04/18/12

1589723 WebSphere Application Server V7.0 import function in Installation Manager V1.5.x is only
supported with graphcial mode and silent response file

04/17/12

1511784 Cannot log into Business Space 04/17/12

0 Migration of Business Space from Version 6.x to Version 7.x may affect user/group access to
pages

04/16/12

0 The createDatabase.sql file is missing for an Oracle Database with the IBM Business Process
Manager (BPM) products

04/16/12

0 IBM Business Process Manager (BPM): Process Server and Performance Data Warehouse
configuration links are missing in the administrative console

04/11/12

1588515 Launchpad hangs at 41% during a typical installation for the IBM Business Process Server
(BPM) products

04/06/12

1589793 A "./configCommonDB.sh: line 30: temp.sql: command not found" error occurs with the IBM
Business Process Manager (BPM) products

04/05/12

0 Cannot connect to Business Space WebDAV 04/05/12

0 "DSRA1300E: Feature is not implemented" error is seen from the Microsoft SQL JDBC
driver with the IBM Business Process Manager (BPM) products

04/04/12

1439814 How to write services that consume as little heap as possible 03/29/12

1587668 The Process Portal for the IBM Business Process Manager (BPM) products does not render
properly when using Load Balancer

03/26/12

1588225 Bootstrap failed and Connection refused errors occur with the bootstrapProcessServerData.sh
command for the IBM Business Process Manager (BPM) products

03/20/12

0 Prerequisites for using an existing DB2 database with a typical installation 03/16/12

0 Console View shows garbled Japanese character 03/16/12

1587867 Using Business Action Language (BAL) services in IBM Business Process Manager (BPM)
products might result in an exception

03/16/12

1587229 Swimlane disappears after re-import BPMN 2.0 file into Process Designer for IBM Business
Process Manager (BPM)

03/12/12

1571924 Configuring SSL for IBM Business Process Manager V7.5.x 03/09/12

0 The upgrade_7x.sh/bat database migration script fails with the "Database design file can't be
found" message for IBM Business Process Manager (BPM)

03/09/12

1586586 Error: You cannot maintain internal users because the application server is not configured to
use the Business Process Manager (BPM) Internal Security Provider.

03/02/12

0 The Install Launchpad hangs or has no content on start up for WebSphere Enterprise Service
Bus V7.5.1

03/02/12

1571624 Service Deploy reports error CWZMU0062E when a Data Handler primitive configuration
file is contained within a library project

03/02/12

1586266 The "Send E-mail via SMTP" integration service fails to handle Double Byte Character Set
(DBCS) in the message body for IBM Business Process Manager (BPM)

03/02/12

1585971 The button to add a new offline process server is missing and the Admin tab does not display
for IBM Business Process Manager (BPM) Advanced

03/02/12

1575124 An EngineRequestRejectedException is seen when sending a message to a BPEL process for 02/28/12

Page 74

http://www-01.ibm.com/support/docview.wss?uid=swg21575124
http://www-01.ibm.com/support/docview.wss?uid=swg21585971
http://www-01.ibm.com/support/docview.wss?uid=swg21586266
http://www-01.ibm.com/support/docview.wss?uid=swg21571624
http://www-01.ibm.com/support/docview.wss?uid=swg21586586
http://www-01.ibm.com/support/docview.wss?uid=swg21571924
http://www-01.ibm.com/support/docview.wss?uid=swg21587229
http://www-01.ibm.com/support/docview.wss?uid=swg21587867
http://www-01.ibm.com/support/docview.wss?uid=swg21588225
http://www-01.ibm.com/support/docview.wss?uid=swg21587668
http://www-01.ibm.com/support/docview.wss?uid=swg21439814
http://www-01.ibm.com/support/docview.wss?uid=swg21589793
http://www-01.ibm.com/support/docview.wss?uid=swg21588515
http://www-01.ibm.com/support/docview.wss?uid=swg21511784
http://www-01.ibm.com/support/docview.wss?uid=swg21589723
http://www-01.ibm.com/support/docview.wss?uid=swg21591154
http://www-01.ibm.com/support/docview.wss?uid=swg21432275

WebSphere Process Server (WPS) and IBM Business Process Manager (BPM) Advanced

0 Cannot use the domain user ID to create a new database in IBM DB2 Express with IBM
Business Process Manager

02/28/12

1569693 Using the Update Installer utility (UPDI) to apply interim fixes and updates can cause
inconsistencies with IBM Installation Manager

02/27/12

1571625 Deployment Environment generation fails to create Business Space tables with an Oracle
Common Database

02/23/12

1584411 A CWMCO0908E error message is seen when the upgraded cluster does not match the node
level for IBM Business Process Manager (BPM) Advanced

02/14/12

1503268 IBM Business Process Management V7.5 installation fails during an IBM DB2 express
installation

02/13/12

1571924 Configuring SSL for IBM Business Process Manager V7.5.x 02/07/12

1579275 The upgrade7x command fails to clean up the SIBus tables during database upgrade to the
IBM Business Process Manager (BPM) V7.5.1 products

02/06/12

1515691 IBM Business Process Manager 7.5 Business Space: Folder creation fails using WebDAV 02/03/12

1575491 IBM Business Process Manager (BPM) update fails due to a mkdir error 01/24/12

1577551 A "message for key: [xxx] is not found" error shows on the Process Portal Console after
upgrading to the IBM Business Process Manager (BPM) 7.5.1 products

01/10/12

1572465 The test connection to the process center might fail when installing process server for IBM
Business Process Manager (BPM)

01/03/12

1576147 Multiple system toolkits cause java.lang.NullPointerException in IBM Business Process
Manager (BPM)

12/21/11

1573584 Welcome Space does not display after a Business Space upgrade 12/14/11

1570464 Troubleshooting IBM Business Process Manager: "403 BMWPX0006E: The URL you tried
to access through the proxy is not allowed"

12/12/11

1573113 English and non-English language text is mixed in the administrative console for IBM
Business Process Manager (BPM)

12/06/11

1572521 Business Space does not start on IPv6 system because of a DB2 SQL error -302 12/05/11

1570097 On Linux platform, IBM Business Process Manager install failed on the DB2 installation 12/04/11

1570089 Responding to warnings encountered while installing IBM DB2 Express 12/04/11

1574106 A "CWLCB0020E: The Common Base Event browser is unavailable" displays when you log
into the Common Base Event Browser for IBM Business Process Manager (BPM)

12/04/11

1574113 Performance tuning considerations when IBM Business Process Manager (BPM) is running
in a virtual machine

12/02/11

1573982 Default Maximum Connections is too small in IBM Business Process Manager (BPM) 7.5 12/02/11

1500774 A Typical install of the IBM Process Server results in a failure of the installation process for
IBM Business Process Manager (BPM)

11/30/11

1573217 Process or service fails with "Error Starting Process" or "Runtime Error Information"
message

11/28/11

1572472 How do you distinguish between human and system activity using the REST API for IBM
Business Process Manager (BPM)?

11/28/11

1572465 The test connection to the process center might fail when installing process server for IBM
Business Process Manager (BPM)

11/28/11

1571843 Importing a Teamworks file that references content from LDAP into IBM Business Process
Manager (BPM) can fail

11/18/11

7023411 Recommended fixes for IBM Business Process Manager 7.5.1, IBM Business Monitor 7.5.1,
and IBM WebSphere Enterprise Service Bus 7.5.1

11/18/11

Page 75

http://www-01.ibm.com/support/docview.wss?uid=swg27023411
http://www-01.ibm.com/support/docview.wss?uid=swg21571843
http://www-01.ibm.com/support/docview.wss?uid=swg21572465
http://www-01.ibm.com/support/docview.wss?uid=swg21572472
http://www-01.ibm.com/support/docview.wss?uid=swg21573217
http://www-01.ibm.com/support/docview.wss?uid=swg21500774
http://www-01.ibm.com/support/docview.wss?uid=swg21573982
http://www-01.ibm.com/support/docview.wss?uid=swg21574113
http://www-01.ibm.com/support/docview.wss?uid=swg21574106
http://www-01.ibm.com/support/docview.wss?uid=swg21570089
http://www-01.ibm.com/support/docview.wss?uid=swg21570097
http://www-01.ibm.com/support/docview.wss?uid=swg21572521
http://www-01.ibm.com/support/docview.wss?uid=swg21573113
http://www-01.ibm.com/support/docview.wss?uid=swg21570464
http://www-01.ibm.com/support/docview.wss?uid=swg21573584
http://www-01.ibm.com/support/docview.wss?uid=swg21576147
http://www-01.ibm.com/support/docview.wss?uid=swg21572465
http://www-01.ibm.com/support/docview.wss?uid=swg21577551
http://www-01.ibm.com/support/docview.wss?uid=swg21575491
http://www-01.ibm.com/support/docview.wss?uid=swg21515691
http://www-01.ibm.com/support/docview.wss?uid=swg21579275
http://www-01.ibm.com/support/docview.wss?uid=swg21571924
http://www-01.ibm.com/support/docview.wss?uid=swg21503268
http://www-01.ibm.com/support/docview.wss?uid=swg21584411
http://www-01.ibm.com/support/docview.wss?uid=swg21571625
http://www-01.ibm.com/support/docview.wss?uid=swg21569693

4031355 IEHS is not in the downloadable image and DVD for IBM Business Process Manager 11/18/11

4031386 WebSphere Application Server V7.0.0.19 Fix Pack for business process management 11/18/11

1571627 Using default password when installing WebSphere Enterprise Service Bus with DB2
Express fails due to invalid password.

11/18/11

1501295 Error message in IBM Business Process Manager V7.5 indicates that a property has not been
declared

11/18/11

7023410 Update Instructions for V7.5.1 Refresh Pack for the IBM Business Process Manager products 11/18/11

1569450 Deploying a snapshot with monitoring for IBM Business Monitor to a network deployment
environment fails

11/18/11

1572347 IBM Business Process Manager V7.5.1 is Available 11/18/11

1569343 In a complex flow condition, if all instances return a false value, the flow stops unexpectedly
for IBM Business Process Manager (BPM)

10/25/11

1568782 You might not be able to install the Process Designer with IBM Business Process Manager
(BPM) Version 7.5

10/20/11

1567195 Microsoft Windows shortcuts do not use the host name specified during the installation of
IBM Business Process Manager V7.5

10/07/11

1514927 A typical installation of IBM Business Process Manager (BPM) Version 7.5 on Microsoft
Windows 7 fails during the profile creation steps

09/30/11

1516235 IBM Business Process Manager (BPM) V7.5 with a Microsoft SQL database throws a lock
request time out period exceeded error

09/20/11

1506937 Collect troubleshooting data for installation or upgrade problems with IBM Business Process
Manager

09/07/11

1512262 How do you resolve duplicated scoreboards problem in Process Portal for IBM Business
Process Manager Advanced?

09/07/11

1514706 With IBM Business Process Manager products, an Oracle database can display errors when
under heavy process load

09/06/11

1509210 A CWTBG0013E error occurs when service data is retrieved using REST Service API for
IBM Business Process Manager Advanced

08/23/11

7021829 Frequently asked questions (FAQ) about IBM Business Process Manager Advanced (last
updated August 17, 2011)

08/20/11

1508659 A CWLLG1162E error occurs with IBM Business Process Manager 08/17/11

1508496 Increased the session timeout values for Business Space components 08/17/11

1508494 Unable to load custom Business Space widgets 08/15/11

7022332 IBM Business Process Manager Advanced Edition Version 7.5 ─ Configuring a Clustered
Process Server

08/10/11

1508665 The CWLLG2015E: Error: You are not authorized to enter the repository view of a non-
repository server occurs when you attempt to access the ProcessCenter console For IBM
Business Process Manager

08/11/11

1506813 The "align" attribute of button group is a Japanese character even after importing the process
to IBM Business Process Manager 7.5

08/09/11

7022298 Installation Instructions of V7.5.0 Fix Pack 1 (V7.5.0.1) for IBM Process Designer 08/09/11

7022243 Known Issues: IBM Business Process Manager products V7.5.0 Fix Pack 1 (V7.5.0.1) 08/09/11

4030569 Version 7.5.0 Fix Pack 1 for the IBM Business Process Manager products 08/09/11

1508116 IBM Business Monitor plugins are not updated by IBM Business Process Manager 7.5.0 Fix
Pack 1

08/09/11

1508135 Configure Business Space super user failed when running createSuperUser.py with stand-
alone LDAP security mode.

08/08/11

Page 76

https://www-304.ibm.com/support/docview.wss?uid=swg21508135
http://www-01.ibm.com/support/docview.wss?uid=swg21508116
http://www-01.ibm.com/support/docview.wss?uid=swg24030569
http://www-01.ibm.com/support/docview.wss?uid=swg27022243
http://www-01.ibm.com/support/docview.wss?uid=swg27022298
http://www-01.ibm.com/support/docview.wss?uid=swg21506813
http://www-01.ibm.com/support/docview.wss?uid=swg21508665
http://www-01.ibm.com/support/docview.wss?uid=swg27022332
https://www-304.ibm.com/support/docview.wss?uid=swg21508494
https://www-304.ibm.com/support/docview.wss?uid=swg21508496
http://www-01.ibm.com/support/docview.wss?uid=swg21508659
http://www-01.ibm.com/support/docview.wss?uid=swg27021829
http://www-01.ibm.com/support/docview.wss?uid=swg21509210
http://www-01.ibm.com/support/docview.wss?uid=swg21514706
http://www-01.ibm.com/support/docview.wss?uid=swg21512262
http://www-01.ibm.com/support/docview.wss?uid=swg21506937
http://www-01.ibm.com/support/docview.wss?uid=swg21516235
http://www-01.ibm.com/support/docview.wss?uid=swg21514927
http://www-01.ibm.com/support/docview.wss?uid=swg21567195
http://www-01.ibm.com/support/docview.wss?uid=swg21568782
http://www-01.ibm.com/support/docview.wss?uid=swg21569343
http://www-01.ibm.com/support/docview.wss?uid=swg21572347
http://www-01.ibm.com/support/docview.wss?uid=swg21569450
http://www-01.ibm.com/support/docview.wss?uid=swg27023410
http://www-01.ibm.com/support/docview.wss?uid=swg21501295
http://www-01.ibm.com/support/docview.wss?uid=swg21571627
http://www-01.ibm.com/support/docview.wss?uid=swg24031386
http://www-01.ibm.com/support/docview.wss?uid=swg24031355

1504755 Using the XSL connector for WebSphere Lombardi Edition and IBM Business Process
Manager

07/07/11

1452291 Enabling HTTPS for WebSphere Lombardi Edition Portal 06/24/11

1460358 WebSphere Lombardi Edition 7.1 / 7.2 Cluster Configuration 06/23/11

1503211 Error CWTBG0019E: Unexpected Exception occurs when starting the process using the
REST interface with IBM Business Process Manager

06/22/11

1502592 JMS Failover Configuration in WebSphere Lombardi Edition 7.1 and 7.2 06/16/11

1502889 Custom XML overrides are not picked up in WebSphere Lombardi Edition 06/16/11

1501938 Changing the database password for a WebSphere Lombardi Edition Version 7.1 or 7.2 full
installation

06/14/11

1498998 Libraries that might be required as pre-requisites for installing Websphere Lombardi Edition
on Linux operating systems

05/12/11

1500897 With IBM Business Process Manager products, IBM DB2 can display errors when under
heavy process load

06/05/11

1496717 Some XML schema constructs are not supported in IBM Business Process Manager
Advanced

06/03/11

1499592 AIS does not refresh automatically in the Inspector view in IBM Business Process Manager
Advanced

06/03/11

1501794 Interim Fixes are required for IBM Business Process Manager Version 7.5 products 06/03/11

1500741 Advanced integration services (AIS) do not participate in the same transaction as business
processes

06/03/11

1500698 You might experience process recovery issues in certain situations in IBM Business Process
Manager V7.5

06/03/11

1499538 How to resolve memory issues for IBM Business Process Manager V7.5 servers 06/02/11

1499983 Performance considerations for Human Task Management list widgets with IBM Integration
Designer

06/02/11

1500111 Installing IBM Integration Designer and the test environment with an existing IBM Rational
Application Developer 8.0.x installation might result in unexpected options

06/02/11

1499353 You cannot see long descriptions in dialog boxes and wizards in IBM Integration Designer 06/02/11

1499474 Duplicate models, duplicate batches, or broken links might be created in IBM Process
Designer and IBM Integration Designer

06/02/11

1501042 Validation of mediation flows does not occur when changes are made to components in the
Assembly Diagram

06/02/11

1500842 You cannot install IBM Integration Designer and its test environment directly from the DVD 06/02/11

1499944 Errors occur when uninstalling multiple server and tooling products 06/02/11

1499978 Process Designer name changes not handled by synchronization 06/02/11

1501037 XSLTransformation failures might occur in mediation flows that use WSDL in RPC style
when executing in business objects (BO) Lazy Parsing mode

06/02/11

1496717 Some XML schema constructs are not supported in IBM Business Process Manager
Advanced

06/02/11

1501039 XSL Transformation primitive in Business Objects (BO) Lazy Parsing mode producing
incorrectly typed correlation, transient, and/or shared context elements

06/02/11

1498998 Libraries that might be required as pre-requisites for installing WebSphere Lombardi Edition
on Linux operating systems

05/12/11

1459956 Un-installing a WebSphere Lombardi Edition Express Install (Simple Configuration) on
Microsoft Windows

04/28/11

Page 77

http://www-01.ibm.com/support/docview.wss?uid=swg21459956
http://www-01.ibm.com/support/docview.wss?uid=swg21498998
http://www-01.ibm.com/support/docview.wss?uid=swg21501039
http://www-01.ibm.com/support/docview.wss?uid=swg21496717
http://www-01.ibm.com/support/docview.wss?uid=swg21501037
http://www-01.ibm.com/support/docview.wss?uid=swg21499978
http://www-01.ibm.com/support/docview.wss?uid=swg21499944
http://www-01.ibm.com/support/docview.wss?uid=swg21500842
http://www-01.ibm.com/support/docview.wss?uid=swg21501042
http://www-01.ibm.com/support/docview.wss?uid=swg21499474
http://www-01.ibm.com/support/docview.wss?uid=swg21499353
http://www-01.ibm.com/support/docview.wss?uid=swg21500111
http://www-01.ibm.com/support/docview.wss?uid=swg21499983
http://www-01.ibm.com/support/docview.wss?uid=swg21499538
http://www-01.ibm.com/support/docview.wss?uid=swg21500698
http://www-01.ibm.com/support/docview.wss?uid=swg21500741
http://www-01.ibm.com/support/docview.wss?uid=swg21501794
http://www-01.ibm.com/support/docview.wss?uid=swg21499592
http://www-01.ibm.com/support/docview.wss?uid=swg21496717
http://www-01.ibm.com/support/docview.wss?uid=swg21500897
http://www-01.ibm.com/support/docview.wss?uid=swg21498998
http://www-01.ibm.com/support/docview.wss?uid=swg21501938
http://www-01.ibm.com/support/docview.wss?uid=swg21502889
http://www-01.ibm.com/support/docview.wss?uid=swg21502592
https://www-304.ibm.com/support/docview.wss?uid=swg21503211
http://www-01.ibm.com/support/docview.wss?uid=swg21460358
http://www-01.ibm.com/support/docview.wss?uid=swg21452291
http://www-01.ibm.com/support/docview.wss?uid=swg21504755

1497156 Change the font type in a WebSphere Lombardi Edition report 04/27/11

1497392 Using twint to recreate databases in Teamworks 7.0.x and WebSphere Lombardi Edition 04/22/11

1497231 WebSphere Lombardi Edition Access Control Settings Overview 04/20/11

1497085 startBpdWithName API fails if its run inside an undercover agent (UCA) for WebSphere
Lombardi Edition

04/20/11

1497096 When installing WebSphere Lombardi Edition, some fonts do not display correctly 04/19/11

1446648 How to tune your WebSphere Lombardi Edition Servers for performance 04/08/11

1448625 Exposed Process Values are not global in WebSphere Lombardi Edition / Teamworks
Version 7.x

03/29/11

1462333 The coach layout for column widths in IBM WebSphere Lombardi Edition is not correct 03/24/11

1469796 Exporting a snapshot does not does not complete or is corrupt 03/04/11

1462314 Addendum: Oracle pre-requisite patches for 11gR2 with WebSphere Lombardi Edition 03/02/11

1469410 Tasks failing with "Error converting data type decimal to decimal" 02/28/11

1439787 Task notification e-mails coming from "tw_admin" 02/16/11

1439779 How do I set the security access for editing the process help wiki? 02/16/11

1439703 How do you assign a Calendar to a User or Role in the TeamWorks Admin Console? 02/15/11

1462333 Regression: Coach layout for column widths broken 02/10/11

1461468 WebSphere Lombardi Upgrade Readiness Check Download and Usage 02/10/11

1447860 Start Message Event in a Toolkit 02/08/11

1461918 Logging SQL and it's parameters to diagnose performance and data integrity issues 02/07/11

1447788 How to change the database password on WebSphere Lombardi Edition (WLE) 7.1 Simple
Install

02/04/11

1459782 DB2 failure during WLE 7.2 Express Installation and Configuration (Simple Installation) 02/02/11

1439686 How to Report Lombardi Product Defects or Enhancements 02/02/11

1461206 Websphere Lombardi Edition 'Custom' type installation is supported on Windows XP SP3 for
demonstration and sandbox purposes

01/31/11

1460358 WebSphere Lombardi Edition 7.1 / 7.2 Cluster Configuration 01/21/11

1459956 Uninstalling a WebSphere Lombardi Edition Express Install (Simple Configuration) on
Windows

01/21/11

1460193 WebSphere Lombardi Edition 7.x: Configuring secondary schema in Oracle 01/21/11

1460187 WebSphere Lombardi Edition 7.x: Configuring secondary schema in Microsoft SQL Server 01/21/11

1439813 Diagnosing Performance problems 01/05/11

1439814 How to write services that consume as little heap as possible 01/05/11

1440086 MustGather: Read First for Problems with WebSphere Lombardi Edition 12/30/10

1456896 org.eclipse.equinox.launcher errors when logging into WebSphere Lombardi Edition (WLE)
Authoring Environment

12/30/10

1458731 configure_cluster_member.cmd output 12/29/10

1457259 Cannot import a TeamWorks/WebSphere Lombardi Edition export if it contains multiple
toolkit snapshots

12/12/10

1457363 IBM WebSphere Lombardi Edition 7.1.0 and 7.2.0 support uplevel fix pack versions of IBM
WebSphere Application Server Version 7.0

12/10/10

7019834 Known problems and limitations in WebSphere Lombardi Edition V7.2 12/10/10

7019837 Resolved issues in WebSphere Lombardi Edition V7.2 12/10/10

Page 78

http://www-01.ibm.com/support/docview.wss?uid=swg27019837
http://www-01.ibm.com/support/docview.wss?uid=swg27019834
http://www-01.ibm.com/support/docview.wss?uid=swg21457363
http://www-01.ibm.com/support/docview.wss?uid=swg21457259
http://www-01.ibm.com/support/docview.wss?uid=swg21458731
http://www-01.ibm.com/support/docview.wss?uid=swg21456896
http://www-01.ibm.com/support/docview.wss?uid=swg21440086
http://www-01.ibm.com/support/docview.wss?uid=swg21439814
http://www-01.ibm.com/support/docview.wss?uid=swg21439813
http://www-01.ibm.com/support/docview.wss?uid=swg21460187
http://www-01.ibm.com/support/docview.wss?uid=swg21460193
http://www-01.ibm.com/support/docview.wss?uid=swg21459956
http://www-01.ibm.com/support/docview.wss?uid=swg21460358
http://www-01.ibm.com/support/docview.wss?uid=swg21461206
http://www-01.ibm.com/support/docview.wss?uid=swg21439686
http://www-01.ibm.com/support/docview.wss?uid=swg21459782
http://www-01.ibm.com/support/docview.wss?uid=swg21447788
http://www-01.ibm.com/support/docview.wss?uid=swg21461918
http://www-01.ibm.com/support/docview.wss?uid=swg21447860
http://www-01.ibm.com/support/docview.wss?uid=swg21461468
http://www-01.ibm.com/support/docview.wss?uid=swg21462333
http://www-01.ibm.com/support/docview.wss?uid=swg21439703
http://www-01.ibm.com/support/docview.wss?uid=swg21439779
http://www-01.ibm.com/support/docview.wss?uid=swg21439787
http://www-01.ibm.com/support/docview.wss?uid=swg21469410
http://www-01.ibm.com/support/docview.wss?uid=swg21462314
http://www-01.ibm.com/support/docview.wss?uid=swg21469796
http://www-01.ibm.com/support/docview.wss?uid=swg21462333
http://www-01.ibm.com/support/docview.wss?uid=swg21448625
http://www-01.ibm.com/support/docview.wss?uid=swg21446648
http://www-01.ibm.com/support/docview.wss?uid=swg21497096
http://www-01.ibm.com/support/docview.wss?uid=swg21497085
http://www-01.ibm.com/support/docview.wss?uid=swg21497231
http://www-01.ibm.com/support/docview.wss?uid=swg21497392
http://www-01.ibm.com/support/docview.wss?uid=swg21497156

7019760 IBM WebSphere Lombardi Edition, Version 7.2.0, hardware and software requirements -
Windows on x86

12/08/10

1452197 Instructions for changing the heartbeat user password on runtime server and process center
after system has registered

12/01/10

1439664 Report is not displayed in TeamWorks and Java process consumes CPU 11/30/10

1439821 Services run from the Favorites menu leave tasks in the Teamworks Portal Inbox 11/30/10

1455298 Hot Fix 10100171 Available for WebSphere Lombardi Edition V7.1 11/24/10

1452668 Excessive DB connections opened by WebSphere Lombardi Edition under load 11/23/10

1452663 Improving performance of processing LOB data in WebSphere Lombardi Edition with DB2
database

11/22/10

1445620 Detailed steps for moving a runtime server from online to offline and back to online 11/22/10

1454579 Process Admin Console's Role Bindings on runtime cluster nodes may be out-of-sync until
E@GroupMembers cache reset

11/16/10

1448203 How to setup Single Sign-On (Kerberos) on WebSphere Lombardi Edition 7,1 on Windows 11/11/10

1452637 Required DB2 settings to use with WebSphere Lombardi Edition 7.1.0 11/08/10

1452583 Performance issue in WebSphere Lombardi Edition V7.1 with Oracle in UserRegistry 11/04/10

1452575 Null Pointer Exception (NPE) may occur using TWParticipantGroup.addUsers(TWUser[] |
String[]) if one of the users is null or contains empty string

11/04/10

1452340 Check Box Control onChange and onBlur events do not work as expected in Internet
Explorer (IE)

11/03/10

1452323 DB2 Health Monitor can cause Log Full Errors: SQLCODE: -964, SQLSTATE: 57011 11/02/10

1444180 Deploying and redeploying applications in WebSphere Lombardi Edition 7.1 10/26/10

1439852 Error The transaction log for database is full. To find out why space in the log cannot be
reused

10/20/10

1439541 Error at login screen: Cannot obtain Locale/Timezone information for your client. Assuming
GMT

10/20/10

1439723 Integration Definitions cache WSDL and are not updated when the underlying WSDL
changes in the WS Connector

10/20/10

1439836 Improve performance by collapsing system lane activities 10/20/10

1439803 JSP Page that displays a JVM Thread Dump 10/20/10

1439709 The Process Server needs to be restarted after a failed import 10/20/10

1439557 Changes to filter definitions are not reflected in the report 10/20/10

1448203 How do you setup Single Sign-On (Kerberos) on WebSphere Lombardi Edition 7,1 on
Windows?

10/04/10

1448216 How to Change the Default User Passwords (including tw_admin) on WebSphere Lombardi
Edition

09/30/10

1446263 CWSIA0241E and PersistenceException- Known Problems with Database username in
WebSphere Lombardi Edition 7.1.0

09/30/10

1448203 How do you setup Single Sign-On (Kerberos) on WebSphere Lombardi Edition 7,1 on
Windows?

10/04/10

1446648 How to tune your WebSphere Lombardi Edition Runtime Server(s) for performance 09/29/10

1448251 WebSphere Lombardi Edition 7.1 Port information 09/29/10

1445844 How do you remove the server from the list of servers when you do not need it anymore? 09/28/10

1448045 Outdated favorites are not deleted correctly when you import a snapshot that does not have
favorites

09/27/10

Page 79

http://www-01.ibm.com/support/docview.wss?uid=swg21448045
http://www-01.ibm.com/support/docview.wss?uid=swg21445844
http://www-01.ibm.com/support/docview.wss?uid=swg21448251
http://www-01.ibm.com/support/docview.wss?uid=swg21446648
http://www-01.ibm.com/support/docview.wss?uid=swg21448203
http://www-01.ibm.com/support/docview.wss?uid=swg21446263
http://www-01.ibm.com/support/docview.wss?uid=swg21448216
http://www-01.ibm.com/support/docview.wss?uid=swg21448203
http://www-01.ibm.com/support/docview.wss?uid=swg21439557
http://www-01.ibm.com/support/docview.wss?uid=swg21439709
http://www-01.ibm.com/support/docview.wss?uid=swg21439803
http://www-01.ibm.com/support/docview.wss?uid=swg21439836
http://www-01.ibm.com/support/docview.wss?uid=swg21439723
http://www-01.ibm.com/support/docview.wss?uid=swg21439541
http://www-01.ibm.com/support/docview.wss?uid=swg21439852
http://www-01.ibm.com/support/docview.wss?uid=swg21444180
http://www-01.ibm.com/support/docview.wss?uid=swg21452323
http://www-01.ibm.com/support/docview.wss?uid=swg21452340
http://www-01.ibm.com/support/docview.wss?uid=swg21452575
http://www-01.ibm.com/support/docview.wss?uid=swg21452583
http://www-01.ibm.com/support/docview.wss?uid=swg21452637
http://www-01.ibm.com/support/docview.wss?uid=swg21448203
http://www-01.ibm.com/support/docview.wss?uid=swg21454579
http://www-01.ibm.com/support/docview.wss?uid=swg21445620
http://www-01.ibm.com/support/docview.wss?uid=swg21452663
http://www-01.ibm.com/support/docview.wss?uid=swg21452668
http://www-01.ibm.com/support/docview.wss?uid=swg21455298
http://www-01.ibm.com/support/docview.wss?uid=swg21439821
http://www-01.ibm.com/support/docview.wss?uid=swg21439664
http://www-01.ibm.com/support/docview.wss?uid=swg21452197
http://www-01.ibm.com/support/docview.wss?uid=swg27019760

1447593 Offline deployment will fail if you change tw_admin password 09/27/10

1445620 Detailed steps for moving a runtime server from online to offline and back to online 09/02/10

1439657 What's the difference between the functional_task_id, task_id, system_task_id and
system_functional_task_id?

08/30/10

1445237 DB2 database credentials following Simple Install of WebSphere Lombardi Edition 7.1.0 08/29/10

1441741 Imported Toolkits are immutable 08/21/10

1444016 WebSphere Lombardi Edition v7.1 – Configuring a Data Source 08/21/10

1444296 How to use SOAPUI to test WebAPI operations in Teamworks and WebSphere Lombardi
Edition

08/18/10

1444180 Deploying and redeploying applications in WebSphere Lombardi Edition 7.1 08/18/10

1443840 DB2 licensing with WebSphere Lombardi Edition 7.1 08/16/10

1439614 Teamworks Config File Overview and Explanation 08/09/10

1439654 How is the "at Risk" status of a task is calculated 07/23/10

1439872 Change namespace in Teamworks services exposed as Web Services 07/20/10

1439791 What is the sort order for Saved Searches - can I change them? 07/08/10

1440235 How do you change the tw_admin password in Teamworks 7.0.x? 06/01/10

1439858 How to determine if Performance Server definitions loaded correctly 05/03/10

Requirements and Enhancements
From time to time while using IBM BPM, you may find some feature that doesn't quite work the
way you would like it to or some feature that you think is missing. IBM is extremely interested in
hearing about this. An IBM website has been created where "Request for Feature Enhancements"
can be logged, tracked and monitored. The web site is:

http://www.ibm.com/developerworks/rfe/

and provides easy to follow instructions for recording your enhancement requests and viewing those
submitted by others.

Page 80

http://www.ibm.com/developerworks/rfe/
http://www-01.ibm.com/support/docview.wss?uid=swg21439858
http://www-01.ibm.com/support/docview.wss?uid=swg21440235
http://www-01.ibm.com/support/docview.wss?uid=swg21439791
http://www-01.ibm.com/support/docview.wss?uid=swg21439872
http://www-01.ibm.com/support/docview.wss?uid=swg21439654
http://www-01.ibm.com/support/docview.wss?uid=swg21439614
http://www-01.ibm.com/support/docview.wss?uid=swg21443840
http://www-01.ibm.com/support/docview.wss?uid=swg21444180
http://www-01.ibm.com/support/docview.wss?uid=swg21444296
http://www-01.ibm.com/support/docview.wss?uid=swg21444016
http://www-01.ibm.com/support/docview.wss?uid=swg21441741
http://www-01.ibm.com/support/docview.wss?uid=swg21445237
http://www-01.ibm.com/support/docview.wss?uid=swg21439657
http://www-01.ibm.com/support/docview.wss?uid=swg21445620
http://www-01.ibm.com/support/docview.wss?uid=swg21447593

Page 81

Product Installation and Configuration
Installation of IBPM is very straightforward. An installer application is provided and very few
questions are asked. This is known as standard installation. However, despite what I just wrote,
experience is showing that Standard installation can be very problematic unless the environment on
which the installation is to be performed is about as basic/virgin as it can possibly be. Instead of
executing the Standard installation, it is recommended to perform the Advanced installation. In
addition to following the instructions for an Advanced install, it is recommended to create a detailed
log of the steps followed. This means creating a word processor document (eg. Apache Open
Office or Microsoft Word) and logging all the steps performed. Ideally, screen shots of each of the
items should also be captured. Any inputs asked for should also have their value recorded. If all
goes well, it can be argued that the creation of this document was a waste of time, however, in the
event that something goes “south”, this document can become extremely valuable in diagnosing the
problems. In addition, if a later review or question comes up over what was entered or selected
during installation or configuration, the document will again prove to be a useful guide.

When installing on Windows 7, it is vital to perform the install as an administrator user.

See also:
• DeveloperWorks - Configuring the IBM Business Process Manager V7.5 environment for a typical installation - 2011-12-14

Part Numbers
The part number for the current products as seen on IBM Passport Advantage are:

Business Process Manager

Windows

IBM Business Process Manager Advanced 8.5 Windows eAssembly CRMM2ML

IBM Business Process Manager Advanced 8.5 Windows 1 of 3 CIL8YML

IBM Business Process Manager Advanced 8.5 Windows 2 of 3 CIL8ZML

IBM Business Process Manager Advanced 8.5 Windows 3 of 3 CIL90ML

Linux

IBM Business Process Manager Advanced 8.5 Linux eAssembly CRMM5ML

IBM Business Process Manager Advanced 8.5 Linux 1 of 3 CIL96ML

IBM Business Process Manager Advanced 8.5 Linux 2 of 3 CIL97ML

IBM Business Process Manager Advanced 8.5 Linux 3 of 3 CIL98ML

Integration Designer

IBM Integration Designer 8.0 Multiplatform eAssembly CRIG4ML

IBM Integration Designer Version 8.0 Multiplatform Quick Start Guide CI824ML

IBM Integration Designer Version 8.0 Windows and Linux 1 of 3 CI825ML

IBM Integration Designer Version 8.0 Windows and Linux 2 of 3 CI826ML

IBM Integration Designer Version 8.0 Windows and Linux 3 of 3 CI827ML

IBM Integration Designer Version 8.0 test environment Windows 1 of 5 CI828ML

IBM Integration Designer Version 8.0 test environment Windows 2 of 5 CI829ML

IBM Integration Designer Version 8.0 test environment Windows 3 of 5 CI82AML

Page 82

http://www.ibm.com/developerworks/websphere/bpmjournal/1112_cheng/1112_cheng.html

IBM Integration Designer Version 8.0 test environment Windows 4 of 5 CI82BML

IBM Integration Designer Version 8.0 test environment Windows 5 of 5 CI82CML

Process Server

Windows

IBM Process Server Advanced 7.5 for Windows eAssembly CREX6ML

IBM Process Server Advanced 7.5 for Windows 1 of 3 CIOBKML

IBM Process Server Advanced 7.5 for Windows 2 of 3 CIOBLML

IBM Process Server Advanced 7.5 for Windows 3 of 3 CIOBMML

Linux

IBM Process Server Advanced 7.5 for Windows eAssembly CREX9ML

IBM Process Server Advanced 7.5 for Linux 1 of 3 CI0BSML

IBM Process Server Advanced 7.5 for Linux 2 of 3 CI0BTML

IBM Process Server Advanced 7.5 for Linux 3 of 3 CI0BUML

If you are installing a full DB2, the part numbers for this are:

IBM DB2 9.7 Enterprise Server Edition 32 Bit CR8NVML

IBM DB2 9.7 Enterprise Server Edition 64 Bit CR8NWML

See also:
• Download IBM Business Process Manager Advanced Version 8.5 (Windows) – 8.5 – 2013-06-14

• Download IBM Business Process Manager Standard Version 8.5 (Windows) – 8.5 - 2013-06-14

Prerequisites
The official prerequisites for IBPM 7.5 can be found here:

Detailed hardware and software requirements for IBM Business Process Manager Standard V7.5

Detailed hardware and software requirements for IBM Business Process Manager Advanced V7.5

Installing Integration Designer
Integration Designer is the development tooling for building SCA, BPEL and related components. It
is an Eclipse based set of tools as well as a local copy of a Process Server for performing stand-
alone based unit testing.

Experience has shown that there are problems installing ID from a Windows share.

To install Integration Designer and related components, follow these instructions:

Run launchpad64. This brings up an initial wizard.

Page 83

http://www-01.ibm.com/support/docview.wss?uid=swg27021019
http://www-01.ibm.com/support/docview.wss?uid=swg27021018
http://www-01.ibm.com/support/docview.wss?uid=swg24034316%0D
http://www-01.ibm.com/support/docview.wss?uid=swg24034310

This then launches and installs the IBM Installation Manager software.

Page 84

Page 85

Page 86

Page 87

Page 88

Page 89

Installing Business Process Manager Advanced in typical mode
The typical install of Business Process Manager installs a WAS server, feature packs and then the
Business Process Manager itself. After the mechanical installation has completed, a profile is
created that is configured with Process Center. Personally, I prefer to run the custom install as it
gives me much more control over the installation process and profile creation. It also allows me to
detect problem areas that would otherwise leave a complete installation broken.

The installation is started by running the Launchpad command which asks whether this is a
typical or custom install. The typical install runs IBM Installation Manager in silent mode. This
means that you don't see what is happening in as much detail during the installation

Page 90

Page 91

Page 92

Page 93

Page 94

The installation now progresses with a silent version of Installation Manager.

Page 95

Performing a custom Install of Process Manager Advanced
When a Custom Install is requested, IBM's Installation manager is launched and used explicitly. I
think I like this technique better than one large and silent install. Personally, I prefer to install each
component one piece at a time in the following order:

• WAS ND 8.0.0.5

• IBM BPM Advanced 8.0.1

Only when the preceding component has successfully been installed, do I proceed to the next. In
principle, I should be able to install all the packages in one shot but I seem to believe that if there is
an installation problem with a later package that all the previously installed packages are also rolled
back when a clean-up is performed. This is probably the correct semantics as at the end of the
failed install, we are back to where we were before the install started but to my mind, this means re-
installing those successful packages the next time the install is attempted.

First I install based WebSphere Application Server ND

Page 96

Page 97

Page 98

Page 99

Page 100

Page 101

Page 102

Page 103

Following this, WAS ND v8.0.0.5 is now installed. Next it is time to install IBM BPM Advanced:

Page 104

Page 105

Page 106

Page 107

Page 108

Page 109

At the conclusion of the installation we are offered the choice of opening up the Profile
Management Tool (PMT). PMT is used to create instances of servers including Process Servers
and Process Centers.

Finally, I install IBM DB2 as the Database Provider for my environment.

Page 110

Page 111

Page 112

Page 113

Page 114

Page 115

Page 116

Using BPMConfig to create servers
Starting from BPM v8.5, a command called "BPMConfig" has been supplied which will perform
core BPM configuration functions.

BPMConfig is governed by a properties file. A sample can be found in
<Root>\BPM\samples\config

Always take a copy of this and never work with the master directly.

Within the configuration file, there are a number of entries that you can supply many with defaults
already provided. Keep a copy of the file for your records. Also build a table:

Property Default Your value

bpm.de.name De1

bpm.de.authenticationAlias.1.user dadmin

bpm.de.authenticationAlias.1.password password

bpm.de.authenticationAlias.2.user db2admin

Page 117

bpm.de.authenticationAlias.2.password password

bpm.cell.name PCCell1

bpm.cell.authenticationAlias.1.user cadmin

bpm.cell.authenticationAlias1.password password

bpm.dmgr.installPath C:/IBM/BPM/v8.5

bpm.de.node.1.installPath C:/IBM/BPM/v8.5

Make sure that your DB2 database is already running and ensure that the databases called:

• CMNDB

• BPMDB

• PDWDB

are already created. A sample SQL file called createDatabase.sql can be found in
 <ROOT>/BPM/dbscripts/DB2/create

Take three copies of this file (one for each of the databases) and edit the files to reflect the names
and userid to be used. Finally, run the scripts to create the databases.

The BPMConfig command to run to create the environment is:
BPMConfig -create -de <properties file>

Using the PMT to create servers
The Profile Management Tool (PMT) is a GUI interface for creating and augmenting instances of
WAS profiles. These profiles are the core to running Process Centers and Process Servers.

The PMT tool is launched from the file called:

<Install>/WebSphere/AppServer/bin/ProfileManagement/pmt.bat

The first page of the wizard shows a list of the products that may be configured using PMT. There
is a button to launch the profile management tool proper.

Page 118

Page 119

Page 120

Page 121

Page 122

Page 123

Page 124

Page 125

Page 126

Page 127

Page 128

Page 129

Page 130

Page 131

Page 132

Page 133

Page 134

Page 135

Page 136

After configuring the profile, it is ready to be started. In Windows, a set of menu items have been
added to the Start menu.

Using the command line to create server profiles
The PMT tool is graphical in nature. As an alternative to creating profiles using PMT, a command
line tool called manageprofiles can be used to perform a profile creation from text files that
are used as input to describe the parameters to be supplied. One advantage of using this mechanism
is that the record of how the server was created is now made permanent as opposed to having to
remember the values entered interactively in the PMT tool. In addition, the recreation of the servers
can be scripted and re-executed in the event of a need to recreate the servers.

There are quite a few flags/parameters that need to be supplied. Some of the parameters are listed
below. All the parameters can be found well documented and fully explained in the BPM
InfoCenter.

-create

-templatePath The path to the template used to control the creation of the profile. The profile templates can
be found in the <install>/profileTemplates folder. The BPM templates are in the BPM folder.
These include:
• default.procctr

Page 137

• default.procctr.advanced
• default.procsvr
• default.procsvr.advanced

-profileName Name of the profile to be created

-adminUserName Name of the admin userid

-adminPassword Password for the admin userid

-dbType Type of the database to be used:
• DB2_UNIVERSAL
• DB2_DATASERVER
• DB2UDBOS390
• MQSQLSERVER_MICROSOFT
• ORACLE

-procSvrDbName Name of the database for Process Server (eg. BPMDB)

-dbProcSvrUserId Userid used by Process Server to connect to DB

-dbProcSvrPassword Password for userid used by Process Server to connect to DB

-perfDWDbName Name of the database for Performance Data Warehouse (eg. PDWDB)

-dbPerfDWUserId Userid used for the Performance Data Warehouse

-dbPerfDWPassword Password for userid used for Performance Data Warehouse

-dbDelayConfig Should the configuration of the databases be delayed. A boolean value of either true or false

-dbName Name of the database for common (BPM Advanced) tables

-dbUserId Userid for the common database

-dbPassword Password for the common database

-configureBSpace Should Business Space be configured? (true/false) The default is true.

-configureBRM Should Advanced Business Rules manager be configured? (true/false) The default is false.

-winserviceCheck Should a Windows service be created to start this profile. Defaults to false.

-dbJDBCClassPath Class path for JDBC drivers. Default is based on DB type.
• ${WAS_INSTALL_ROOT}/jdbcdrivers/DB2

-dbHostName Host where DB is installed

-dbServerPort Port number where DB is listening (eg. 50000)

-dbCreateNew ? (true/false)

-configureBPC ? (true/false)

-defaultPorts

-webServerCheck Should Web Server definitions be made (true/false). Defaults to false.

It is strongly recommended to create a text file which contains all these parameters in the form of
name=value pairs. This file is called a response file by the manageprofiles tool. The
content of this response file can then be used as input to the manageprofiles command using the
syntax:

manageprofiles -response <fileName>

An example configuration looks as follows:

create
templatePath=C:/IBM/WebSphere/AppServer/profileTemplates/BPM/default.procctr.adv
profileName=Test01
adminUserName=admin

Page 138

adminPassword=admin
configureBSpace=false
dbType=DB2_UNIVERSAL
dbDelayConfig=true
dbName=CMNDB2
dbUserId=db2admin
dbPassword=db2admin
procSvrDbName=BPMDB2
dbProcSvrUserId=db2admin
dbProcSvrPassword=db2admin
perfDWDbName=PDWDB2
dbPerfDWUserId=db2admin
dbPerfDWPassword=db2admin
defaultPorts=true
omitAction=samplesInstallAndConfig

Installing to (DBA) managed databases
There are occasions where the database used for operation of IBPM is not accessible during
installation. This is commonly because the database is owned by a Database Administrator (DBA)
who does not want to grant broad authority to the IBPM connected userid. Instead, installation and
configuration should proceed without connecting to the database and, once installed, a series of
scripts are provided to the DBA which he can examine their contents and convince himself that all
is well. The DBA will then execute the scripts with his administrative authority which will create
the necessary artifacts for the product's operation. Once the database has been configured, the
product will then be able to run.

After configuring a server without applying the database changes, the scripts for configuration can
be found at:

<Profiles>/<Profile Name>/dbscripts

DB2

After profile creation for an IBPM Advanced, the following artifacts can be found in
<Profiles>/<Profile Name>/dbscripts

Running the CommonDB scripts

In the CommonDB folder, we will find a command called configCommonDB.bat. This is a
shell script that should be run with the flag "createDB" (eg. configCommonDB.bat
createDB). When executed, this creates the CommonDB database and creates tables within it.

Loading the PerformanceDW database

Run the following commands:

db2 -tvf createDatbase.sql

This will create the PDW database (eg. PDWDB)

Next run the commands

Page 139

db2 connect to PDWDB user db2admin
db2 -tvf createTable_PerformanceDW.sql
db2 terminate

Loading the Process Server database

Run the following commands:

db2 -tvf createDatabase.sql

This will create the Process Server database (eg. BPMDB)

db2 connect to BPMDB user db2admin
db2 -tvf createTable_ProcessServer.sql
db2 -tdGO -vf createProcedure_ProcessServer.sql
db2 terminate

Loading the ProcessChoreographer Database

No explicit connect to a database is needed for this step as the SQL itself contains a CONNECT.

db2 -tvf createSchema.sql

Finally see the section on common steps for all database types. A sample Unix script for running
all these commands together might be:

Run from dbscripts folder
HERE=$PWD
DBUSER=db2admin
NODESERVER=emoNode01_server1

db2 drop database CMNDB
db2 drop database PDWDB
db2 drop database BPMDB

cd $HERE/CommonDB/DB2/CMNDB
./configCommonDB.sh createDB
db2 terminate

cd $HERE/PerformanceDW/DB2/PDWDB
db2 -tvf createDatabase.sql
db2 connect to PDWDB user $DBUSER
db2 -tvf createTable_PerformanceDW.sql
db2 terminate

cd $HERE/ProcessServer/DB2/BPMDB
db2 -tvf createDatabase.sql
db2 connect to BPMDB user $DBUSER
db2 -tvf createTable_ProcessServer.sql
db2 -tdGO -vf createProcedure_ProcessServer.sql
db2 terminate

cd $HERE/ProcessChoreographer/DB2/CMNDB/BPEDB
db2 -tvf createSchema.sql

cd $HERE/BusinessSpace/$NODESERVER/DB2/CMNDB
./configBusinessSpaceDB.sh

cd $HERE/../bin

Page 140

./bootstrapProcessServerData.sh

This script seems to be needed to run as a userid with write permissions in the <Install> directories
of WAS.

MSSQL

Page 141

For Process Server

• createDatabase – This will create the database required for Process Server operation. At the
completion, it may look as follows:

• createTable_ProcessServer – This will create the tables required for Process Server
operation. At the completion, it may look as follows:

Page 142

• createProcedure_ProcessServer – This will create the stored procedures for Process
Server operation. At the completion, it may look as follows:

For Performance Data Warehouse

• createDatabase – Creates the database needed for Performance Data Warehouse
operation. After execution, it may look as follows:

Page 143

• createTable_PerformanceDW – Creates the tables needed for Process Server operation.
After execution, it may look as follows:

Common for all Databases

After creating the databases and tables, the tables must be populated. Run the command
bootstrapProcessServerData from the <Profiles>/<Profile Name>/bin
directory. This needs to be run from a DOS command prompt. It will take a few minutes to
execute. It is vital that the configured userid have sufficient permissions to perform this task. For
Unix systems this appears to be a user with the ability to write into the <Profile> directory.

Operation of the Process Server requires that there be SI Bus definitions. These are made during
configuration. However, the databases needed to host these Messaging Engine Data Stores are not
necessarily automatically created. If messages appear about message buses not being started, it may
be that the following recipe needs to be executed.

An IBM BPM Standard server needs two SI Buses for its operation. These are:

• PERFDW.<Cell Name>.Bus

• PROCSVR.<Cell Name>.Bus

By default, these are configured to use BPMDB and PDWDB databases. They are also configured

Page 144

to attempt to create the databases and tables which, in this story, won't work. As such, some work
is required before starting the server. WAS provides a command called sibDDLGenerator
which is used to generate the DDL required to create the tables. Run the following command to
generate the DDL:

sibDDLGenerator.bat -system sqlserver -version 2008 -platform windows -create
-user mssql > C:\temp\sib.sql

Next, have the DBA run this DDL against both the PROCSVR database and the PERFDW
database.

Now, we can start the server but it will not function correctly. We need to make some further
administrative changes that can only be made while the server is running. Start the WAS Admin
console and navigate to Service Integration > Buses > PROCSVR.<Cell
Name>.Bus > Messaging engines > <Messaging Engine Name> > Message
Store.

Change the schema name to be IBMWSSIB and un-check the "Create tables" check box.

Save and repeat this for the PERFDW bus. Stop and restart the server. If all has gone well, the
Buses should show "green" when the server is re-started.

Page 145

For the Performance Data Warehouse, there are stories about a command called
configurePerfDW but I have not yet investigated this area.

Installing Process Designer
The Process Designer component is us used to build and test BPMN based processes. It can be
downloaded directly from an already running instance of Process Center. With Process Center
running, go to its main page in the browser:

From there, a link on the right can be found called Download Process Designer. Click on this and
download/save the Process Designer installer. The installer for Process Designer is nearly 600
MBytes in size. The download arrives as a ZIP. When unzipped and the installer run, the Process
Designer is installed as a native application. using IBM Installation Manager.

Page 146

The installation happens silently. After installation, launch Installation Manager to apply
maintenance.

Alternatively, Process Designer can be installed through Installation Manager:

Page 147

Page 148

Page 149

Page 150

Starting BPM
Once BPM is installed, we can start it. There is an order to starting the environment. This is:

• Deployment Manager

• Node Agent

• Deployment Environment

For the deployment manager, use the "startManager" command found in the
<DmgrProfile>/bin directory. It seems to take about 5 minutes to start.

For the Node Agent, use the "startNode -profileName <NodeProfile>" command
found in the <Root>/bin directory. It seems to take about 2 minutes to start.

For the deployment environment, use the "BPMConfig -start <propertiesFile>" command. The log
file for this will be found in <Node1Profile>/logs/<SingleClusterMember1>.

Stopping BPM
BPM can be stopped by shutting down the components in the following order

Page 151

• Deployment Environment

• Node Agent

• Deployment Manager

For the Node Agent, use the "stopNode" command found in the <Root>/bin directory.

For the deployment manager, use the "stopManager" command foundin the DmgrProfile bin
directory. Use the Cell Admin userid/password.

Resetting the databases
The databases used by the product contain the repository of the Process Center. Should we desire,
we can reset these databases. This is a solution that is very extreme but will result in a reset system
(back to factory defaults).

The content of the Process Center database can be populated with the command called:

bootstrapProcessServerData.bat

This command is fully documented in the InfoCenter. The scripts to create the tables needed for
operation can be found in:

<WAS Profile>/dbscripts

Un-configuring BPM
If we wish to un-configure BPM, we should consider what that would mean. Specifically, it would
mean the deletion of the WAS profiles plus any databases used by the product.

To see what profiles exist, run "manageprofiles -listProfiles"

To delete a profile run "manageprofiles -delete -profileName <name>"

On a typical configuration, the profiles would be:

• Node1Profile

• DmgrProfile

After deleting a profile using manageprofiles, also remove any directories for that profile
found at <Root>/profiles. There may be directories with the same names as the profiles just
deleted.

In addition, delete any log files found at:

• <Root>/logs/manageprofiles

• <Root>/logs/config

which pertain to the profiles just deleted. Examples that may be deleted include:

• Directory with same name as profile

• <profile>_create

• <profile>_delete

Hiding the sample applications
After installation and configuration of the product, some sample applications can be seen in the

Page 152

Process Center. These also show up in the Process Portal as startable processes. It is likely that you
will want to hide these so that they don't clutter up your environment. These samples are:

• Procurement Sample (STPPS1)

• Hiring Sample Advanced (HSAV1)

• Hiring Sample (HSS)

These samples can be hidden by archiving the process apps from within Process Center.

See:

• Archiving Process Applications

Frequently Asked installation Installation Questions

• Q: What other Java EE server types are supported?
A: Only IBM WebSphere Application Server is supported. Java EE servers from other vendors
are explicitly not supported and simply will not work.

• Q: Can I record the options of IBM Installation Manager so that I can then late re-supply the
same attributes?
A: IBM Installation Manager has a "-skipInstall" option that goes through the prompts
but does not actually perform the installation. The results can then later be used to perform a
silent install.

• Q: How can I tell what version of code the server is running?
A: Examining the start of the SystemOut.log console file will show the details of the
server. Here is the first line of an example:

WebSphere [BPMPC 7.5.1.0 o1145.08][SCA 1.0.1.11
cf111118.05]Platform 7.0.0.19 [ND 7.0.0.19 cf191132.09][XML
1.0.0.9 cf091117.04] running with process name kolban-
PCNode01Cell\kolban-PCNode01\server1 and process id 3500

• <more>

Page 153

Business Process Definition - BPDs
The Business Process Definition (BPD) is the the core of an IBM BPM solution. The BPD
represents the model of the business process and is captured early on in the design of the solution.
It also allows the process to be easily modified as time passes. At a high level, a BPD is a diagram
that represents the overall view and flow of the process. It is commonly constructed by the
Business Process Analyst in conjunction with discussions and interviews with other members of
staff.

Here is an example of a napkin sketch of a trivial business process for approving a loan. We could
imagine a meeting room with a white board where the process of how a loan is handled is
discussed. The flowchart like blocks could be drawn on a white board.

In IBPM, the exact same process can be captured as a Business Process Definition in the IBPM
Process Designer (PD) tooling. It captures the exact same essence of the process. In fact, it is
arguably easier to capture the process in IBPM PD as blocks can be moved around without having
to erase the picture and redraw it.

We will further see later that participants at the meeting where the process is being sketched can be
remote from each other and yet the same process diagram can be seen on each of their screens.

The diagram style of a Business Process Definition conforms to the industry standard Business
Process Model and Notation (BPMN) format.

See also:
• Modeling a process

When a Business Process Definition is created it is given a name and lives inside a Process
Application solution. A Business Process Definition is created inside the IBPM PD tooling from
the library section within the Processes category:

Page 154

The wizard for the Business Process Definition (BPD) asks for the name of the new BPD which is
to be created.

Once created, the main canvas area of the BPD editor is shown:

Page 155

This main area of the window is called the canvas and is where we visually model the process
solution we wish to construct. Icons representing the activities and other elements of the process
can be dragged from the palette of available types shown on the right of the window. These icons
can be dropped onto the canvas and wired into place using Sequence Lines. Each icon represents a
"step" in the process.

The icons conform to the Business Process Model and Notation (BPMN) style and their
interpretation is also that of BPMN.

The palette of available icons are:

Activity – see Activities

Lane – see Pools and Lanes

Milestone – see Pools and Lanes

Decision Gateway – see Gateways, Conditionals and Joins

Note

Start Event – see Start Event

End Event – see End Event

Intermediate Event

Contained within these major palette entries are the other BPMN components:

Task Types

User Task

System Task

Decision Task

Page 156

Script

Subprocess

Linked Process

Event Process

None

Gateways

Exclusive Gateway

Parallel Gateway

Inclusive Gateway

Event Gateway

Start Events

None Start Event

Message Start Event

Ad Hoc Start Event

Content Start Event

Intermediate Events

Message Intermediate Event (Receive)

Message Intermediate Event (Send)

Timer Intermediate Event

Content Intermediate Event

Tracking Intermediate Event

End Events

None End Event

Message End Event

Error End Event

Terminate End Event

See also:
• Sequence Lines

Pools and Lanes
Think of an Olympics swimming competition where multiple swimmers swim against each other
for the fastest time. Each swimmer swims in the same swimming pool but is constrained to swim
only in their own swimming lane. The canvas drawing area of the BPD also contains such a model.
The canvas as a whole represents the pool while multiple lanes can be added to segment the pool
into horizontal sections. When an icon is added to the diagram, its vertical position on the diagram
means that it "lives" in only one lane. This serves two purposes. First, if we associate a lane with a

Page 157

particular "role" in the process, then we can quickly see simply by looking along the row of the lane
which activities are associated with which roles. Conversely, if we assign attributes to a particular
lane, then activities found in that lane can inherit those attributes.

Here we see an example of a BPD pool with a couple of lanes:

Additional lanes can be added by dragging a lane icon from the tools palette:

When a lane is added to the diagram we can specify some primary attributes:

Page 158

Every lane has a Name attribute so we should supply a meaningful name that will remind us of its
purpose. A Presentation Color can be assigned which will change the background color of
the lane. This can be especially useful if you have many lanes and need to read to the far right in
order to see all of the process content. The Name of the lane may not always be immediately
visible but if colored correctly, will highlight its intent.

For human services, we can assign the set of users that should be associated with the lane. This set
of users is known as a Team. When a human service is added as a step on the lane, if no specific
human routing instructions are supplied, then the human service will be routed to the members of
the Team associated with the lane.

We can re-order the lanes in a pool from their existing values. By right clicking in a lane, a context
menu is shown:

Within that menu we can choose to move the selected lane up or down relative to the other lanes in
the pool.

Sequence Lines
The lines which are drawn which connect individual steps in a BPD are called Sequence Lines. A
sequence line describes which activities will follow other activities in sequence as the process
executes. Sequence lines have an arrow head point to the next activity to be executed. When using
PD, the following icon can be used to place the tool into a mode where Sequence Lines can be
drawn:

When in sequence line drawing mode, the cursor shape changes to include a "plug" in its visual
representation. This is to represent the idea of wiring (or plugging) one component into another.
When the cursor is over an element that can be the source or target of a Sequence Line, the
element's representation changes to show attachment points.

Page 159

These attachment points serve as the anchors for the start and end of a Sequence Line. To wire two
elements together, enter wiring mode and hover the mouse over the originating element. Pick one
of the attachment points and click and release. Next move the cursor (without pressing any further
buttons) over the target element. A line will automatically be drawn from the source to the target.
When over the target, attachment points will again be shown. Pick the attachment point that is
desired and click and release once more. A Sequence Line will now connect the two elements.

You can leave wiring mode by clicking on the icon that looks like:

You can tell which editing mode you are in as the current mode icon has a blue background.
Alternatively, when in wiring mode, pressing the Escape key on the keyboard will return you to
the default editing mode.

A Sequence Line can be have its source or target changed. If the line is selected with a mouse click,
either endpoint of the line can be dragged to another element.

From the context menu when a Sequence Line is selected, additional "points" on the line called
control points can be added. A control point allows the line to have additional junctions in it to
further control its visual layout and appearance. This can be used to make the diagram more
attractive. The control point can be dragged with the mouse to re-orient the line.

When selected, we can also edit the properties of a Sequence Line:

Amongst these properties are the Name that can be given to the line. This name can be made
visible and shows on the diagram.

Here we see a diagram with the text of the line not visible:

Page 160

and here is the same diagram with the name visible:

In addition, if the Sequence Line is used as the output of a condition gateway, the name given to the
line is seen in the gateway's description of the conditions that are used to select which of the
possible alternative paths are to be taken.

The condition associated with a decision gateway can also be seen on the properties of the line.

Finally there is an attribute called Line Type which can have a value of Happy Path or of
Exception Path. These values do not alter the operation of the process but are used
exclusively during process analysis. Most of the time they can simply be ignored.

Page 161

Activities
Without question, the core items in a process are the activities. These are the declarations that some
work is going to be performed. From the palette, the activity icon looks as follows:

When added to the canvas, it looks like:

 or like depending upon which type of lane the activity is dropped.

The initial properties of an activity look as follows:

Initially, a newly added activity has no implementation. It is merely a "place holder" or a
description that something is going to happen here.

Following the core philosophy of the product that everything about the process is contained within a
common or single shared model, information about the implementation of this activity will
eventually be entered. IBPM provides a set of defined possibilities for implementing an activity.
These are:

Page 162

• None – No implementation is associated with this activity. This is most useful when the
diagram is initially being drawn and we are not yet ready to make a decision on how this step
will best be implemented.

• User Task – Implemented as a Human Service. This step in the process will be performed
by a human being. - - Human Service

• Decision Task – Implemented as a decision service where rules will be executed to make a
business decision -

• System Task – Implemented as a technical or straight through step without human
interaction - - A system service

◦ Ajax Service

◦ Integration Service

◦ General System Service

• Script – Implemented as a piece or snippet of in-line JavaScript code. This is most
appropriate for one-time data manipulation such as initialization or simple copies of data from
one variable to another.

• Sub-process – Implemented as a sequence of additional activities where those activities are
contained within this process. Think of the Sub-process activity like a grouping or container.

• Linked Process – Implemented as a call to another process defined separately.

• Event Sub-process – Implemented as a sequence of steps that will be performed
concurrently with the main process when an external event occurs.

Many of the implementation types of an activity in the BPD require them to be associated with
further details in the form of a Service implementation. We can perform this step in either a top-
down or bottom-up fashion. Top-down means we start with the notion of an activity and then
provide an implementation for that activity. Bottom-up means we start with an activity
implementation and then associate that with a BPD activity. Either technique is valid.

For the most common types of implementation, a wizard is available to assist with the
implementation selection/creation. The Activity wizard can be started by right-clicking on an
Activity and selecting Activity Wizard...

Page 163

The wizard allows us to select which type of service to associate with it and, if necessary, create a
new service.

If a new service is to be created, the variables in scope in the process are displayed as potential
inputs and outputs to the service.

Page 164

The table cells under the Input and Output columns are click-able and will toggle between true and
false. A value of true means that the variable will be an input and/or output parameter to the service
while a value of false means that the variable will not be utilized by that service.

Activity Appearance in the BPD diagram

The name of the Activity is used to provide a label for it on the canvas.

The Presentation field allows the activity's appearance to be changed. This does not change
its operation but merely changes how it looks to the user who views the BPD diagram. The color
entry allows the developer to choose the color used to represent the activity. This could be used to
highlight activities based on a convention. For example, red to indicate an activity that interacts
with a secure system.

Default Red Orange Yellow Green

Blue Purple Gray

As an alternative to these colored replacements, an Icon representation can be used. Use this with
caution/care. One of the key elements of reading a BPD is visual consistency so that a reader can
tell very quickly what an diagram means by knowing the set of icons commonly found on such a

Page 165

diagram. If the icons are changed, the reader may not know as quickly what is intended. By
clicking the icon radio button next to Presentation, the file name of a new icon can be
supplied.

Data Mapping

Many activities have a Data Mapping section. This is the act of mapping the variables in scope in
the BPD to the expected parameters of the service that is to be called by the Activity. This applies
to both input parameters and output parameters.

The Data Mapping screen area is split into two columns. One for input mapping (mapping BPD
variables to the parameters expected by a service) and the other is for output mapping (mapping
returned values from a service to the variables in the BPD). Entry assistance is available to bring up
lists of BPD scope variables which can be selected.

Note that the variables defined in the scope of the BPD do not have to have the same names as the
actual parameters of the service implementation. However their data types should be compatible
with each other.

Conditional Activities

When an Activity is reached in the BPD, it may not always be applicable to execute this activity but
instead it can be skipped over. An attribute of the Activity in Process Designer can be set to
achieve this effect.

In the Properties of the Activity a tab called Condition can be selected.

Page 166

In the details associated with this tab, a check box called Is Conditional can be checked to
flag the Activity as conditional. Activities that are flagged as conditional have an additional visual
decoration added to their representation to indicate them as such. The decoration is a small
diamond at bottom/middle of the Activity icon.

A JavaScript fragment can be coded in the Script box in the Condition section. If this JavaScript
returns a value of true, the activity is performed. If it returns false, then the activity is skipped.

The Conditional Activities feature has one further overload associate with it and it takes a little bit
of patience to get one's mind around it. If an Activity is flagged as conditional and has no
associated JavaScript then should it be executed or not? The answer to this is dependent on a
system variable called tw.system.process.selectedConditionalActivities. This
variable is a list of Strings. If the Activity is to be executed, then its ID value will be found in
the list. If the Activity is not to be executed, then its ID value will not be found in the list.

Initially, this list is empty and hence none of the conditional activities that have no JavaScript
associated with them will be executed. This variable can be assigned inside the process to add (or
remove) activities to be executed. To aid in the population of this variable, another system variable
can be used called tw.system.process.conditionalActivities. This variable is a list
of all the possible activities in the current BPD that are flagged as conditional. The entries in this
list are of type ConditionalActivity. A ConditionalActivity instance contains both
the name (as seen in the BPD) and id (GUID for the activity as needed in the
tw.system.process.selectedConditionalActivities) variable. Using this list,
algorithms can be used to select which activities to enable for execution and which to skip.

A common pattern of usage of this feature would be to present selection to the user to determine
which activities should be executed and which not. IBPM provides a pre-built Human Service that
performs exactly this function. That Human Service is called lsw Conditional Activity Selection
Coach.

Note: Although this is a fully supported feature of the product and can be used in any production
environment, experience has shown that very few uses of this capability have been seen. This is
mentioned not to dissuade you from using it but rather to alert you to the notion that it is likely not
critical that you spend too much time learning this function.

Page 167

See also:
• lsw Conditional Activity Selection Coach

Start Event
The Start Event is a starting node that can be used to indicate the starting point of an instance of a
process. When added to the canvas, it looks as follows:

By default, when a new BPD diagram is created, a Start Event node is automatically added to the
diagram. The Start Event node is used to model the start of a process. From an implementation
perspective, the Start Event node is used when one wishes to:

• Start an instance of a process through the Process Portal

• Define a BPD as a linked process. Every called linked process must have a Start Event.

In either of these circumstances, execution of the process will begin from this node. A BPD can
only ever have one Start Event contained within it. Although the PD allows us to mechanically add
more than one start event, the run-time detects this and flags it as an error.

A Start Event can only have outgoing Sequence Lines from it. It is not permissible to have any
incoming links to it.

It is permissible for a process to have no Start Events but instead it must have one or more Start
Message Events. These allow the process to be started from an external event such as a UCA.

If a process has no Start Events and is attempted to be started, an exception is thrown which shows
a message similar to:

[9/2/11 11:16:52:717 CDT] 00000089 wle E CWLLG2229E: An exception occurred in an
EJB call. Error: Cannot start BPD "BPD3". No start event of type None is found

Author: This message frustrates me … "No start event of type None is found". Personally, I
would have preferred to see "A start event of type 'None' was not found within the BPD named
'BPD3'".

End Event
The End Event is used to model the end of a process. When added to the canvas, it looks as
follows:

An End Event is added to the default BPD diagram when it is created. There can be multiple End
Event nodes in a diagram. The process instance will come to an end only when all the concurrently
executing branches reach their End Events. Explicitly, the process will not end when any one single
branch reaches an End Event.

Page 168

Message Start Event
The Message Start Event is a starting node that can be used to initiate an instance of a process due
to the arrival of an event. Once added to the BPD canvas, it looks as follows:

An instance of the process can be started based on this element when an external event occurs. The
association between the process and the mysterious external event happens as a result of an
undercover agent (UCA). When the Message Start Event element is added, the properties of that
element allow us to define which UCA should be used:

When the UCA fires the data from the UCA is passed as the starting data to the new instance of the
Business Process that is to start.

The Consume Message check box needs some discussion. Within a BPD instance, a Message
Start Event step can consume the message. This means that if there are other Message Start Event
steps in the same process that are also listening for this same event, only one of them will be started.
If the Consume Message check box is not checked, then all the Message Start Event steps for
the same event will be started.

The Condition area is a JavaScript boolean valued expression which is a guard on whether an
arriving event will be utilized by this process. The data passed with the event is available in the
JavaScript name-space called tw.message.

A process can include multiple Message Start Events signifying multiple entry points into the same
process. This is illustrated in the following diagram:

The BPD started when a UCA is fired is always the default process app assuming that multiple
process app snapshots exist for the same solution. If a specific snapshot is to be used as the one in
which the BPD is to be started, consider using the startBPDByName JavaScript function.

See also:

Page 169

• Message Intermediate Event

• Modeling Event Sub-processes

• Undercover Agents (UCAs)

• Starting a UCA from REST

• Scenario - Asynchronously starting one process from another

User Task
The User Task is a step in the BPD that is designed to be performed by a person. The
implementation of a User Task is always a Human Service. A User Task is indicated by a human
icon in the top left of the activity box:

When a User Task is reached within the process, the process pauses its execution until the task
created by this step is completed. This could take some time and as such the process state is always
written to database and the resources being used by the process released. There can be far more
process instances in the system waiting on User Tasks to complete than could be accommodated
concurrently in memory. How a user works with these tasks is a separate story told in the Process
Portal section.

The User Task has a number of associated properties.

The Subject property of the activity allows us to enter a single line of text to act as a summary of
the task. This becomes the title of the Human Task that is created.

The Narrative section is a description of the task. This is especially useful if the activity is a
human service as this shows up in the Process Portal. If HTML is added to the narrative, that
HTML is displayed in the Process Portal and is interpreted.

Page 170

The Priority attribute associated a priority value with the task. This can be used by a task list
interface to sort or otherwise visualize a list of tasks such that those with higher priority are shown
first. The value for Priority is one of:

• Lowest

• Low

• Normal

• High

• Highest

The system does not act upon these values directly. They are merely indicators to user interfaces
such as the IBM BPM Process Portal.

The Due In property defines a due date for when the task is expected to be completed. This due
date becomes associated with the task such that user interfaces can guide the user on which tasks to
work upon first. It is presumed that those with the same priority but sooner due dates would most
likely be the next ones to be handled.

The due date is calculated as the addition of a time interval to the time when the activity was
started. Time intervals can be supplied as either hours, minutes or days or from a variable or
JavaScript.

The Clean State property is documented in the InfoCenter (8.5) as the following:
Select Clean State if you want to clear the runtime execution state of an activity after it is
complete. By default, this option is disabled. Enable this option only when you do not want to store
execution data (such as variable values) for viewing after the process finished execution.

It isn't quite clear when one would use this or what exactly it means.

See also:

• Human Service

Automatic Flow

Consider the following BPD diagram:

It shows two tasks to be executed one after the other. If we assume that the second task has the
assignment set to "Last User in Lane" then what we are requesting is that the user who
completed Step A will be the user who works upon Step B. We may now wish the process to
automatically proceed to show the user (who completed Step A) the screen for Step B. Explicitly,
we don't see a need to have the user go back to the task list and manually open the task. We can
achieve this by the use of the "Automatically flow to next task" check box set in Step
A.

Page 171

If checked, when Step A is completed, we now show the next task for that user. There are some
constraints to this, specifically, the next task for the user in the same process must be available
within a finite period of time. The default is three seconds. This is configured by the
"autoflow-timeout" parameter set within the 99Local.xml configuration file.
Experimentation has shown that almost any activity between one Human Activity and the next will
break the association. It appears that only simple decisions will allow auto flow to work.

An interesting use case for the auto flow capability is to place logic between the tasks such as is
shown in the next image:

Here we assume that something entered in Step A is used as a determinant as to whether Step B or
Step C should be shown next.

Assigning Activities – Mapping staff to work

For human activities, a basic question comes to mind … which users should be eligible to perform
the work? Not all employees in an enterprise have the same roles and responsibilities. For
example, if I request the purchase of a new laptop within IBM, it should be a member of the
procurement department that should handle that request and not, for example, someone in the
advertising department.

Assigning work to the correct people not only results in work being responded to in a timely fashion
(if at all) but also has important implications with respect to security. For example, if we are
bringing a new employee into our company, the request for salary information may be desired to be
processed by someone in human resources and the details of that request should not be visible to
others (for example staff in the new employee's same team).

Page 172

Another consideration is that of balancing workload. If a department has three staff members and
two are idle while the third has more work requests than he is able to handle, this is also not a good
situation.

To provide answers for these considerations, task assignment can be performed through the
Assignments tab in the Process Designer section while editing a human step.

By default, an activity is assigned to the set of users defined in the Team of the lane in which the
activity is placed. The selection of assignment for an activity may be modified by changing the
Assign To definition of the activity as found in the Assignments tab in the properties view:

The Assign To property is a pull-down list that defines the selection criteria used to select which
people are eligible for the activity. It may have one of the following options:

• Lane – This is the default selection. In this mode, the activity is assigned to the Team
associated with the lane in which the activity is placed. The activity can then be owned by one
of the members of that Team.

• Team – An explicitly selected Team will be selected to own this task. When this option is
selected, a new entry for the Team to be chosen will be shown. A team can then be selected
from the list of available defined Teams. An alternative to explicitly naming the team is to
reference a String variable that will hold the name of the team.

• Last User in Lane (Deprecated) – Since this option has been deprecated in the
current release of the product, no further discussion on it will be made.

• Routing Policy (Deprecated) – Since this option has been deprecated in the current
release of the product, no further discussion on it will be made.

• List of Users (Deprecated) – Since this option has been deprecated in the current
release of the product, no further discussion on it will be made.

• Custom (Deprecated) – Since this option has been deprecated in the current release of
the product, no further discussion on it will be made.

Both the Lane and Team options also have the concept of a "Team Filter Service". This is an
optional service which takes as input a Team data structure and returns a new Team data structure.
The input is the selected team members that would otherwise be those assigned to the work. The
output is presumed to be a subset of those team members dynamically selected to perform the work.
This effectively allows us to filter the team members. If no team filter service is supplied, the
original selection of team members will be used.

It is anticipated that the filtering of team members may need additional parameters in order to make
its decision. For example, the staff members necessary to perform a procurement may be chosen
from the procurement department dependent on whether it is hardware or software that is being

Page 173

ordered. The team filter service can be supplied additional parameters in its definition. If
additional parameters are defined, these will be available to be mapped in the Assignments area:

When looking in detail at a Team Filter service, we find that it has an input parameter called
"originalTeam" of type Team and it also has an output parameter called "filteredTeam" also of
type Team. It is expected that the service will populate the "filteredTeam" structure with the
team members to be included in the assignment.

Take care when using the originalTeam as input. The "members" property is a list of Strings
describing the members of the team. We don't know if a member is a simple user or a group of
users. As such, we may need to code defensively if we wish to iterate over each user to see if they
meet a specific criteria. Here is an algorithm that will give us all users in a given team:

// Create the resulting empty list
var users = new Array();

// Iterate over each member of the team. A member may be a user or it may be a
Role (Group)
for (var i=0; i<tw.local.team.members.listLength; i++) {
 var currentMember = tw.local.team.members[i];

// Try and get the member as a user. If we find one, add it to the user list
 var currentUser = tw.system.org.findUserByName(currentMember);
 if (currentUser != null) {
 users.push(currentUser);
 } else {
// Try and get the member as a Role. If we find a match, add all the users in
the role to the user list
 var currentGroup = tw.system.org.findRoleByName(currentMember);
 if (currentGroup == null) {
 log.info("Problem: Unable to find a user or group called " +
currentMember);
 } else {
 var allUsers = currentGroup.allUsers;
 for (var j=0; j<allUsers.listLength; j++) {
 users.push(allUsers[j].name);
 }
 } // We have a good group
 } // Process as a group
}
// Return the list of users we found.
tw.local.users = users;
// End of script

A second pull-down on the same preferences area available to all the previous types of assignment

Page 174

choices is called "User Distribution". This option determines which users from within a set
of users should be immediately assigned the task.

The options are:

• None – This is the default. IBPM assigns the task to all members of the Team.

• Last User – In this mode, the user selected is the last user that had a task in the same swim
lane.

• Load Balance – In this mode, the task is assigned to the member of the Team who has the
fewest number of open tasks.

• Round Robin – In this mode, the task is assigned to a member of the Team in a serial
fashion. For example, if the Team has three members, the first time a task is assigned, it will
be assigned to the first member, the next task to the second and the third task to the third
member. When the fourth task is to be assigned, it will be assigned to the first member again.

See also:
• Security

• Teams

• Vimeo - IBM BPM 8.5 Teams

• DeveloperWorks - Common business process modeling situations in WebSphere Lombardi Edition V7.2, Part 1 - Role-based and dynamic
routing of activities - 2011-06-29

Re-Assigning Tasks and changing group members

Imagine a BPD instance which includes an activity associated with a team. If the team is associated
with an external system group then what will happen if the system group's membership changes
after the creation of a task but before it is claimed? The answer appears to be that any tasks already
created will honor the new group change.

Unfortunately, there does not appear to be a way to change the makeup of a team after the task is
created. So if a task is created with a certain set of potential owners those potential owners are
fixed to that task (unless they come from a system group).

Assignment Examples

Here are some examples of some of the more interesting assignment uses.

The Four Eyes Example

There are some processes where two staff members have to review or approve some activity. As an
example, let us think about hardware procurement at IBM. If I, as an IBM employee, wish a new
laptop, I can submit my request to my procurement department. Their process says that the request
must be reviewed by two procurement specialists. We can imagine this being implemented in
IBPM. A Human Service would be executed that assigns the request to anyone in the Procurement

Page 175

http://www.ibm.com/developerworks/websphere/library/techarticles/1106_olivieri/1106_olivieri.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1106_olivieri/1106_olivieri.html
https://vimeo.com/groups/ibmbpm/videos/68961023

group. If the request is approved we now create a second Human Service and assign that also to the
Procurement group. Unfortunately, there is a problem in that simple solution. If the first task is
assigned to the Procurement group and "Bob" works on it, the second task will also be assigned to
the Procurement group and, unfortunately, there is nothing to prevent "Bob" from working upon
and claiming that second task as well. The tasks "have" been handled by "someone" in the
Procurement group … it just was the same person each time and that is not the intent of our story.

Fortunately, there is a relatively easy solution.

We build a process that looks like this.

The assignment decisions for both tasks use the "List of Users" feature for owner selection.
After the first task has completed, we determine the owner of that task and remove them from the
list of potential owners for the second task. A suitable fragment of JavaScript to achieve this may
look like:

for (var i=0; i<tw.local.users.listLength; i++){
if (tw.local.users[i].id == tw.local.userName) {

tw.local.users.removeIndex(i);
log.info("Found and removing");
break;

}
}
log.info("Final list: " + tw.local.users.toXMLString());

The key to understanding this fragment is to realize that tw.local.users is an array of the
users that are in a particular group and tw.local.userName is the name of the user that was
assigned to the first task.

Assigning a task to a named user

Consider the notion that within a process we know the identity of an specific user to whom we wish
to assign a task. How can we achieve that within IBM BPM?

We create a new Team Filter service called "Single User" that has the following signature:

Its implementation is a single Server Script which contains the following logic:
tw.local.filteredTeam = new tw.object.Team();
tw.local.filteredTeam.name = tw.local.originalTeam.name;
tw.local.filteredTeam.managerTeam = tw.local.originalTeam.managerTeam;

Page 176

tw.local.filteredTeam.members = [tw.local.owner];

What this code does is build the resulting Team object from the original Team object but comprises
the new team's membership solely from the identity of the passed in user.

In a User Activity's assignment specification, we can now name the service and the user we wish to
assign:

The desired owner can be obtained from a string or a variable.

Timer Events
A timer can be added as an attribute on an existing task or can be an element in its own right. The
icon for this can be seen in the palette and looks as follows:

Once added, its implementation type should be changed to Timer:

It can be dragged and dropped on an existing activity. This is called "attaching" a timer event. A
link from this timer can then be associated with a different activity. If the timer fires, the linked
activity will be called. In the following diagram, an activity called Human Task has had a timer
added to it and that is wired to the activity called Log.

Page 177

A timer has an associated Trigger On attribute. This is an algorithm used to select when the
timer will start ticking. The choices available are:

• After Start of Step – A time after the step is reached

• Before due date – A time before the due date

• After due date – A time after the due date

• Before custom date – A time before a custom date

• After custom date – A time after a custom date

The Before/After Difference field allows us to specify the time interval relative to the
Trigger On algorithm selection. The units for this field can be minutes, hours or days.

The Tolerance Interval is an additional time interval associated with the algorithm. If a
task has not been claimed by a user, then when the primary interval is reached, the timer fires as
expected. However, if the task has already been claimed, then the additional Tolerance
Interval value is used to extend the deadline to complete the task before the timer fires.

The Interrupt Activity option causes the activity on which the timer is attached to end
when the timer expires. The icon used to represent the Timer changes depending on the setting of
Interrupt Activity:

Interrupt Activity: On

Interrupt Activity: Off

If this option is not selected (which of course means the attached activity continues to run), the
Repeatable option may be selected to cause the timer to start again after it has already fired.
The timer is restarted as though it had just been reached. A little care should be taken here. If we
flag a timer as repeatable and the date/time on which the timer is to fire is an absolute and that
date/time has passed, then the timer will immediately re-fire over and over again without much of a
pause. It is unlikely that this is the desired result.

Multiple timers can be attached to a single activity.

For the fields which can be used for time values, either constants or variables may be used.

Similar to the attachment of timers to activities, timers can also be added in-line between activities.

Page 178

This has the same Timer Properties as previously discussed. When this Timer is reached,
processing delays until the timer expires. This allows for delaying the execution of a process for a
period of time.

When a timer fires, its Post-assignment variables are in the scope of the attached activity. This
means that we can copy out the Task instance id that had time out on it.

While working on the development and testing of a BPD that uses Timer Events, the Inspector view
can be used to manually fire a timer even though the time interval has not yet expired. This can be
useful for testing logic paths. If we right click on the token in the Execution State area, a
context menu pops up that provides Fire Timer. If selected, it will fire the timer and the system
will behave as though the timer had elapsed.

This is a great solution when one is able to attach a Process Designer but that is only available
within a development environment. An alternative which can also be used for testing is to use the
Process Admin console and switching to the Process Inspector tab. From here we can view the list
of processes and make changes to them. Notice the option at the bottom right of the page. Here we
find a list of active timers within the process. We can select a timer and cause it to fire immediately
thereby bypassing any waits that may be outstanding.

Page 179

On occasion, the time when the timer is to fire is not a simple fixed value but must instead be
calculated. For example, we might want the timer to fire after four business hours instead of four
wall-clock hours. To achieve this, we need to explicitly calculate the date/time when the timer is to
fire and supply that as a custom time value.

See also:
• Error: Reference source not found

• Data Type – TWTimerInstance

Tracking Intermediate Event
A tracking intermediate event is used to generate a data point used in performance reporting on
process instances. When added to the diagram it looks as follows:

When encountered, a record that this point was reached in this instance of the process is made. In
the implementation section of the element, a reference is made to a Tracking Group:

Page 180

We can define which of the tracking group properties will be populated and with what values.
Checking the box next to the tracking group property causes that property to be included in the
output record. We can also define which variables or values within the process should be mapped
to the tracking group property.

See also:
• Tracking Groups Overview

• Monitor Tracking point data

Ad-hoc Start Event
The Ad-hoc Start Event is a mechanism that allows us to start a chain of activities in an already
existing process instance. When added to the process, a new entry appears in the options for an
instance of this process or in the Process Portal. When the steps associated with the Ad-hoc Start
Event are invoked, these steps have visibility to the data contained within the process as a whole.

When added into the BPD diagram, an Ad-hoc Start Event step looks as follows:

The name of this concept ("Ad-hoc event") is an odd one and one I find not representative of what
the function actually does. What we really have here is the ability to have an optional "event"
passed into the process which causes a new flow of control to execute in the same process context.

The implementation properties of this entity are shown below:

Page 181

By default, the event can arrive at any time during the life span of the process. Further options are
also provided:

• Swimlane – TBD

• Milestone – The Ad-hoc start may only be initiated when a process token is within the same
milestone as that of the ad-hoc activity

When added into the BPD, you can drop the Ad-Hoc start event in any area. We have the option to
associate an Ad-Hoc Start Event with a “milestone”. If added to a milestone, the event is only
available when the process is within the milestone area. You switch this on with with the check
marks in the implementation area of the Ad-Hoc event. By default, the Ad-Hoc event is available
in all milestones (and all swimlanes).

See also:
• Error: Reference source not found

• Starting Ad-Hoc entry points

• Securing Process Portal capabilities

• IBM Education Assistant – Ad-hoc tasks

Message Intermediate Event
The Message Intermediate Event is an Event listener that is used to listen for incoming events
within a process instance that is already running. Contrast this with a Message Start Event which
will initiate a new instance of a process when a message arrives. The Message Intermediate Event
has two flavors.

These are called:

• Stand alone listener

• Attached listener

The Stand alone listener is seen within a BPD as its own diagram element. When it is reached, it
suspends further execution of the process until an event is received or the process is terminated
elsewhere.

The other type of Message Intermediate Event is called the Attached listener. It is called this
because it attaches to an activity. While the activity is running, if an event arrives, a link coming
from the Message Event will be followed. An option called "interrupt activity" available on an
attached listener determines whether or not the outgoing link from the activity will also be followed
when the activity completes. If "interrupt activity" is checked, then if a message arrives, the
activity is cancelled.

Page 182

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.ibpmgr/ibpmgr/8.0/ProcessPortal/BPM80_Adhoc_Tasks/player.html

Because a Message Intermediate Event listener lives within an existing process instance, when an
event occurs that event must be matched against the correct instance of the process for which the
event is destined. The ability to match the event against this correct process instance is called
"correlation".

The Message Intermediate Event is actually watching for the arrival of a UCA. When that UCA
arrives, the event is said to have happened. This is the mapping between the logical concept of an
event and the actual implementation of an event within the IBPM product.

The settings for an Attached listener are as follows:

The settings for a Stand alone listener look like:

Now, what if the event that would trigger the listener occurs before the listener is reached? This is
where the concept of the Durable Subscription comes into play. If this flag is checked,
then the arrival of an event before the listener is reached is remembered and when the process

Page 183

reaches the Message Intermediate Event, it is immediately notified that the message is available and
the solution can continue. If this flag is not checked, then the event that arrived previously is
discarded and the process will wait for a further event.

The Consume Message option is used to indicate that if this event listener is triggered by an
event, should a subsequent event listener also be triggered by this same event? If Consume
Message is checked then the next occurrence of the listener will not be triggered by this event
occurrence.

Consider a message arriving that says "Payment has been received". This is great news and now the
process can continue. But wait a moment … we seem to have a problem. Assume that I am a car
salesman and I have two separate customers waiting in my office. My finance department calls me
and says that the payment has been received and the customer can leave with the car. This by itself
is not sufficient. I have two potential recipients of keys … for which customer has the payment
cleared?

In IBPM, the challenge is that when an event is to be delivered to a process we must know to which
instance of the process should the event be delivered. To resolve this problem, an event must carry
with it sufficient information to allow IBPM to uniquely identify to which instance of a process the
message should be delivered. This information is called correlation. We need to correlate an
incoming message with the process instance to which it is to be sent.

A Message Intermediate Event is always associated with a UCA and a UCA can carry data with it.
In the IBPM PD, we can specify a variable who's value must match that of an incoming event's
UCA payload in order to be considered a match.

Note that it is vital that each of the UCA Output Correlation fields name a local variable even if
they are not to be used for the correlation mapping. Currently, the product only allows the selection
of a single variable for correlation matching. If the match requires additional comparison, then a
new variable must be defined which will be the concatenation of multiple values. In the UCA
associated General Service, the incoming data will also need to be concatenated together to build
the matching data.

With this background information in place, we can now look at some potential usage scenarios.
The first one we will choose is the idea of the Multi Wake-up. In this scenario, we will have a
single process with two parallel Intermediate Message Events both waiting on the same event:

Page 184

What we desire is for both of these to block and wait for a new event to arrive. We define the
Intermediate Message Events to:

• Be associated with the same UCA

• Use the same correlation value

• To not consume the message. If we consumed the message, one would wake and other other
wouldn't.

• To not have a durable subscription.

In addition to blocking waiting for a message to arrive, the Message Intermediate Event can also be
used to invoke a UCA which is the logical equivalent of generating a new message. A Message
Intermediate Event can be visually seen as sending a message rather than waiting for a message
because it has a different representation in the BPD diagram. Specifically, it has a black envelope
icon:

In the Implementation tab of the activity there is a selection option in which we can define it to be
either receiving or sending. Changing it to Sending results in the invoke of a UCA when reached.
The name of the UCA is also supplied on this section. Once a UCA has been chosen, any data
passed as input into a UCA of that type can be defined in the Data Mapping section.

See also
• Message Start Event

• Undercover Agents (UCAs)

• Starting a UCA from REST

Message End Event

Page 185

The Message End Event ends the current path of the process and fires an event. When added onto
the canvas, the Message End Event looks as follows:

It's implementation properties are:

When reached, it causes the Event associated with the configured UCA to be fired and then ends
this path in the process. This activity is useful for modeling a final outcome of a process flow.

Terminate Event
The terminate event activity looks as follows when added to the canvas. It is added from the End
Event palette entry and then changed in its implementation settings.

This activity will cause the immediate termination of a process instance. If there are multiple
branches of control within the process, the first branch that reaches a terminate event will cause the
immediate termination of all branches. Putting it another way, it will close all outstanding tasks and
cancel any timers.

A check box on the implementation section of this event allows us to flag it as terminating the entire
process instance or just the process part in which the terminate end event is found. This comes into
play when we think about linked or sub-processes.

Error Intermediate Event
An Error Intermediate Event may be attached to an activity. Control is passed to this event handler
when an exception is caught within the implementation of that activity. In a typical diagram it may
look as follows:

Page 186

The exception occurrence details are available within the variable called
tw.system.step.error. Note that this variable only has a value within the activity that
populates it. This means that downstream from the Exception handler, it will have no value. The
details of the exception should be copied out of the Intermediate Exception Event to a local variable
of type XMLElement in a Post-Assignment expression if they are to be subsequently used.

The exception details can then be retrieved from the XML element variable.

In general, the format of the XML returned is as follows:

<error type="..." description="...">
<cause type="..." description="..." />
<localizedMessage type="..." description="...">text</localizedMessage>
<message type="..." description="...">text</message>
<messageKey type="..." description="..." />
<stackTrace type="..." description="...">

<element type="..." description="...">text</element>
…

</stackTrace>
<toString>text</toString>
<stackTrace>text</stackTrace>

</error>

The Implementation section of this activity has additional properties.

Page 187

See also:
• DeveloperWorks - WebSphere Lombardi exception handling and logging - 2011-05-25

Error End Event
If a process detects that an error condition has occurred, it can terminate the remaining and current
steps of the process and throw an Exception. This exception can be caught by higher level
exception handlers or passed on to the user.

To add this item, drag an End Event activity from the palette and change the implementation type.
The resulting icon in the canvas looks as follows:

It has properties that look like:

Here an error code and error data can be supplied that are passed onwards with the exception
details.

Gateways, Conditionals and Joins
Gateways are decision points in the BPD. When reached, an expression is evaluated and based on
the outcome of that expression, control flows in different paths. In IBPM, the JavaScript language
is used to evaluate the decision's outcome.

The simplest gateway is called the Exclusive Gateway. The outcome of the expression is a boolean
(true or false) outcome. The output of the decision is always that a single path is taken. On the

Page 188

http://www.ibm.com/developerworks/websphere/library/techarticles/1105_ragava/1105_ragava.html

diagram, it looks as follows:

In an actual BPD usage situation, it may look like:

The inclusion of the decision gateway in this fashion is called an explicit decision gateway because
the decision icon is explicitly included in the diagram. An alternative construct called the implicit
decision gateway looks as follows:

Here, the decision links come straight from the preceding activity. Although semantically
equivalent and hence the visual style is all that separates them, the explicit decision gateway is
much more commonly seen than the implicit style.

The second type of gateway is the Parallel Gateway. It does not have an expression associated with
it. When reached, all the paths associated are followed in parallel. Each followed path is termed a
branch.

To join the paths again, the same primitive can be used as a join

Page 189

The third type of gateway is called the Inclusive Gateway. Like the simple decision, there are
expressions involved but in this case, control can flow from this primitive in one or more directions
assuming multiple conditions evaluate to true.

For an Inclusive Gateway and Simple Decision, one path is defined as the default and is taken if
none of the expressions associated with the other paths evaluates to true. The default path is
visually marked as the default by having a “bar” through it.

When a link is made from a decision type gateway, it is a good practice to give the link a name and
make the name associated with the link visible.

Here we see a decision with no visible label on the link connection:

By selecting the link between the decision and the next component, in the properties view, a tab
called Line is shown. Now we can give it a name (“Yes” in this case) and check the box that the
name should be visible.

Page 190

The result is that the name is now shown on the line:

This makes the overall diagram much more readable as now one can tell just by looking at a
decision box in a diagram the logic associated with a decision outcome.

For gateways that have expressions associated with them, the expression can be entered in the
Implementation section in the Properties view:

The expressions are supplied as JavaScript expressions. When expressions are defined, there is
always one item that is defined as the default line. This link will be followed if none of the
expressions evaluate to true. The order of the expressions is important. For an Exclusive Gateway,
only one path is followed. If multiple expressions could evaluate to true, the first expression that is
true is the one followed. This means that the order of evaluation has a bearing on the outcome of
the logic flow. The expressions can be re-ordered up or down using the arrows to the right of the
expressions. The default line is always the last in the list.

The Joins in a process diagram also need some explanation. If we look at the BPD palette we see
three possible different types of joins so let us look at how they differ and how they might be used.

The first one we will look at is the exclusive join.

In this case, if either A or B complete, then C will start. There is no synchronization. If one thinks
about this, there is a new question to be asked. Obviously, one of A or B will complete first and C
will be started … but what happens when the other of A or B then completes? The answer is that a
second instance of C will start. From a token perspective, the token from A will pass to C and also
the token from B will also to pass to C.

The next join we look at looks like this. This is a synchronizing join. In this instance both A and B
must complete before C is allowed to start.

Page 191

From a token perspective, the tokens from A and B are merged at the join to form a single token
which is propagated onwards. With this join, all inputs must be satisfied before C can progress.

Still looking at the same join, give some thought to this pattern:

Notice that only one of A or B will execute as the condition gateway is an either/or. The join
expects all inputs to be satisfied before continuing onwards towards C. Since only one of A or B
will execute, this is an invalid diagram as the join will never be satisfied.

This brings us to the last type of join.

This join has somewhat "magical" properties. Again, it is a synchronizing join and will wait for all
possible inputs to arrive before it continues but the magic here is my use of the word "possible"
inputs. In this diagram, it will know that a token will arrive only from one of A or B and when one
arrives, it will pass on to "C". However, if there were other diagram structures where other tokens
could arrive, it will wait for those. Think about this join as being able to do work to see the bigger
picture and know what possible tokens could arrive and for the ones that will come in the future,
will wait but if there are no further tokens that will arrive, it will allow control to pass onwards.

There is one final gateway type that is called the Event Gateway. Strictly speaking, this should
really be considered an intermediate message event but it is grouped in the gateway section in the

Page 192

PD tooling.

The event gateway waits for a message to arrive but, if a message has not been delivered within a
time period, the gateway times out and follows the path associated with the timer. This allows us to
wait for a message and, if none has arrived, we can timeout.

In addition to using the expression mechanism described above, one can also use the Decision
selection:

In the Decision section, a Decision Service can be mapped to be called. It can be passed any
mandatory parameters needed for its execution. This decision service is invoked when the gateway
is reached. The resulting output parameters from this decision are available in the variable name-
space that starts "tw.decision.*". These values can then be used in the expressions to
determine which path the process should follow.

Page 193

Modeling sub-processes
Within a BPD, we can create a sub-process. A sub-process is simply a grouping together of a set of
activities into an aggregate area. For example, consider the following process diagram:

Here we see us take an order, package the order (getting more stock if we are out) and finally
shipping the order. What we need to pay attention to is the center part of our diagram. The details
of ordering stock (if needed) is perhaps not necessary to understanding the overall flow of our
process. Instead, we might want the diagram to look as follows:

Notice the marker on the Build Order step. This indicates that this is a sub-process. If we drill
down into this step, we find:

What we have done is nested the steps for the Build Order activity as a grouped/hidden
sequence of steps. This sub-process shares the same variables as the parent. In addition, the names
of the steps defined in the sub-process must be distinct from those of the parent. It is as though the
steps were placed "in-line" in the parent process and have simply been hidden for readability. An
important aspect to note is that there is no re-usability of these sub-process steps. Their hiding in a
sub-process is for readability only.

Experimentation has shown that if a Terminate Event is met within a sub-process then the sub-
process is terminated and control is returned to the step following the sub-process definition.

See also:
• Terminate Event

Page 194

Modeling Linked Processes
An alternative style of creating sub-processes is the notion of the Linked Process. In this story, a
separate BPD is created that contains re-usable BPD activities. Input and Output variables are
defined which describe the expected inputs and outputs from the linked process. In the calling
process, a Linked Process activity is defined and a reference added to the target BPD that should be
invoked when the parent reaches it.

Again we can see the marker that indicates that it contains additional steps. Notice the heavy border
around the activity which marks it as distinct from a sub-process.

A step in the process can dynamically choose which linked-process to invoke without explicitly
having to define the name of the BPD to be called. To achieve this, create a variable of type
String and populate its value with the name of the linked-process to invoke. In the Advanced
section of the Implementation area, select that variable as the source of the name of the process. At
run-time, the variable will be consulted and a dynamic call to the process with that name will be
made.

If parameters are to be passed to a dynamically called process then each process that may be
potentially selected to be called must have the same set of parameters. Think of this as the
dynamically invoked process having a template.

The BPD that is named as the process to be started must have a Start Event contained within it
and this will be the starting point for the new sub-process.

When a parent BPD invokes a child BPD any variables passed in as parameters are passed by
reference. What this means is that if a child process changes the values of these passed in variables
then the changes will also occur in the parent process. Care must be taken here to watch out for
unexpected side effects.

The BPD Process ID of the parent is the same Process ID used for the child.

Modeling Event Sub-processes
For certain types of events, we can create a "sub-process" which will be invoked if such an event is
detected but is not otherwise handled elsewhere. For example, if we have a set of steps that we
wish to be executed whenever an exception is thrown we don't want to have to wire this code to
every activity in our process that may throw an exception. Instead, we create an Exception Event
Sub-process that will be invoked when any uncaught exception is thrown.

For example, looking at the following BPD fragment, we see an activity called "Do Something" that
presumably does something. Under normal circumstances, "Do Something" will end and that will
indicate the end of the process as a whole. But, what if "Do Something" throws an exception? That
is where the event sub-process that we called "Exception Handler" comes into play. It contains a
set of activities that will be executed whenever an exception event is thrown.

Page 195

If we double click to expand the Exception Handler, we will see that it itself contains steps:

In this case, it is simply a Script fragment that logs to the console. So, if the parent activity called
"Do Something" throws an exception, control will be given to the steps contained within the
"Exception Handler" which will log data.

Note that although Process Designer allows us to create multiple Sub-process handlers for the same
type of event, it is an error to do so. It isn't clear which of the two will be executed.

Because the Sub-process event handler doesn't have any inputs or outputs, there is no follow-on
work from this step.

To gain access to the exception details in an Exception Sub-Process handler, a variable of type
XMLElement must be created and assigned from the tw.system.step.error variable in the
Post Assignment of the Start node in the diagram:

Page 196

The Event Sub-process provides handling for event types other than exceptions. Message and
Timer events can also be modeled in a similar fashion.

For Event Sub-processes which have starts defined for Message, we have the opportunity to supply
a correlation id value to ensure that the correct instance of the process is woken by a corresponding
event.

Take extra special care when defining an Event Sub-process which is triggered by the arrival of a
message. The parameters called "Interrupt Parent Process?" and "Repeatable"
come into play. If "Interrupt Parent Process" is checked, the the arrival of the message
causes the container of the Sub-process to be terminated. If the "Repeatable" option is not
checked, then messages after the first one will be ignored.

See also

• Message Start Event

• DeveloperWorks - Designing event-driven business processes in IBM Business Process Manager - 2012-06-27

Script Activities
An activity can have an implementation type of Script.

Page 197

http://www.ibm.com/developerworks/bpm/library/techarticles/1206_mcelroy/1206_mcelroy.html

Script allows the programmer to include JavaScript code in-line within the BPD process. The
JavaScript can utilize the IBPM supplied JavaScript classes. Although this option is exposed to be
used it is unlikely to be a good long term strategy. Code entered here is not re-usable by other
activities or services. A better idea would be to build a General Service which includes a Server
Script element and invoke the General Service.

External Implementation
When an activity in a BPD is reached, it is associated with and implemented by one of the
implementation Service types associated with the IBPM product. These include the common
General Service, Integration Service and Human Service types. IBPM provides another type of
implementation that is called an "External Implementation". This can be subtle to understand so
we will take it slowly. Also note that in previous releases, the External Implementation used to be
called an External Activity.

The overall goal of the concept of the External Implementation is that some application or code
outside of the IBPM environment is going to perform some work on behalf of the overall execution
of the process. This is not an uncommon situation and IBPM provides a variety of ways in which
external applications can be called to perform work and return their results. This includes Web
Services, REST and other Integration mechanisms. The External Implementation concept though is
something different. It is much closer to the concept of a Human Service than it is to an Integration
Service.

When an External Implementation is reached in the BPD, a new IBPM Task is created and the BPD
process suspends itself until the task completes. Unlike a Human Service task, there are no sets of
Coaches or other UI components provided by IBPM associated with this Task. However, the Task
still exists and can be queried by the REST API or Web API. These APIs can be used by an
arbitrary external application to:

• Query for the existence of External Implementation tasks

• Obtain the parameters passed as input to an External Implementation

• Set the parameters to be returned from an External Implementation

• Utilize custom properties set on the External Implementation implementation

• Complete the External Implementation associated task

If we think about this for a while, we see that a BPD activity calling an external application through
an Integration Service is an explicit invocation of that application while an External Implementation
is much more focused on the External Implementation associated application polling and working
with the data.

To use external implementations, this capability must first be enabled in IBPM PD.

An External Implementation can be created from the Implementation Category:

Page 198

A dialog is presented that allows us to enter the name of the activity to be created:

Once done, the properties of the External Implementation can be entered:

Page 199

To use an External Implementation in a BPD, create an activity and change its implementation type
to be User Task. Next, the identity of the external implementation previously defined can be used.

Completing an External Implementation – REST API

When we obtain the data for a TaskInstance object of a task, we can get a property from that
object called the ExternalActivityID. If that value is null, then the task does not represent
an external activity. However, if it is not null, then its value represents an External Activity
identifier. A REST request called

GET /rest/bpm/wle/v1/externalActivity/{externalActivityID}/model[?
parts={string}]

can be used to return the model of the external activity. This model describes the possible input and
output data types for this activity. Here is an example of what is returned:

{
"status":"200",

 "data":
 {
 "name":"EA1",
 "customProperties":{},
 "inputs":
 {
 "in1":
 {
 "isList":false,

Page 200

 "type":"BO1"
 }
 },
 "outputs":
 {
 "out1":
 {
 "isList":false,
 "type":"BO1"
 }
 },
 "validations":
 {
 "BO1":
 {
 "properties":
 {
 "f1":
 {
 "isList":false,
 "type":"String"
 },
 "f2":
 {
 "isList":false,
 "type":"String"
 },
 "f3":
 {

 "isList":false,
 "type":"String"
 }
 },

 "type":"object"
 }
 },
 "ID":"60.0b902a52-8df2-44ed-85e2-04bbd980b01d"
 }
}

Let us look at the inputs and outputs structures to begin with. These correspond to a list of
variables where each variable has a "type" attribute. The type attribute matches an entry in the
"validations" section.

When it comes time to obtain the input data for the External Activity, that data can be found in the
Task Instance details object. To return data as output to an External Activity, use the REST Task
Finish method (see: Finishing a Task).

When working with an External Activity, it is a good idea to build a notepad document that looks as
follows:

EA1

Inputs:
order

customerName String
orderType String
amount Decimal

Outputs:

Page 201

approval
approved Boolean
comments String

For a task input:
{

data:
{

data:
{

variables:
{

order:
{

customerName:
orderType:
amount:

}
}

}
}

}

For task completion:
{

approval:
{

approved:
comments:

}
}

This document starts with the name of the External Activity, notes its inputs and outputs and then
shows the JSON for a GET request of a task. Finally it shows the response JSON to be passed
when the task is completed. Building this notepad document and keeping it handy while designing
and coding can save much time and effort.

Completing an External Implementation – Web Service API

One of the most common use cases for an External Activity will be completing it. To understand
this part of the story, imagine that a BPD has reached a BPD activity that is defined as an External
Activity. This will create an instance of a Task. Assume that by some means, an external
application knows the identity (ID) of this task. The external application now wishes to complete
the task. This will involve executing a Web API call called completeTask(). The input to this
operation are two parameters:

• The identity of the task to be completed (a variable of type long)

• The output variables to be associated with its completion (an array of Variable)

Since in this story, we are already assuming that we know the identity of the task, the missing
component is knowledge about what the output variables should be.

When we query and retrieve the Task object for a task, we find it has an attribute called
attachedExternalActivity of type ExternalActivityAttachment.

(Note: It is the authors belief that the concept of two names here is confusing. He believes that

Page 202

"attached external activity" is the correct name as the notion is that of external activity being
attached (or associated) with a Task.)

This structure looks as follows:

The key to understanding this is that there is an array of Variable objects called data. Each
variable consists of a name and a value. If we next look at the input parameters to the Task, we
see that those can be found at externalActivity.inputParameters which is an array of
Parameter objects. Each parameter consists of a name and type. And here is the
tricky/interesting part. For each parameter which has name "X", there is a variable which also has
name "X". Thus for each input parameter we can now find its name, type and value. The same is
also true for output parameters.

Getting mathematical for a moment if we think of the set of names of input parameters and the set
of names of output parameters … the union of these two sets will be the set of names of variables.

For parameters of "simple" types, these are self explanatory consisting of the usual suspects.
However, if the parameters are complex types, more discussion is needed.

The data type is defined as a QName which is a qualified name consisting of the namespace of the
data type and the name of the data type itself. For example:

{http://www.kolban.com}MyDataType

In Java, the value in the Variables of such a field is a "ComplexValue". This Object is a wrapper
for DOM/XML data. It has a property in it called _any which can be retrieved with get_any()
and set with set_any(). The data type of this property is a W3 DOM Element.

Here are some useful tips with working with one of these:

To convert to an XML String (in Java), use the following:

ComplexValue complexValue = (ComplexValue)value;
Element e = (Element)complexValue.getAny();
DOMImplementation domImplementation = e.getOwnerDocument().getImplementation();
DOMImplementationLS domImplementationLS =
(DOMImplementationLS)domImplementation.getFeature("LS", "3.0");
LSSerializer lsSerializer = domImplementationLS.createLSSerializer();

Page 203

System.out.println(lsSerializer.writeToString(e));

(Note: The DOM "LS" functions are "Load and Save" and are documented at W3 here:

http://www.w3.org/TR/DOM-Level-3-LS/load-save.html

)

To create a new output variable is a little trickier. Remember that a Variable consists of two fields,
the name and the value. The value field is an Object. If the output type is a complex type then we
need to create a ComplexValue object instance and set the Variable's value field to be the
ComplexValue. We also need to set the data into the ComplexValue. Remember that this has a
set_any() method which expects a W3 DOM Element.

Let us imagine that we have a data type that looks as follows:

Notice that we have expanded the Advanced Properties so that we can see them in more detail. By
clicking on the View XML Schema button we can see the XML Schema for this data type. Now we
have all the pieces we need. An example of a good value for BO1 encoded as XML would be:

<?xml version="1.0" encoding="UTF-16"?>
<ns4:BO1 xmlns:ns4="http://WLEtoSCA">
 <ns4:f1>f1Value</ns4:f1>
 <ns4:f2>f2Value</ns4:f2>
 <ns4:f3>f3Value</ns4:f3>
</ns4:BO1>

When we set the ComplexValue's any field, we need to set this to be a W3 DOM Element that

Page 204

http://www.w3.org/TR/DOM-Level-3-LS/load-save.html

represents this piece of XML.

Notes:

• The author has not tested this scenario with code, so this is pure theory

• There may be an IBPM utility function supplied called
ClientUtilities.toComplexValue() which may be of assistance in building this
out.

Application Loops
Sometimes it is desirable for an activity to be executed a number of times in a loop. In the
General properties of an Activity definition, there is a Loop Type indicator in the Behavior
section of the panel:

The choices available are:

• None – No looping is to be performed

• Simple Loop – Looping is to be performed one item at a time

• Multi Instance Loop – Looping is to be performed in parallel

The default is None which simply means that there will be no looping. There is nothing further to
say on that topic.

See also:
• developerWorks - Common business process modeling situations in WebSphere Lombardi Edition V7.2, Part 3: Executing an activity

multiple times in parallel in a business process - 2011-08-03

Simple Looping

With simple looping, the activity is executed a number of times in succession. The number of times
the activity is executed is based on the value of the Loop Maximum field which may be an
expression or variable resulting in an Integer value. The optional Loop Condition is a boolean
expression that is evaluated prior to the next occurrence of the loop. If the condition evaluates to
false, the looping terminates early.

Page 205

http://www.ibm.com/developerworks/websphere/library/techarticles/1108_olivieri/1108_olivieri.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1108_olivieri/1108_olivieri.html

When a simple loop has been added to an activity, the icon representing the activity is updated at
the bottom left to show that it contains a simple loop:

To pass data into the implementation of the activity, the local variable called
tw.system.step.counter contains the current loop index which can be used (if needed) to
index into a list. For example, in the Data Mapping section of the properties for the activity, we
could code:

to access the current index of a variable array.

Multi-Instance Looping

Multi-instance looping allows for the activities in the loop to execute in parallel with each other.
Another way of saying this is that the activities will execute concurrently.

When a Multi Instance loop has been added to an activity, it has an icon that indicates this in its
lower left:

The properties of a Multi Instance Loop are shown as follows:

Page 206

The Start Quantity field defines an expression of how many iterations to execute. The use of
this phrase has caused puzzlement to some users. When we think "Start Quantity" we are
sometimes drawn to the notion of "How many things do we start with?". What is really meant here
is "What is the count (quantity) of things to start in total".

Each iteration of the loop can find its own iteration index through the variable called:

tw.system.step.counter

The ordering mode can be Run in Parallel or Run Sequential. When Run in
Parallel is selected, the activities execute concurrently. When Run Sequential, the
activities execute one after the other and the loop becomes a simple loop.

When Run in Parallel is selected, the Flow Condition option becomes available. This
determines when the activity as a whole is considered completed. The options are:
• Wait for All to finish (All)

• Conditional Wait (Complex)

These options are shown here:

The Wait for All to finish means that all the activities must complete before the activity
as a whole is considered complete.

The Conditional Wait requires an expression to be supplied. When an activity completes, the
expression is evaluated and the activity as a whole can be determined to have completed or not
based on the value of the expression. If the expression is "true" then we end. If the expression
evaluates to false, then the loop continues. The way that I like to think of the expression is as the
answer to the question "Should we end the loop?".

If all the possible instances have completed, the loop as a whole will also complete irrespective of
the outcome of the last condition.

If a completion occurs as a result of the conditional wait expression, the Cancel Remaining
Instances check box can be used to terminate any unfinished activities.

When working with looping constructs, the variable called tw.system.step.counter
contains the current loop indicator.

Page 207

The implementation types of a looping activity are as for any activity but not all of them make sense
in this context. For example, the Sub-process is no more than a diagramming construct to replace a
set of one or more BPD activities with a single BPD activity. The Sub-process executes in the BPD
data context/scope and as such, has no differentiated variables associated with it. This means that
each instance of a Subprocess started in parallel would have no distinction from others.

Looping through a map data type

We can use a Multi Instance loop to iterate through a Map object (see: Data Type – Map).
Assuming that the variable tw.local.myMap is a Map … set the Start Quantity field to be
tw.local.myMap.size(). In the Data Mapping section, we pass in the input to each of the
service instances or sub-process instances. To supply data to those, use:

tw.local.myMap.valueArray()[tw.system.step.counter]

This line retrieves all of the values of the map and, for each value, starts a service/sub-process to
handle the processing of the data item.

BPD Diagram Notes
Notes are documentation items added to the BPD diagram. They appear as yellow rectangles into
which text can be entered. They have no operational semantics and do not affect the execution of
the process.

Notes can be positioned anywhere on the diagram canvas using the mouse to drag and drop them.
They can be re-sized to any desired size. Unfortunately, there are no options to change the
background color nor to have the text contained within wrap to the note size.

One interesting way that notes have been seen to have been used is to place them over existing
activities. Notes are always shown beneath activities so a note will never obscure an activity or
sequence line. If the note is made larger than the activity, the effect can useful and pleasing:

Don't forget that every activity has a Documentation section in which more details of that activity
can be recorded. The difference between notes and documentation settings is that with notes, they
are always visible while with documentation settings, the user has to explicitly examine the details

Page 208

of an activity to see more information.

Due dates for process and activities
Each process instance has the concept of a due date. This is the date and time when the process
instance is desired to be finished. By having this forward date from when the process instance was
created, we now know how close we are to risk of it not meeting some desired target.

If the BPD Overview tab, we can set the "Due in" settings as shown next:

Similarly, we also have a corresponding set of details for each User Task in the the process:

The default values for the work schedules are defined in the 99Local configuration file. In 8.5
they are:
<default-work-schedule>

<time-schedule>24X7</time-schedule>
<time-zone>CST</time-zone>
<holiday-schedule>empty holiday</holiday-schedule>

</default-work-schedule>

See also:

• Data Type – TWTimeSchedule

Time and Holiday Schedules

Consider a task being assigned to a user. Assume we say that it takes three hours of work to
complete that task. If its 10:00am just now, then we can say that the time we expect the task to be
completed will be 1:00pm which is three hours later. This means that the due date will be 1:00pm.

But what if the same task is assigned at 4:00pm? Using simple arithmetic, we might say that the

Page 209

task is due to be complete at 7:00pm. However this does not take into account the business hours of
the company. If the office hours are 8:00am to 5:00pm then it would be wrong to ask the staff to
complete the task by 7:00pm. To solve this puzzle, we look at an additional BPM concept called
"Time Schedule". The Time Schedule defines the working hours of a business. When the Time
Schedule is applied to the due date calculation of a task, that due date is no longer a simple
arithmetic calculation.

For example, if the Time Schedule declares that our working hours are 8:00am to 5:00pm and a
three hour task is started at 4:00pm, we would calculate a due date of 10:00am the next day.

Not only does the Time Schedule contain working hours, but it also describes the working days.
For example, a task started at 4:00pm on a Friday may not be due until 10:00am on the following
Monday.

See also:

• Data Type – TWTimeSchedule

Generating Reports
We can generate reports (documentation) based on the content of our Process Applications. From
within Process Center we can select a Process Application and navigate to its Snapshots settings.
Clicking on the name of the Snapshot takes us to the reports section:

From there we get to see a summary of the major sections of our Process Application:

Page 210

For each of these we can drill down and see more details and, in certain cases, generate reports for
printing or transforming into PDFs for recording.

BPD Settings
A BPD has a set of attributes that govern the BPD as a whole. These attributes can be found in the
Overview tab of the BPD editor in IBPM PD.

Exposing the Process

The details of who can start an instance of the process and who has authority to examine the details

Page 211

of an instance is defined in the Exposing section. There are three types of exposable information.
Those are:

• Expose to start – Who can start a new instance of a process from the Process Portal web
pages

• Expose Business Data – Who can see the data associated with a process in an ad-hoc
report

• Expose Performance Metrics – Who can see the performance data collected for a
process

See also:
• Error: Reference source not found

Process Instance Name

Each instance of the process has an optional name. The field called "Instance name" supplies
a Java Script expression that is used to build the identity of the process. The default value is the
name of the process with the numeric instance ID appended. For example:

"MyProcess:" + tw.system.process.instanceId

Take care when renaming a BPD. Experience has found that the default identity expression that is
created when a BPD is created for the first time is not changed when the BPD is renamed. What
this means is that if the BPD have the original name "XYZ", then the identity of a process instance
may be "XYZ:1234". But if the BPD is renamed to "ABC" and the instance name expression not
changed, an instance of "ABC" may be given an instance name that continues to refer to "XYZ".

When ever the identity of the process is obtained, the expression defined here is re-evaluated. What
this means is that the name of the process can be dynamic and the value of the variables in the
process at the time that the expression is calculated will be used. This can be used to good effect in
conjunction with the IBM Process Portal where the names of the process instances surface.

BPD and BPMN
Originally called the Business Process Modeling Notation, the latest BPMN 2.0 specification has
renamed itself to the Business Process Model and Notation. The purpose of this section is to
contrast what is contained in the BPMN specification against what is found in the BPD diagrams of
the IBPM product. We will not describe BPMN in depth as that would be the subject of its own
book (the spec itself is 550 pages) and the reader is referred to one of the many references including
the BPMN specification itself.

See also:
• BPMN Specification page

Concept of a Token

As a process runs from its Start to its End, the process executes a sequence of activities. The
sequence of executed activities is governed by the Sequence Flow (lines) between the activities.
Assuming that there are no parallel branches in the process, at any one time, a single Activity is
being performed. To aid in understanding this idea and to be able to discuss in more depth, we
introduce the logical concept known as the token. A token is an imaginary item and is not formally

Page 212

http://www.bpmn.org/

part of either the BPMN specification or the IBPM product. A token can be considered to be at
exactly one activity in a process and the activity which has the token is available to run or is
actually running. When an Activity completes, the token can be thought of as moving along an
outgoing Sequence Flow to the next Activity. To help your understanding, you can think of the
token as moving instantly from one activity to the next … another way of saying this is that it
spend no time traversing the Sequence Flow itself.

A dictionary definition of a token is very appropriate:

1. something serving to represent or indicate some fact, event, feeling, etc.; sign: Black is a
token of mourning.

See also:
• Token Management

• Moving a token within a process using REST

Deviations from BPMN

IBPM supports much of the BPMN story but there are some deviations in the implementation of the
IBM product that are worthy of note.

Parallel Starts

Here we have a BPMN fragment that shows that when a process starts, in BPMN it will execute two
activities in parallel.

If we try and code this in IBPM, it won't work. Only one path or the other will be taken but not
both. To achieve the parallelism we desire, we need to add an explicit Parallel Gateway.

Other than stylistic differences, the two are semantically identical.

Looping

BPMN provides the concept of a loop which looks like an activity. If the activity is expanded, we
can see the contained activities which are to be executed repeatedly. One common way of using
looping is to repeat an activity until something has been "satisfied". Consider a loop that
periodically checks that an oven has reached a specific temperature. If it has, we end the loop if

Page 213

not, we check again some time later. This is a loop concept that in Java might have been called a
while-do (or do-while) loop. A predicate (boolean valued expression) determines when the loop is
to terminate.

Another (but distinct) looping construct in BPMN is the for-each loop. This is a loop which is
executed some finite number of times with the activities contained within executed sequentially or
in parallel. This looping construct has a distinct appearance from the other loop.

IBPM provides a looping construct that is based on the for-each looping style. However, the visual
representation of the IBPM activity is that of the while-do loop style. IBPM does not provide a
separate while-do activity style.

XPDL Support

XPDL is an Open Standard describing the exchange of BPMN diagrams as XML documents.
IBPM does not support either import or export of XPDL format documents.

Boundary exposes Start Events

A process diagram can have more than one Start Event defined within it if the Start Events are
placed on the boundary of the diagram. This allows a single Process to be started at multiple
potential start places by its caller.

IBPM does not support this pattern.

Nested terminates

When a parent process calls a child process and the child process executes a Terminate Event, the
semantics say that the child process should immediately terminate and the parent process then
continue to its next steps. Unfortunately in IBPM, we find that if a child executes a Terminate
Event, both the child and its parent are terminated.

Other omitted BPMN items

Other omitted items from the BPMN specification include:

• No Signal Start Event

• No Conditional Start Event

• No "None" Intermediate Event

• No throw type Message Intermediate Event

• No Signal Intermediate Event (throw or catch)

• No Cancel Intermediate Event

• No Compensation Intermediate Event (throw or catch)

• No Conditional Intermediate Event

• No Link Intermediate Event (throw or catch)

• No Multiple Intermediate Event (throw or catch)

• No Multiple Start Event – Although omitted, the same effect can be achieved by simply having

Page 214

http://www.xpdl.org/

multiple other start events of different types in the process.

• BPMN permits process models to omit start and end event symbols. This is not permitted
within IBPM.

BPD Flow Control
From time to time we may want the path of the process to flow in different directions based on a
variety of factors. This section describes some illustrations of this and possible ways to achieve the
effect.

Rework a set of steps

Consider a sequence of steps as follows:

While working on a step, a user can say that something is "wrong" that will result in the process as
a whole being restarted after some data changes. For example, in "Step B", a user could see
something that invalidates the whole process. The user should then be able to press a button that
would cause a task to be created that allows someone to modify the process instance data and then
we begin again from "Step A".

One solution to this puzzle would look as follows:

Here, after a Step completes, we now realize that it could complete because a rework was requested.
After each step we then check if a rework was indeed requested and if it was, we then explicitly go
and perform that rework. This is a good solution. It is very visible on the diagram.

Another solution would be to use the concept of exceptions. Now, when a rework is requested, the
Step itself throws an exception which might be called "Rework". The diagram may now look like:

Page 215

Here we are saying that we have an "expected" path and a rework request, although very valid, we
call an exception. Within the logic of the Human Service that implements the step, we would now
raise the exception:

A third choice would be the use of the sub-process. We would have a top-level process that looks
as follows:

The Perform Steps activity is a sub-process that contains:

Each step can throw a Rework exception which is then caught by the container process.

All three of the techniques describes here are equally valid. Which one you choose is as much a

Page 216

matter of taste. The results should be identical. The choice used would be to the taste of the
designer as to how best they comprehend the resulting diagrams so that they can be read and
understood by others.

Page 217

Services
The activities contained in the BPD describe the overall flow of the process and the diagram as a
whole provides a readable description of the process. Although the BPD provides a great deal of
information, it doesn't capture how the process is implemented. Consider the simple process of
making a cup of tea in the morning. A simple process for this might look as follows:

Reading this, we can quickly see the steps and their sequence. However, this diagram says nothing
about how these steps are implemented. Since IBPM is not simply a diagramming tool but is also a
powerful execution engine for running instances of such processes, we must also describe how each
of the activities are implemented.

IBPM utilizes the concept of a service to perform each step. A service provides a reusable
implementation of a piece of function. How the server achieves its task is hidden from the caller.
Mapping this idea to BPDs, each Activity in the BPD diagram will be mapped to a service and
when that step in the process is reached, the associated service will be invoked.

A service is a piece of implemented function of one of the following IBPM types:

• Human Service

• Ajax Service (used only by Human Services)

• Integration Service

• General System Service

• Rules Service

The Service is usually called from the Activity step in a BPD. The identity of the Service to be
invoked is defined in the Implementation tab:

Page 218

Note that the Implementation type is defined as a System Task. From there, the selection of the
Service to be called can be selected.

The Task Header area controls what is shown in the Process Portal for this step and what data is
maintained after the activity completes.

The Subject entry contains a textual description of this step in the process. This is shown in the
Process Portal. It is used to provide the end user an indication or summary of what is expected. The
Subject line can contain JavaScript and hence access the variables in the process to supply more
details of what is needed.

For example, if a step in the process has the following Subject line:

When it is shown in the Process Portal, it could look as follows:

Page 219

If the Clean Slate check box is selected then at the conclusion of the activity, state data about
the activity is discarded.

Each of the service types has a diagram in which the artifacts which implement that service can be
placed and visually wired together. The service editors have a feature within them to "tidy" their
appearance by lining up activities to smooth out the sequence connection lines. This option can be
found when right-clicking on the diagram canvas with nothing else selected. From the resulting
context menu, the Tidy Layout option may be selected.

After having selected that entry, the diagram will be reworked to tidy it. An example after a tidy
looks as follows:

Caching the results of a service
When a service is executed, it is passed in a set of parameters and returns a set of results. If the
service is executed over and over again with the same input parameters, it is likely that the result
will be the same even though the work of executing the logic of the service will still be performed.
As an optimization and as a way to improve performance, we have the ability to flag that a service
is eligible to cache its results. This means that for a given service with a given set of inputs, the
service will be executed but the results stored. If a subsequent request for the same service with the
same set of inputs should arrive, the previously calculated results will be returned without having to
execute the logic of the service itself.

This feature can be turned on or off on a per service basis. In the Overview tab of the service
definition, we find an entry called "Service Result Cache":

By default, the caching of the service is disabled. If we enable it by clicking on the check box, the
results of that service will be cached. We also have the ability to specify how long cached results
should be maintained before we consider them "stale". We can supply an interval value after which
a previously returned entry will be considered out of date and the real service will again be
executed.

Page 220

The implementation of the caching mechanism in IBM BPM has a default cache size of 4096
entries. This can be changed through the <service-result-cache-size> property in the configuration
files.

Notes:
1. It is not yet known if 4096 is the size of all service cache entries or a single service cache

size
2. It is not yet known what happens when we try and cache more than 4096 entries. Will the

latest entry simply not be cached or will another cache entry be purged?

Human Service
The Human Service is arguably the most important service type in IBPM. A Human Service is a
component that, when executed, creates a task for a human being to work upon. The BPD process
is suspended until the conclusion of that task. The Human Service type provides the inclusion of
Coach components which are the descriptions of screen data to be presented to users and data to be
retrieved from users.

A new Human Service is created from the User Interface category.

It is extremely common to associate the Human Service definition with a User Task on a BPD.

See also:
• User Task

Exposing the Human Service for starting

In the Overview panel of the Human Service definition, the Exposing section allows us to select
how the service should be exposed for starting in a manner other than being explicitly called by a
BPD.

The choices available to us are:

• Not Exposed

With this option, the Human Service is not exposed any further. It can only be invoked by a direct
Human Service call from a BPD activity. This is the default setting.

• Administration Service

Page 221

This option defines the Human Service as appearing within the Process Admin Portal as an
administrative activity.

See also
• Customizing the Process Admin Console.

• Startable Service

This option allows a new instance of the Human Service to be started from within the Process
Admin Portal. It appears as a new entry in the New menu.

See also: Error: Reference source not found

• Dashboard

This option exposes the Human Service as an entry in the Dashboards menu found on the IBM
Process Portal:

Page 222

When the menu is pulled-down, the name of the exposed Human Service can be found here:

For Human Services selected to be exposed through the Dashboard, we have an addition option
which allows us to export a JSR-286 compliant portlet.

See also:
• Exposing a Human Service as a portlet

• URL

With this option, the Human Service is exposed as a directly invokable URL. If the URL is entered
into a browser, the user can go directly to the Human Service.

The format of the URL is:

http://<hostname>:<port>/teamworks/executeServiceByName?
processApp=<processAppAcronym>&serviceName=<serviceName>[&tw.local.variableName=
value ...]

If the user has no login session established with that browser then a prompt for a login will occur.
If the Human Service is exposed as an Administration Service, a Startable Service or a Project Page
then it is also exposed through the URL in addition to the other selected mechanism.

For each of the exposing options, a Participant Group must be selected to determine if the
requesting user is authorized to access the service. This Participant group is set in the Exposed
to: area.

Page 223

Canceling outstanding Human Tasks

Consider the notion that we have multiple Human Tasks being executed in parallel as illustrated in
the following process diagram. These tasks may consist of approvals where in order to make
progress, both tasks have to result in an approved outcome.

If a person reviewing the task work decides to reject the request then we don't want the other person
to waste time reviewing. Even if they approve their part, the process as a whole says that the work
will be rejected. What we want to achieve is a pattern where we can cancel a task before it is
completed if it is no longer warranted that the task be performed.

The way this can be achieved is to add Message Intermediate Events to the tasks that are eligible for
being canceled. Here is a new diagram that illustrates this:

The definition of the Message Intermediate Events looks as follows:

Page 224

Note the properties carefully as they are important. The first is that the attached activity (which is
the Human Service) is flagged to be closed when the event arrives. This is what ends the associated
task. Notice also that Consume Message is unchecked. We want the same event to be propagated
to all the tasks that may be waiting for a cancel. Finally notice that we are using the current process
instance identifier as the correlation value. We don't want to cancel tasks that belong to other
processes.

The Human Service that is shown is defined as follows:

In this example, the user interface shows a check box that allows the user to define if a cancel is
needed:

If cancel is checked, then the UCA is triggered which terminates the other task.

Page 225

Informing a user that their task has been canceled

Imagine a scenario where a user can be given a task and they can look at that task and then signal it
completed later. This is not uncommon. For example, imagine a task arrives that says "Go build a
green widget". This might take a few days. Having looked at the task, I now go away and start
building the widget. What then if the customer cancels the order. Presumably I don't want to
continue building the widget so now I have to be notified that I should be interrupted.

When a task is assigned to a user, either the user has looked at the task or they haven't. In our story,
we want to send an email to a user if they have looked at the task and it is then canceled. If they
haven't yet looked at it, there is nothing for them to stop doing when it is canceled and hence no
email needs to be sent.

Let us start by looking at a high level story:

In this story, we can Build a Widget and also the Manager can cancel the request. If the manager
selects to Cancel, the exception end event is reached and the sub-process is terminated. That
handles the termination, but what about informing the user? The logic of Build Widget handles
some of this for us.

When a user claims a task, a step in the solution called "Set Identity" remembers the identity of the
user who worked on the task. When the user reads the task, we assume that they hit a button called
"Complete Later". This is our indication that they have seen the task. We then set a flag that they
have viewed the task.

This however seems to leverage data that appears to be private to the service. Where is the identity
saved? Where are the flags saved? The answer to this puzzle is the use of the IBM BPM Shared
Business Object concept. Using this technology we can pass in a reference to the shared business
object into the service. This business object can then be examined in a calling process.

Page 226

For example, if we catch an exception, we can use what was previously set in the global shared
object as indicators of "where we have been" and "what we should do".

Timing out a Human Service

When a process reaches a step which is a Human Service, we are saying that we want a staff
member to perform some work. But what if that staff member takes too long or is otherwise away?
The process will simply pause or hang at this point. Instead of hanging, we may wish the process to
time-out the Human Service and perform an alternative task such as dispatch the work to someone's
manager or an alternative person.

We can achieve this through the use of a Timer Event attached to the activity of the Human Service.

See Timer Events for a discussion on the mechanics of Timer Event additions.

If a Human Task has been claimed by a user but has not yet been run, if the activity is timed-out and
the user then tried to run it, the following will be shown:

If a Human Task been claimed and run but not completed but a Timer Event has fired and closed
the attached activity, the user will not be notified that their input was discarded.

Escalating a Human Task

When a task is submitted to a person for completion, we have the opportunity for that task not to be
completed within a prescribed amount of time. Work submitted for human processing can be "lost
in the shuffle". People fall sick, take vacation, get distracted, get preempted by other work and a
myriad of other possible reasons why work is not completed on time. The ramifications of not
completing work vary. In some cases, it is unimportant, in others it can mean a poor perceived
quality of service and in the worst case can result in loss of business or penalties for non-

Page 227

compliance with some set contract or expectation. To address this potentiality, we now turn our
attention to the concept of escalation. Escalation is the detection that a task has not reached a
processing state we expected by a given time and then taking some remedial action. Ideally, we
want to notice that the work state is not where we want it to be before it is too late and we can still
do something about it to complete the work before it becomes a problem.

Once we detect that work has not reached the state we are expect it to be, we need to perform some
action to move the work onwards. From these notions, we find that escalation has two distinct
ideas. The first is the detection that an escalation needs to happen because we have not reached the
work state we want to reach. The second is we want to perform some escalation action to make
further progress. We can separate out these two concepts.

The detection of when a task needs escalated can be achieved by attaching a timer event to an
activity. The following BPD fragment illustrates a timer event attached to an activity that will
cause a handler for the escalation to be executed.

The mechanical details of using a timer event can be found here: Timer Events and won't be
repeated. For this discussion, we will simply assume that a timer will fire when a task is late or
about to be late and the original task will not be stopped.

This pretty much takes care of detecting that a task needs to be escalated, so what action should we
perform once escalation is required? There are many choices here. Some of the more common
patterns include:

• Notifying the owner of the task that it is late

• Notifying the team leader/supervisor/manager of the owning department that it is late

• Automatically re-assigning the task to another individual or team

• Changing the priority of the task

Any of these could utilize the creation of new tasks, sending emails or invoking arbitrary services
which could in turn use other technologies such as text messaging, web service calls, paging etc.

For each of these choices, we now need a mechanism that will enable to to determine which task
needs attention. When a task is created, it is created by an Activity in the BPD. There is thus an
association between the Task that is created and the Activity which caused it to be created.

In the environment of a BPD there is a system variable called

tw.system.currentProcess.tasks

This is a list of TWTask objects. Each entry in the list corresponds to a task currently associated
with the BPD. By walking this list and looking at the processActivityName attribute of the
task, we can look for tasks that were started by the Activity we are looking for. An example code
fragment that achieves this is:

var task = null;

Page 228

for (var i=0; i<tw.system.currentProcessInstance.tasks.length; i++)
{

if (tw.system.currentProcessInstance.tasks[i].processActivityName ==
activityName)

{
task = tw.system.currentProcessInstance.tasks[i];
break;

}
}

An alternative is to add a post-assignment to the Timer Event to obtain the
tw.system.step.task.id information. This will be the id of TWTask associated with the
activity that was timed out. We can't save the actual task itself, this produces a not-serialized
exception if we try to assign to "ANY". However, once we know the task's id, we can use the
tw.system.findTaskByID() method to retrieve the TWTask by its id.

We can change the priority of the task by setting the task.priority field which is writable.
Allowable values include:

• TWTask.Priorities.Lowest

• TWTask.Priorities.Low

• TWTask.Priorities.Normal

• TWTask.Priorities.High

• TWTask.Priorities.Highest

If a task needs to be escalated, we may need to know to whom the escalation should be sent. From
the Task we can get the TWUser (or TWRole) from the assignedTo property.

Notifying a user that a task is ready for work

When a Human Task is created by a process, it is ready for someone to work upon it. Typically, the
user will be informed that the work is available to them as a result of them looking in their in-box in
the Process Portal or through REST API calls. There is also the ability to have IBPM automatically
send an email to the user when a task is created. This is set in the Process Portal preferences
section.

Within a current task, the current Task ID can be retrieved from the variable
tw.system.task_id. This can be used by a service or code in the Human Service to send an
email to the target user to tell them the task upon which they should work.

Semantics of closing a browser window

Consider the following Human Service:

Imagine that it is started as a task by a process. When a user claims the task, the step called "Step
1" is executed and then the Coach described by "My Coach" is shown to the end user. What
happens if the user simply closes the browser? What becomes of the task?

By experimentation, it appears that the state of the service/task is maintained at the point where the

Page 229

Coach was reached. The task remains in existence in a claimed state. If the task is re-executed, the
Coach is again displayed without re-running "Step 1". This implies that the state of the service is
hardened and restarted when a browser window showing a Coach is closed and then re-opened.

Ajax Service
Ajax (which is an acronym for Asynchronous JavaScript and XML) is a description for the practice
of constructing web pages that have dynamic content with call-outs to external services to obtain
additional data. This technique started when the web browsers provided a function called
XMLHttpRequest which allowed the browser to make an HTTP request to obtain data while the
page was already loaded but without the page as a whole having to be refreshed.

An Ajax service is used in conjunction with Human Services and coaches. It provides the ability to
source data dynamically for the coach by running a IBPM service on the server with the data
returned from the server used within the coach.

An Ajax service is defined from the User Interface category within the Library.

When created, it is given a name.

Page 230

At this point, we must not lose sight of how this service is going to be called. It will be called when
a component on the form is selected and changed. When the change occurs, the Ajax service will
be called and data will be returned. The returned data will be used to populate the content of a
different component. If we think in terms of inputs and outputs to this service, we find that it will
have a single input which is the value of the component that triggered the invocation of this service.
The new value of that component is passed in as an input variable to the Ajax service. The
implementation in IBPM requires that the name of the input variable be fixed and be called
inputVar. You must define an input variable of type String with this name.

The data that is returned is dependent on what kind of control the response data from the Ajax

Page 231

service is associated with. For here, let us assume it is a Single Selection list. A Single Selection
list is defined by a list of NameValuePair data structures. The NameValuePair is a IBPM
predefined data structure that contains two fields. One called name and the other called value.
When a list of these structures is associated with a Single Selection list control, each element in the
list data contributes one row to the visual list control. The name field is used as the visual in the
row.

Let us examine this by example. Imagine our business is split into two regions. The East and the
West. When we wish to ship product, we ship from the East region or the West region. In each
region, we have the choice of possible shipping warehouses from which to ship. If we want to
present a Coach to select a warehouse, we might want to be smart and allow the user to first select a
region and once the region is selected, then select a warehouse. The allowable warehouse values
should be displayed based on the region selected. This is illustrated in the following diagrams.

To achieve this, we might build a Coach that looks as follows:

With the body of the Coach looking like:

Page 232

<Needs updated for IBPM>
The Shipping Location section contains two Single Select controls. The first which has the label
"Region:" contains static choices:

The second control is the more interesting one. Looking at its definition we see that it invokes an
Ajax defined service.

Notice three things:

1. It has the radio button selected for an Ajax service

2. It names the other control as the trigger that will invoke the service

3. It names an Ajax service that will be called to return the data that will be used to populate this
control.

Page 233

Now let us look at the definition of the Ajax service. As a high level diagram, it contains only one
Server Script activity:

The variables defined in the service look as follows:

Note that there is an input variable that must be called inputVar. The output variable has no
restriction on its name but result is a suggested choice. The data type of the output variable is a List
of NameValuePair data types.

Finally, there is the JavaScript logic contained in the Server Script:

tw.local.result = new tw.object.listOf.NameValuePair();
if (tw.local.inputVar == "East")
{
 tw.local.result[0] = new tw.object.NameValuePair();
 tw.local.result[0].name = "Boston";
 tw.local.result[0].value = "Boston";

 tw.local.result[1] = new tw.object.NameValuePair();
 tw.local.result[1].name = "New York";
 tw.local.result[1].value = "New York";

 tw.local.result[2] = new tw.object.NameValuePair();
 tw.local.result[2].name = "Miami";
 tw.local.result[2].value = "Miami";
}

Page 234

if (tw.local.inputVar == "West")
{
 tw.local.result[0] = new tw.object.NameValuePair();
 tw.local.result[0].name = "Seattle";
 tw.local.result[0].value = "Seattle";

 tw.local.result[1] = new tw.object.NameValuePair();
 tw.local.result[1].name = "San Francisco";
 tw.local.result[1].value = "San Francisco";

 tw.local.result[2] = new tw.object.NameValuePair();
 tw.local.result[2].name = "Phoenix";
 tw.local.result[2].value = "Phoenix";
}

This script won't be explained in detail other than to say that depending on the value of the input
data which is the value of the region selection control, one of two different lists of data are built and
returned.

Not all components support Ajax service binding, the ones that do are:

• Text Input – The Ajax service should return an array of strings

• Text Output – The Ajax service should return an array of strings

• Combo Box (Single Select – Drop Down List) – The Ajax service should return an array of
NameValuePairs

• Table – The Ajax service should return …?

In practice, the data that is returned from the Ajax service call may be dynamically sourced such as
through a DB lookup.

See also:

• Error: Reference source not found

• Video - IBM BPM 7.5 - Calling an Ajax service from a Coach - 2011-06-27

Integration Service
The integration service allows a process to invoke an external entity such as a Web Service or a
piece of Java Code. It is the integration service which provides the one of the components for
interacting with logic outside of the BPMN environment including true SOA external service.

Page 235

http://vimeo.com/25675789

See also:
• Web Service Integration

Advanced Integration Service
The Advanced Integration Service gives us the ability to define a service that is implemented by an
IBM BPM Advanced SCA Module.

See also:

• Inter-operating between a BPMN process and an SCA module

• DeveloperWorks - Linking business processes and enterprise services together using IBM Business Process Manager Advanced - 2012-09-
26

General System Service
A general system service is used when the BPD needs to work with the data in the process but does
not need to invoke either a Web Service or Java Code. The General System Service is the simplest
of the service implementation environments.

Decision Service
During the execution of a process, we may wish to have rules executed. Commonly, rules are
decision points in a process where the values of variables in the process are used to determine what
to do next. An illustrative example would be to determine the discount to apply for volume orders.

Page 236

http://www.ibm.com/developerworks/bpm/bpmjournal/1209_mcelroy/1209_mcelroy.html

We may have the following notion:

Order Value Discount

$0-$999 0.00%

$1000-$1999 5.00%

>$2000 10.00%

Looking at this table we see that the discount amount is a function of the order value and hence
there is a decision to be made on the discount based on the value of the order. This is the type of
function that is ideally suited to Decision Services.

A Decision Service is added to the Library by selecting decisions and adding a Decision Service.

When selected, a new dialog appears into which the decision service name can be entered:

Upon completion of the decision service creation, a panel is shown allowing us to specify the
details of the decision:

Page 237

Similar to other service descriptions, we now have the ability to create a service implementation
using the building blocks of service creation. For a decision service, we have three items that are
specific to this type of service. These are:

• JRules Decision Service – This decision implementation leverages an external instance of the
IBM JRules product which is a full function BRMS.

• BAL Rule – This decision implementation type uses the Business Action Language (BAL) as
found in the JRules product. No other product is required to use this capability.

• Decision Table – This decision implementation type is the same as found in previous releases
of the Lombardi product.

Business Action Language (BAL) Rule

The Business Action language (BAL) Rule mechanism allows us to define a series of if/then/else
conditions based on the current values of the variables in the process. When a BAL rule is added to
the service canvas it looks as follows:

Page 238

Switching to the Decisions tab allows us the ability to enter the details of the rule using BAL.

The structure of a business rule is generically:

• definitions (optional)

• if

• then

• else (optional)

In the definitions section we can define local variables/values that are used in the remainder of the
rules. For example:

definitions
set low_discount to 5;

The full language of BAL is described as part of the JRules product and can be found in the
InfoCenter article called Business Action Language (BAL).

Decision Table

IBPM has a concept it calls Decision Tables. To understand what this is about, consider the
following concept in a programming language:

if (expression A)
{
 some code;
} else if (expression B)
{
 some code;
} else
{
 some code;
}

What this describes is a set of expressions and associated code. When the first expression reached
evaluates to true, the associated code is executed. In summary, that is what TeamWorks rules
describe. The rules allow us to build expressions based on the values of a set of variables that are in
scope. A table is visually constructed. The columns in the table represent the variables and the

Page 239

http://publib.boulder.ibm.com/infocenter/brjrules/v7r1/index.jsp?topic=/com.ibm.websphere.ilog.jrules.doc/Content/Business_Rules/Documentation/_pubskel/JRules/ps_JRules_Global1784.html

rows represent possible values for those variables. The rows are then evaluated at runtime from top
to bottom and if the overall expression evaluates to true, the associated JavaScript code is executed.
Commonly that JavaScript code will assign a value to another variable.

When a Decision Table is added to the canvas, it looks as follows.

Pattern matching

A special pattern of "-" (just the dash character) can be used to match any pattern. It is a wild card.

Strings

"string value" Matches the exact string value

{"string value 1", "string value 2"} Matches either of the string values

!{"string value 1", "string value 2"} Matches anything except the supplied string values

Numerics

number Matches exactly the number.

numberLow..numberHigh Matches anything between numberLow and numberHigh (inclusive)

> number Matches anything greater than number

< number Matches anything less than the number

>= number Matches anything greater or equal to the number

<= number Matches anything less than or equal to the number

{number1, number2} Matches either number1 or number2

!{number1, number2} Matches anything other than number1 or number2

Page 240

Booleans

TRUE Matches the boolean true

FALSE Matches the boolean false

Integrating with WODM

In addition to the previous options, we can also integrate with an instance of WODM. The first task
is to define the location of the Rule Execution Server to the Process App. In the Process App
Settings we can define a new server of type "ILOG Rules Server" and define the hostname and port
on which it can be found:

By dragging a component called "JRules Decision Service" into the canvas area we can connect to
WODM.

See also:

• WebSphere Operational Decision Management - WODM

Service Components
Definitions of services exist as part of a Process Application. Each definition for of a service has a
name and associated "coding". The service is "associated" with a BPD activity in a BPD process
diagram. The service can either be created (from new) from the BPD activity or an existing service
can be "linked" to that activity. The definition of the service is an "implementation" part of the
solution.

Similar to a BPD, a Service has its own visual editor and palette:

Page 241

The palette is composed of the following parts some of which are only applicable to certain types of
service:

In
te

gr
at

io
n

S
er

vi
ce

H
um

an
S

er
vi

ce

R
ul

e
S

er
vi

ce

O
th

er
S

er
vi

ce
 T

yp
es

Coach ●

Heritage Coach ●

Server Script ● ● ● ●

Server Scriptlet ● ● ● ●

Modify Task ●

Postpone Task ●

Content Integration ● ●

Decision Gateway ● ● ● ●

End Event ● ● ● ●

Note ● ● ● ●

Error End Event ● ● ● ●

Invoke UCA ● ● ● ●

Error Intermediate Event ● ● ● ●

Intermediate Tacking Event ● ● ● ●

Stay On Page Event ●

Nested Service ● ● ● ●

Send Alert ● ● ● ●

Web Service Integration ●

Page 242

Java Integration ●

JRules Decision Service ●

BAL Rule ●

Decision Table ●

After dragging and dropping the elements onto the diagram, the elements can be visually wired
together with Sequence Lines in the same fashion that BPD elements are also wired together with
Sequence Lines. The remainder of this section will walk us through the different types of service
components available to be included in the implementation of a service.

See also:
• Sequence Lines

Coaches

When added to a Human Service diagram, the Coach looks as follows:

From the palette, the icon is:

The idea of a Coach is that it describes a screen layout that is to be shown to a user. The screen will
contain output data that is populated and shown to the user as well as input data that can be entered
by the user and returned to the service. Coaches are such an important area of IBPM that they have
their own section in the book found here:
• User Interfaces and User Interaction

Server Scripts

When added to a Service diagram, the Server Script step looks as follows:

On the palette, the icon representing this step looks like:

The purpose of this type of step is to allow the developer to enter a JavaScript fragment of code to
be executed at runtime within the Process Server. The properties section of the Step provides a
code entry area where the script can be coded:

Page 243

Full entry assist is available to help in building the script.

Server Scriptlet

The purpose of this element is to assign text to a variable but provides an easy entry text input area
into which the text can be entered.

When added to the canvas, the Server Scriptlet step looks as follows:

From the palette of steps, it looks like:

The implementation tab of this Step looks as follows:

Be VERY careful here … adding quotes in the text adds quotes to the content. I have been bitten
by this a number of times.

Modify Task

The Modify Task component allows us to dynamically alter a number of the attributes of the current
task within a Human Service. When added to the canvas, the Modify Task element looks as
follows:

Page 244

From the palette, it shows as:

This element can change the characteristics of a Task under logic control.

Postpone Task

The postpone element allows a task to suspend itself for later processing. What is being postponed
here is the completion of the task. The state of the service is saved for later retrieval. When
inserted into a Service Editor diagram, the element looks as follows:

From the palette area, it looks like:

When the Postpone is reached, the task is returned back to the in-box where it can be claimed again.
If we want to hide the task for a period of time, we have to perform some additional work. One
solution is to check at the conclusion of the Coach whether or not we suspended it and, if we did,
pause the re-creation of the task for a period of time.

See also:
• Vimeo: Suspending a task for a period of time

Page 245

http://vimeo.com/groups/ibmbpm/videos/30697247

Decision Gateway

The decision gateway is used to route the execution path of the service based on the evaluation of
an expression. The following shows a Decision Gateway in the diagram.

From the palette, this component looks like:

The implementation settings for the component has the following:

There will be a line for each possible path out from the component. One of the lines will be the
default path that will be followed if none of the other expressions evaluate to true.

The labels for each line are of the form:

link name (Step Name)

It is recommended to provide a label for each of the outgoing paths from the Decision Gateway
otherwise they will show up as Untitled.

End Event

The end event is used to mark the end of the service. On the diagram it looks as follows:

It has the same icon in the palette.

Note

A note can be added into the diagram that provides an aid to a subsequent reader when trying to
understand the solution. Text is added in a yellow box that can be positioned in the diagram. An
example of how this looks is shown following:

Page 246

From the palette, the note has the following icon:

The properties of the note contains a text input area into which the text for the note can be entered:

Having a note in the diagram does not effect the operation of the solution its purpose is solely for
readability.

Error End Event

When added to the canvas, the Error End Event looks as follows:

The purpose of this activity is to explicitly throw an error. This would be used when, during the
processing of a service, it was detected that something problematic has occurred. For example, a
request to purchase a product and the expiration of a credit card has passed or the product is not in
stock.

Included in the Properties of this type of element is an Implementation section:

Error Intermediate Event

When added to the canvas, the Error Intermediate Event looks as follows:

Included in the Properties of this type of element is an Implementation section:

Page 247

Invoke UCA

Within a Service, we may wish to invoke a UCA. Invoking a UCA can cause the creation of a new
instance of a process. Remember that UCAs are usually associated with an external service or timer
causing them to be invoked. Giving us the ability to initiate a UCA explicitly adds a lot more
flexibility to solutions we may build. A primitive is supplied that allows us to explicitly invoke a
named UCA.

When added to the canvas, the UCA caller primitive looks as follows:

It is added by dragging a palette entry that looks like:

Once added, its implementation properties look as follows:

The UCA caller primitive's implementation names the UCA that is to be called. The Data Mapping
section allows us to map the variables in scope in the process to the parameters expected by the
UCA.

See also:
• Undercover Agents (UCAs)

Catch Exception

If an activity in a service can fail then it is wise to try and handle that failure by taking some
remedial action even if it is only alerting an administrator. A Catch Exception handler can be added
to activities that can generate failures. To add the handler, drag it from the palette and drop it onto
the activity.

Here is an example with a Catch Exception added:

Page 248

In the palette area, the Catch Exception looks like:

The nature of the exception can be found in the XMLElement data contained in the variable
tw.system.error.

Intermediate Tracking Event

A service can include an Intermediate Tracking Event step. When reached, this will externalize a
row into the associated Tracking Group view in the Performance Data Warehouse database.

Stay On Page Event

From the palette, this entry looks as follows

Nested Service

The Nested Service step allows us to invoke another service from within the current service. By
using this feature we can modularize our services into reusable pieces. We can build an aggregate
service from a variety of other services.

When added to the canvas, the Nested Service step looks as follows:

Page 249

From the palette of available steps, it looks like:

The implementation details of the Nested Service look like:

If the service being called has multiple end event elements, then each of these can contribute their
own outgoing link. In the following, we have a simple service with two possible endings:

If we invoke this service in another service through a Nested Service call, we can then have links
associated with each of the possible endings (in this case, an ending called Success and an ending
called Failure).

Notice that the links are labeled with the names of the end terminals in the called service.

The service to be called for a nested service can be explicitly selected with the "Select" button or,
alternatively, a service dragged from the library of services and dropped on the service diagram will
automatically add a bound Nested Service node.

Send Alert

When added to the canvas, the Send Alert step looks as follows:

Page 250

From the palette of available steps, it looks like:

When called, this activity sends an Alert message to the named user or group. This message can be
found in the Process Portal.

The implementation section of the step allows us to name the recipient, subject, message and
priority.

The Send To field names the recipient which can be either of:

USER: <user name>

ROLE: <group name>

The Alert shows up as an entry in the Process Portal Collaboration section as an entry with a
"service bell" beside it.

See also:
• Error: Reference source not found

Web Service Integration

A Web Service integration component allows the service to invoke an external Web Service
provider. When added to the canvas, a Web Service integration looks as follows:

Page 251

It is added by dragging a palette entry that looks like:

The implementation property page for this service looks like:

In the WSDL URI: text field, the URL for a WSDL file should be entered. Clicking the Discover
button will then cause IBPM PD to retrieve the WSDL pointed to by this URL and parse its content.
Once the content has been parsed, IBPM PD will know the potential operations that can be invoked
against that service. The Operations pull-down can then be used to select the desired operation.

Here is an example of having entered a WSDL URI, Discovered its operations and having selected
an operation:

When a Web Service is called, it commonly expects input data to be provided. On return from the
Web Service call, response data may be available. Data in IBPM is held in variables that are local
to the IBPM Service and hence we have to map from IBPM Service variables to the input of the
Web Service and map from returned Web Service data back to IBPM Service variables. This can
be achieved on the Data Mapping tab of the panel.

Page 252

See also:
• Outbound Web Services

Java Integration

Integration with Java is discussed in a separate section.

See:

• Java Integration

Stay on Page Event

When added to a Human Service diagram, the node looks as follows:

From the palette, the corresponding icon is:

This activity can only be added to Human Services. Its purpose is that, when reached, the last
shown Coach is returned to. Think of it like an implicit wire back to the last Coach shown.

Page 253

Variables – Process and Service
As an instance of a process executes, that process is going to have data maintained as part of its
state during its complete life. The data may be input into the process when it starts or may be
calculated or entered as the process progresses through its life.

Variables are used to hold the state data associated with an instance of a process. Variables are
"named" entities which have associated data types. Variables occur in two distinct categories of
places in IBPM. The first is the set of variables which can be defined in a BPD. These variables
have a scope of the entire instance of the process. Variables are also constrained by the process in
which they live. Variables in one process instance can't be accessed in another process (without an
explicit passing of their values). A change to a variable in one activity will be seen in subsequent
activities.

The other place variables can be defined is within a Service implementation. These variables exist
for the life of the Service and are no longer available after the service completes.

Variables can be defined with a qualifier of input, output or private. Input variables have their
values passed into a process or service when that process or service is initiated. Output variables
have their values returned from a process or service when it completes and private variables only
have scope within a process or service and are deleted when they end.

When a variable is created, it can be addressed from within JavaScript with the prefix:

tw.local.<variable name>

(Note: This prefix tw.local is used so frequently that the JavaScript editor has a special shortcut
for that called "twl". If you enter twl and then CTRL+Space for content assist, the twl entered
characters are changed to tw.local.)

When a variable is defined, it is given a name and other attributes including:

• Data type – The type of data represented by the variable

• Default value – An optional default value

• Is List – A flag indicating that the variable represents a list/array of instances of the data
type

• Documentation – Human readable documentation on the purpose of the variable

Page 254

The data types initially supplied available include:

• ANY

• Boolean

• Date

• Decimal

• Integer

• Map

• NameValuePair

• String

These data types come from the System Data toolkit which is always present within the
environment.

When a new variable is defined, it can be declared as having a default value. What this means is
that an instance will be created and will already have a value without having to explicitly perform a
subsequent assignment to it.

System of Record data vs Business Intelligence data
Let us take a few minutes to think about the data used and produced by a process instance. In my
opinion, this data can be split into two logically distinct categories. These are "System of Record
data" (SOR) and "Business Intelligence data" (BI).

Page 255

SOR data is information that can not afford to be lost once the process has ended. It is typically
used by other applications in the future. As an example, imagine a process which books a seat on
an airplane for a future trip I plan to make. It would be very wrong if I turned up at the airport three
weeks from now and found that there was no record of my booking. BPM is not a repository for
SOR data. Instead, BPM could be responsible for causing new SOR data to be created or existing
SOR data to be updated. The SOR data is maintained by systems outside BPM such as a database
or another application.

BI data is information that could, in principle, be lost without damaging the operation of your
business. This data is used to examine how your processes performed in the past. It includes times,
paths, people, decisions and data relevant to those decisions. Its primary purpose is to provide the
capability to perform business analytics. If it were lost, no customers would be upset, no monies
would be lost, no corrective actions need be performed … the worst that would happen is that you
would be unable to ask questions on how your processes performed in the past. IBM BPM can
record BI data through the Performance Data Warehouse (PDW) architecture.

Creating new Data structures
The data types supplied with IBPM are important and useful but as we start to model our business
processes we will commonly find that we want to create new data structures. New data structures
can also be created which can be composed of fields (also called parameters). These new data
structures will be used to represent different types of logical data such as "A Customer" or "A
Loan".

Page 256

In the Behavior section of the data type editor, there are two choices:

• Complex Structure Type

• Simple Type

When a complex type variable is created, it must be initialized before it can be used. This can be
done through JavaScript with the code:

tw.local.myVariable = new tw.object.ComplexType();

A similar story is also true for data of type list:

tw.local.myListOfStrings = new tw.object.listOf.String();

Simple Types

The Simple Type allows us to place constraints on certain simple data types.

Simple type – String

Here we can place length restrictions on the string. This includes either a fixed length or a
minimum/maximum length.

Page 257

Simple type – Integer

Simple type – Decimal

Simple type – Date

Simple type – Time

Simple type – Selection

Business Object Types

A Business Object is commonly used to describe a series of attributes that apply to a concept being
worked upon in a process. Consider the concept of a "Customer". A Customer has many attributes
including name, address, payment info, purchase history and perhaps much more. We can define
the data type known as Customer by creating a new data type within IBPM PD.

Page 258

A new data type can be created from the Data entry in the list and selecting Business Object.

Once selected, a dialog window appears asking us to name the new data type we are creating. In
this example, we have called our new data type "Customer":

Once the data type has been created, the fields of the new structure may be defined. Interestingly
IBPM calls what I call field "Parameters". Some products call such data entries "fields", some call
them "attributes", others call them "properties" … so why should we not allow IBPM to call them
"Parameters".

An arbitrary number of parameters can be added to the structure by pressing the "Add" button.
When a parameter is added, its name and data type can be defined. The data type of a parameter
can itself be a complex type allowing for a tree like structure to be created. The parameter can also
be flagged as a "List" allowing the one parameter to hold zero or more values.

Page 259

When a variable type is created, that type is available to all artifacts within the defined Process
Application. The type can alternatively be defined within a Toolkit and that toolkit re-used across
multiple Process Applications. Creating a Toolkit of data types used across your multiple projects
is a good idea.

List Variables
A variable can be defined as a list of some data type. Take care to realize that an IBM BPM List is
not the same as a JavaScript array. The IBM BPM List data type is mapped to a much
richer/different set of semantics. The IBM BPM List data type has the notion of a set of selected
items from within the list. This means that given a List, we can also ask that list "Which (if any)
items in that list has the property called 'selected'?". This becomes very useful when considering UI
based functions.

The List variable has the following operations and properties defined upon it.

Page 260

A list variable tracks which values are "selected". An algorithm to remove selected items, the
following snippet may be used:
for (var i = 0; i < tw.local.myList.listLength; i++) {
 if (tw.local.myList.listIsSelected(i)) {
 tw.local.myList.removeIndex(i);
 i--;
 }
}

To add an item to the list, the "insertIntoList()" method can be used. It is not a "replace"
item function but instead will move other entries up as needed.

Q: If I remove an element from the list using removeIndex, is the
selected set "adjusted"?

Setting defaults on variables
When a variable is defined in a service or BPD as either input or private, a default value can be
provided. The default provides an initial value for private variables and a default value for input
variables that are not supplied. The default value is set in the variables tab if the "Has Default"
check box is selected. If selected, the text area provides a place in which the default values can be
placed. The appearance of the entry of the default values changes depending on whether or not the
PD is in advanced mode. If it is in advanced mode, JavaScript can be entered as long as it results in
a value for the variable.

Making variables search-able
Process Portal can be used to find instances of processes based upon the values contained in
variables within the process. Because IBPM has to do more work to index the values of the
variables that are to be looked up, this feature has to be enabled on a variable by variable basis. In
the declaration of variables, there is an option to enable searching for Business Data.

Page 261

Defining and using shared objects
From IBPM v8 onwards, a capability called Shared Objects was added. Shared Objects have the
ability to mark a Business Object definition as being a Shared Object. See the following image:

Page 262

Note that Business Objects flagged as shared have a "green" icon as opposed to the "purple" icon of
non-shared business objects:

Non-Shared Business Object

Shared Business Object

Once flagged, variables created of this BO type are now passed by reference as opposed to passed
by value around the environment. What this means is that multiple processes or parallel steps
within processes can "see" and "update" the variable simultaneously. If we wish to have multiple
processes work with the shared object simultaneously, then we need to pass a "key" that can be
used to access the variable in a different process.

This is starting to get subtle so let us try and break this down. Consider the previous screen shot
which shows the creation of a new Business Object type called "MySharedBO". Now consider an
instance of a process which declares a variable of type "MySharedBO".

Page 263

We should be able to easily imagine an instance of the MySharedBO Business Object being "held"
somewhere for future reference. Imagine that we wished to have a second process leverage the
same shared object. The second process can declare a variable of type MySharedBO but … to get
a reference to the object, will have to execute:

tw.local.myShared2 = new tw.object.MySharedBO(keyValue);

but wait … where did the "keyValue" parameter come from?

On the original reference to the Business Object, we can access its "key" value with:

var keyValue = tw.local.myShared1.metadata("key");

The 'metadata("key")' method returns a string representation of the key to that shared object.
Note that "key" in this call is actually an explicit keyword and not a variable name.

When a change is made to the data contained within the Shared Object that data is written to a
database behind the scenes. Only when the data is written, will the data be able to be seen by a
partner. The data is written when a service that modifies it completes or when an explicit call to the
save() method (found on the business object) is called.

The data associated with the Shared Object is associated with a process instance that created it.
When the process instance data is cleared, so is the Shared Object.

One important area that requires further consideration is when a process sees the changes that
another process may have made to the data. The answer is not quite what one may trivially expect.
Imagine two process instances, P1 and P2. P1 creates an instance of a Shared Object and sets its
values. P2 then also creates an instance referencing the key from P1. Now P2 changes a value in
the data and executes a save(). What does P1 now see?

The choices would appear to be:

1. The original value of the field as originally set by P1

2. The new value of the field as set by P2

The answer is "it depends".

The is the concept of the "latest version of the data in the Shared Object". This is what will be used
when either a new instance of the Shared Object with the given key is created or an existing
instance is re-loaded with an explicit load() call. So if P1 executes a load(), it will always get the
latest data.

A reload of the data within P1 happens automatically when a step in a process is transitioned or

Page 264

when a task is woken up. However, within the context of a single straight through service, the
values of the variable will not change unless it is explicitly re-loaded. The transition from step to
step in a process is an implicit re-load as is the awakening of the task.

BPD Variables and Service Variables - Mapping
A Business Process Definition has variables associated with it. Some variables might be input to
the process, some may be output from the completed process and some may be local variables only
visible to the process.

In addition to the a BPD having variables, so too can a IBPM Service. Just like a BPD, a IBPM
Service has input, output and local variables. These are defined in the definition of the IBPM
Service.

A IBPM Service is usually invoked from within the context of a BPD through an Activity node.
When the node is defined, it is associated with a IBPM Service definition. If we think about this for
a moment, we see that the IBPM Service has some input variables that it is expecting to contain
data and will return some output variables that make data available to the process as a whole. These
variables in the IBM service need to be "mapped" to variables that are in scope within the BPD that
is calling the service.

When an Activity is selected in the BPD editor, the properties section shows a Data Mapping tab.
Selecting this shows the expected input variables to the associated IBPM Service as well as the
generated output variables. These can then be mapped to variables within the current BPD. The
icon beside the "boxes" ()provides for a smart search of the defined variables so we do not need
to remember the JavaScript variable names.

Page 265

If a variable is defined as a complex type, it will need to be initialized before values can be assigned
to it. Its initial value is "null" which has no fields. A good way to achieve initialization is to check
the has default check box in the data type definition.

Variable identity and UUID
Imagine you create a new Business Object type called "MyBO". What is the identity of that
Business Object type? As you might imagine, there is more to this simple question than meets the
eye. The normal way of thinking is that if I create a data type called "X" then it has an identity of
"X". Unfortunately, IBM BPM doesn't think that way. Internally within the heart of the product,
all artifacts (including all data types) are given a generated UUID value. It is this opaque UUID
that the product uses to track references to data types.

To illustrate, consider the following Human Service definition which has an output parameter called
"myBO" of data type "MyBO":

The Human Service definition (called HS1) can be read as:

"This service returns an output called 'myBO' of type 'MyBO'".

However, this is only an illusion. The way the product really thinks of this is:

"This service returns an output called 'myBO' of type
'guid:7b9691c16dd21a42:1e6925ca:142dd70d25a:-7ffa'"

Hmm. That is quite a difference. If we switch on advanced mode in PD and then look at the
definition of the business object, we can see that UUID there:

Page 266

Normally, I wouldn't try and uncover internals knowledge such as this as it is usually irrelevant to
the model and used of the BPM product itself however, there are some ugly ramifications associated
with this implementation story.

As a thought process, consider the following:

1. Create a new Business Object type called MyBO

2. Create a Human Service that returns a variable of type MyBO

3. Delete the Business Object type called MyBO

4. Create a new Business Object type called MyBO identical in structure to the first

Are we now consistent? It would seem so, we have a business object called MyBO which contains
all the fields we want. Unfortunately, we are broken.

In step 2, when we create a Human Service that returned a variable of type MyBO, the Human
Service actually defined that it returned a data type of a UUID. That UUID was associated with the
data type created in step 1. When we performed step 4, a brand new UUID data type was created
that is not the same as that of step 1.

We end up with the Human Service error showing:

If we hovered over the error we would see:

Page 267

But yet if we examined the list of data types, we would see that MyBO is a defined data type.

The fix would be to remap the variable type to the new MyBO definition. To most folks (including
myself) this is an odd situation to be in.

The moral of the story is to be very careful with the concept of deleting and recreating data types.
Deleting something and then recreating it is not the same as modifying it. This story also comes
into play when you think that you can move data types into toolkits.

Exposing Business Data for Searches
Imagine that we have hundreds (perhaps thousands) of process instances running handling orders
for customers. If a customer calls in and asks "What is the status of my order #1234?" how can we
find the process associated with this?

When process variables are defined in IBPM, we have an opportunity to flag them as being
available in Business Data Searches. This means that we can execute searches using the exposed
names and values of variables in a process. For example, if a process has a variable called
"orderNumber" and we exposed that for searching, we can now execute a search for process
instances where "orderNumber = 1234".

Page 268

Accessing variables from JavaScript
It is common to want to read or write the values of variables from within a JavaScript environment.
When a variable is defined at the BPD or service level, it is available within that BPD or service
within the JavaScript scope of:

tw.local.*

The IBPM PD commonly provides entry assist to show you the names of the in-scope variables that
can be used in a JavaScript fragment. Note that the entry assistance accessed by CTRL+Space in
the editor can be used to substitute the characters "twl" for the string "tw.local.".

List variables can be accessed using square bracket notation with an index value starting at 0.
When assigning to a list, if an index value is used that is greater than the size of the list, this is
acceptable. To make this clear, imagine a list with two existing entries which would be [0] and
[1]. If we assign to the list with an index of [3], this would produce an entry for [2] of data
type ANY and no value.

Page 269

Environment Variables
Instead of hard-coding values in a process, we may wish to externalize these values and re-use them
across our solution. IBPM PD allows us to define environment variables in either Process
Applications or in Toolkits. Once defined in there, they can then be referenced in the solution.

The environment variables section can be accessed from the Process App Settings within the
Environment tab:

Variables defined in the Process Application can be accessed as:
tw.env.<Env Variable Name>

Variables defined in a Toolkit can be accessed as:
tw.env.toolkit.<Toolkit Name>.<Env Variable Name>

The values of the environment variables can be changed through the Process Admin Console.

After starting it up, select the Installed Apps button:

Next, select the application who's environment variables are to be changed. A list of the
environment variables and their current values can then be seen:

Page 270

The environment variables default values can be based on the setting of the environment.type
attribute set in the install.properties used when IBPM is installed.

To make changes to environment variables, one must be a member of the administrators group.

Exposed Process Values (EPVs)
Consider a business process that utilizes some business data value such as the current tax rate or the
interest rate on loans. This value is obviously not a constant as it may change over time. What we
want is a way to supply such values to processes while at the same time making them easy to
modify as needed. The concept of Exposed Processes Values (EPVs) is the IBPM solution.

An EPV is a named container that holds one or more variables where the values of those variables
can be defined through the Process Administration console.

An EPV is defined within a Process Application or Toolkit from the Data catalog in the library.

When the wizard appears to create a new EPV, a name can be supplied for it.

Page 271

Once created, the editor provides a rich set of settings for it. At its basic level, we define a set of
one or more variables and give each variable a name, data type and default value.

Updates and access to the EPV is performed through the Process Admin Console. Only those users

Page 272

to whom the EPV is exposed can modify its value. The Exposed to section names a group of
users who are allowed to manage the EPV.

The Feedback E-mail contact provides the email address of the "owner" of this EPV. This allows
users to contact the owner for questions and requests.

In a BPD or service definition, within the variables section, an EPV can be linked or associated with
the BPD or service:

Once the link has been made, the values of the EPV can be used within the solution. The JavaScript
expression:
tw.epv.[EPV Name].[EPV Variable Name]

can be used to refer to those values.

See also:
• Admin Tools > Manage EPVs

Pre and Post Assignments
Associated with an activity element is the concept of pre and post assignments. These sections of
the activity definition allow for updates of variables prior to executing the core of the activity and
also to allow for updates immediately following the core of the activity.

The number of pre and post assignments (if any) on an individual activity is configurable.

There have been a number of discussions on the value and appropriateness of pre and post

Page 273

assignments. The questions arise when thinking about readability and maintainability of a solution
that uses this technique. The markers added to an activity to indicate that it has pre or post
assignments are small and easily missed. There is a school of thought which says that this
capability should not be used often and instead, explicit steps be added to the process diagram to
achieve the same effect.

Variables and XML
Each complex variable has an XML representation. To examine this, let us initially look at a
complex data type called Type1 that looks as follows:

This structure contains three fields called "a", "b" and "c". If we create an instance of this variable
and execute tw.system.serializer.toXml method, we get the following:
<variable type="Type1">

<![CDATA[value for a]]>

Page 274

<b type="Boolean"><![CDATA[false]]>
<c type="Integer"><![CDATA[123]]></c>

</variable>

Breaking this apart, we see an element called <variable> as the root with type attribute that
names the data type of the variable as a whole. The nested elements are named after the fields
within the structure again using the type attribute to define the data type of the fields.

Given an XML representation of the data, we can convert back to a variable instance with the
method called:
tw.system.serializer.fromXml()

This takes either a String or XMLElement object as a parameter and returns a new Object
instance.

For variables defined as lists, the structure is a little different.
<variable type="Item[]">

<item type="Item">
<name type="String"><![CDATA[Item1]]></name>
<quantity type="Integer"><![CDATA[10]]></quantity>

</item>
<item type="Item">

<name type="String"><![CDATA[Item2]]></name>
<quantity type="Integer"><![CDATA[20]]></quantity>

</item>
</variable>

In the Data Type definition, there are properties for the XML serialization:

Notice the View XML Schema button. When clicked, an XML Schema representing this data type
is shown. Notice also that the name space for this schema looks odd. It is created from the
hostname and port number of the machine running the authoring environment. This can cause
problems as this schema value will change depending on where the schema is displayed. If your
IBPM solution is going to utilize XSDs it is strongly recommended to explicitly name a Namespace
value. This can be any constant of the form:

http://<value here>

Using Variables
Since variables in IBPM are available within JavaScript then any JavaScript functions that execute
on such variables can be used.

If a variable is used to represent a business object, remember that the variable is a reference to that

Page 275

data and not its value. For example, if we have code that looks as follows:
var x = new tw.object.MyDataType();
var y = x;

Then the variable y is actually a reference to the same object as the variable called x and
importantly not a copy. Changing a field in x will cause the exact same field in y to be also
changed. If the desire is to explicitly make a copy of a variable, consider using the IBPM provided
XML serializer and de-serializer. For example:
var x = new tw.object.MyDataType();
var temp = tw.system.serializer.toXml(x);
var y = tw.system.fromXml(temp);

On a broader scale, there is a question on what happens when a business object is passed from one
entity to another (for example, a process to a sub-process)? In computer science there is the concept
of pass-by-value vs pass-by-reference. With pass-by-value, a copy of the variable is passed and
hence chances to that copy do not affect the value of the original variable. With pass-by-reference,
a reference (pointer) to the original variable is passed. This means a change to the content of one
variable immediately affects the value of the other variable. In IBPM both pass-by-value and pass-
by-reference are used in different circumstances.

Scenario Passing mechanism

Process invokes a sub-process Pass-by-reference

Process invokes a service Pass-by-value

Service invokes a nested service Pass-by-reference

When assigning a value to a Business Object, one can use the JavaScript style of definition. For
example:
tw.local.myData = {

a: "My A Value",
b: 123,
c: 3.141,
d: {

x: "X Value",
y: "Y Value"

}
};

would work for an appropriate definition of the data type of myData. The use of this technique
can dramatically simplify data assignment.

Determining the type of a variable
On occasion, you may find that you have a local JavaScript variable and not know what type it is.
You can dynamically determine its type. See the following example:
var myDate = new tw.object.Date();
log.info("The data type of the object is: " + Object.prototype.toString.call(myDate).slice(8, -1));

The case of the mysteriously changing variables
Consider the following story:

First, imagine a data type called "MyBO" that has three fields:

Now imagine a process called "LinkedProcess1" which looks as follows:

Page 276

The parameters to this process are:

What this process does is take an instance of "MyBO" as input, set the value of property "a" to say
that it is "Linked Process 1" that set it and finally create a task that shows the content of the MyBO
data type.

If we ran it by itself, an example of what the task would show is:

Now imagine a second process called "LinkedProcess2". It looks like:

It is identical to "LinkedProcess1" with the exception that it sets the "a" property to say that we are
in "Linked Process 2".

Now ... here comes the next part ...

Imagine one last process called "MyProcess" which looks like:

This process has a single "MyBO" variable which is passed as input to two parallel linked
processes. These are mapped to "LinkProcess1" and "LinkProcess2".

When I run this process, as expected, I see it block waiting on two tasks:

Page 277

And I see two tasks available to be worked upon:

Now I open the task for "Linked Process 1" ... and here is what I see:

So far, all as expected.

Now I open up the task for "Linked Process 2" ... and here is what I see:

Do you see it? :-)

The "a" field has the wrong value!!! It should say:

So what happened?

The answer can be found in the IBM BPM documentation found here:

http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r5m0/topic/com.ibm.wbpm.bpc.doc/modeling/topic/
declaring_variables_A.html

Page 278

http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r5m0/topic/com.ibm.wbpm.bpc.doc/modeling/topic/declaring_variables_A.html
http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r5m0/topic/com.ibm.wbpm.bpc.doc/modeling/topic/declaring_variables_A.html

Here is what caught my eye:

When we call from one process to another as a link, the variable is passed by reference and not by
value (a copy).

What this means ... is that our BPM process called "MyProcess" (see above) ... is logically the same
as:

And if we look closely at this diagram, we see that the two marked activities BOTH set the same
business object instance field to two different values ... in parallel and since one of them will run
before the other in reality, the last one executed will set the single value ... and it is that single value
that is shown in the Coaches.

With this understanding in mind, we can now see how to avoid the problem ... have two business
objects ... one for "Linked Process 1" and one for "Linked Process 2" ... and don't share the same
business object between both.

Page 279

User Interfaces and User Interaction
It is common to want to present information to users and have those users return responses. Such
human interactions were called Human Tasks in the old WPS product. In IBPM, they are called
Human Services. Within a BPD we can define a User Activity and define a Human Service as the
implementation of that User Activity. Contained withing a Human Service are one or more
"Coach" units. Each Coach corresponds to a single screen the user sees.

A Coach describes the visual nature of what a users sees and associates that with data contained
within the process. The Coach is created in the Process Designer tool within the Human Services
editor. Coaches may only be included in Human Service definitions. They may not be defined in
other service types.

With the arrival of the IBM BPM v8.0 release, the implementation and design of Coach technology
radically changed. To provide upgrade protection for users who had been using releases prior to v8,
the old Coach technology remains in the product. This older implementation is termed "Heritage
Coaches". For new users, the Coaches that should be used are the current "default" Coaches which
are sometimes referred to as "Next Generation Coaches". All references to Coaches in this
document will refer to the default Coaches found in v8 unless explicitly stated to be otherwise.

In the service diagram editor, a coach is represented by the following building block.

This can be created from the palette by dragging and dropping the following icon:

The Human Service editor has a tab that lists all the Coaches in that human service definition.

When a coach component is opened, a canvas area into which the visual aspects of the screen can
be drawn. This editor is called the Coach Designer.

To the right of the canvas is a palette of selectable building blocks from which a page can be
created.

Page 280

To the left of the canvas area is the list of all coaches in this particular Human Service definition.
The coach which is to be edited can be selected and the canvas editor changes its focus to that coach
instance.

Coach Views
Contained within a page are visual building blocks that, when aggregated together, form the content
of the page. IBM BPM calls each of these building blocks a "Coach View". Other UI technology
products (such as Dojo) would consider these to be called "widgets" or "components" so if you are
more familiar with those names, feel free to think of a Coach View as being a Widget or
Component.

General Coach View settings

When a Coach View is dropped onto the Canvas, the properties area contains a variety of settings:

Page 281

In the General area we have quite a few items of interest to us. First there is the Label. This is a
string value that can be used as a label on many of the Coach Views.

The Binding property allows us to select a variable instance who's content will be used to
populate the Coach View and/or will be populated by the Coach View.

Next the View entry names the type of Coach View that will be displayed on the Coach.

The Control Id names the unique identity of the Coach View within the Coach. Quite why we
didn't call it the "Coach View Id" is unclear and feels like a hangover from the previous release.

The Label Visibility entry determines if the label associated with the Coach View will be
shown when rendered. For some Coach Views such as the section views, we simply want them to
be containers with no headings associated with them.

The Base Text Direction is used to define text direction layout for national language
support.

Visibility Coach View Settings

The Visibility settings controls some additional aspects of the Coach View. The phrase “Visibility”
is an odd one as to my mind it should control whether the Coach View can be seen by the user
(visible) or not shown on the Coach (hidden). However, the values of this property allow for much
more. The property value can take one of a defined set of possibilities. These are:

Value Meaning String value

Default (Same as
parent)

Take the value from the parent Coach View DEFAULT

Required The Coach View is visible, editable and must have a value
supplied for it.

REQUIRED

Editable The Coach View is visible and editable EDITABLE

Read Only The Coach View is visible but not editable READONLY

None The Coach View is not visible and does not reserve any
space for it

NONE

Hidden The Coach View is not visible but does reserve space for HIDDEN

Page 282

it

The value for the property can be supplied in a number of different ways. The first is by direct
selection:

The pull-down options are:

• Same as parent

• Required

• Editable

• Read-only

• None

• Hidden

In addition, the property value can be supplied by a named variable. The value contained within the
variable will then be used to control visibility.

The second style for setting the property is Rule. In this mode we can define a set of expressions
that are evaluated. The first expression that evaluates to true is the one that sets the visibility
property value. The rules can use the values of variables or team membership (or lack of
membership) to determine the values.

Page 283

The final style is called Script.

IBM supplied stock Coach Views Controls
When IBM BPM is installed, IBM supplies a starter set of Coach Views that are basic controls and
are available out of the box to be used within Coaches. These stock controls are:

Button

This control shows a button on the Coach web page. When clicked, it can broadcast a boundary
event that will inform the Human Service that the coach has completed.

From the palette it looks as follows.

When dropped on the canvas it looks like:

Example visuals on a web page:

The binding for this control is to a Boolean valued variable which records whether or not the button
was clicked.

Configuration:

Name Default Description

Allow multiple clicks FALSE Determines whether or not the button is allowed to be clicked repeatedly. If
the button is not allowed to repeat then after its first click it will be disabled.

If the button's visibility is set to "READONLY" then it is disabled and will not respond to button
presses but still be visible in a disabled state.

See also:

• Boundary Events

Page 284

Checkbox

This control shows a check-box on the Coach web page. When clicked, it will toggle its value from
true to false or false to true.

Example visuals on a web page:

The binding for this control is to a Boolean value variable which records whether or not the
checkbox was checked.

Configuration:

Name Default Description

Show As Checkbox Describes how the checkbox will be shown in the coach. Options are:
• Checkbox
• Two Radio Buttons
• Switch

True Label Yes The label used for radio buttons and switch styling for true value

False Label No The label used for radio buttons and switch styling for false value

To set the size of the Text control, the following CSS can be used:
div[data-viewid="viewId"] {

width: 20em;
}

This CSS can be included in an HTML widget … eg:
<style type="text/css">
div[data-viewid="myTextId"] {

width: 20em;
}
</style>

Date Time Picker

The Date Time Picker provides a mechanism to show a date (and optional time) to the user and, if
desired, allow them to pick a new value. From the palette, this control looks as follows:

When added to the Coach, it looks like:

Page 285

This control allows the user to select a date and time.

Example visuals on a web page:

The binding for this control is a variable of type Date. This will hold the date value selected.

The configuration options for this view are:

Name Default Description

Show Calendar On Click A calendar from which a date may be picked can be shown. How and when
this is shown is configurable

• On Click – The calendar is shown when the user clicks in the text
field for the date

• Inline – The text field for the date is never shown instead, the
calendar is always shown

• Never – The text field is only shown. No calendar is displayed.

Calendar type Gregorian • Gregorian
• Hebrew
• Islamic

Include Time Picker FALSE When set to true, an entry text box and selection for a time value is shown.

Date Format "MM/dd/yyyy" A string representation of a date format used to show the date. This models
from the Java SimpleDateFormat patterns.

Blackout Dates None A list of dates which the user may not select.

The width of the Date Time Picker can be changed using CSS, for example:
.Date_Time_Picker .dijitDateTextBox {

width: 50px;
}

Page 286

Decimal

The Decimal Coach View is used to show and enter decimal numbers.

• Currency – If the data is used as a currency value, setting this to the ISO 4217 coding
formats the data as a currency.

• Other Currency

• Currency Symbol – An override to supply the currency symbol.

• Hide Thousands Separators – Set this boolean to be true to not show thousands
separator characters.

• Decimal Places – Number of places after the decimal point to show. The default is 2.

• Minimum Value – The minimum value that the field should contain.

• Maximum Value – The maximum value that the field should contain.

• Step Size – If set, the control becomes a spin control with up and down markers. The
increment or decrement is the value of this property.

Horizontal Section

This control is a layout control/section. It allows other controls/sections to be added as children to
it. Each child will be laid out to the right of the previous child forming a horizontal row of controls.

Example visuals on a web page:

Default

Round corners

Square corners

Page 287

Right aligned

The Horizontal section can be bound to a list and the content of the section will repeat for each
entry in the list.

Configuration:

Name Default Description

Show Border FALSE If the value is true then a border will be shown around the horizontal section

Square Border Corners FALSE If set to true and he borders are shown, then the corners of the border will be
square instead of round.

Align Right FALSE If set to true then the content of the section will be aligned to the right.

The width of a section can be controlled by setting the control's CSS "width" style to a value. The
default appears to be "100%". This can be set in the HTML Attributes section of the control using
the style attribute with an explicit width value.

Children in the Horizontal Section appear to be "top" aligned. This can sometimes cause layout
problems where items appear too high. A solution to this is to over-ride the following CSS Style:
.Horizontal_Section > div > div > * {

vertical-align: middle;
}

Here is an example of two <div> elements within a Horizontal Section:

Notice the padding around them. What is we wanted to remove that? Creating a class called
noSpaceHS defined as:

Page 288

.noSpaceHS > div > .BPMSectionBody.LastContentBox, .noSpaceHS > div > div {
margin: 0px;
border-spacing: 0px;

}

and assigning noSpaceHS as a class to the section will result in:

Image

The Image control is used to add an image onto the page. When seen from the palette, it looks as
follows:

When added to the page, it looks like:

The binding property of the Image control is a String which we treat as a URL. The image located
at the end of that URL is what will be shown in the Coach. Commonly, we may wish to package
the image with the Process Application as a managed file. We can select the managed file from the
Select button and the Web Files section:

The selected image is shown within the Process Designer canvas.

Page 289

This control has the following configuration properties:

Alternate Text

Height

Width

Caption

Caption Vertical Position Above or Below

Caption Horizontal Position Left, Right or Center

Integer

This Coach View allows us to enter an Integer value. From the palette, it looks as follows:

and when added to the Coach, it appears as:

The configuration of this view provides the following properties:

• Hide Thousands Separators – If checked, the thousands separator will not be
shown. For example, by default, if "1234" is entered, it will be displayed as "1,234". If this
option is checked, then only "1234" will be shown.

• Minimum Value – Defines a minimum value for the field. If a value less than this is
entered, the field immediately shows the following:

• Maximum Value – Defines a maximum value for the field. If a value more than this is
entered, the field immediately shows the following:

• Step Size – If a step size value is supplied, then up/down arrows are added to the side of
the control to change the value. If the up arrow is pressed, the value increases while if the
down arrow is pressed, the value decreases. If used in conjunction with minimum and
maximum values, the step will not be allowed to break those constraints. When shown on
the screen, it looks as follows:

If a validation error is encountered, the Coach View shows the following indication:

To set the size of the Integer control, the following CSS can be used:
.em20Integer .dijitNumberTextBox {

Page 290

width: 20em;
}

This CSS can be included in an HTML widget … eg:
<style type="text/css">
.em20Integer .dijitNumberTextBox {

width: 20em;
}
</style>

When added to a table, the CSS appears to be:
.em20Integer .dijitTextBox {

width: 20em;
}

Output Text

This control displays output text directly in the Coach web page.

Example visuals on a web page:

The binding for this control can be a String variable. The content of the variable will be used as the
content in the Coach. If no variable is bound then the label text can be used for the text shown.

To set the size of the Output Text control, the following CSS can be used:
div[data-viewid="viewId"] label {

display: inline-block;
width: 20em;

}

This CSS can be included in an HTML widget … eg:
<style type="text/css">
div[data-viewid="myTextId"] label {

display: inline-block;
width: 20em;

}
</style>

Radio Buttons

Radio buttons present a series of click-able items that are grouped together. Only one of the items
may be selected. Clicking a different item will result in the previously selected item being
unselected and the new item being selected. For those who do not know why this user interface
style is called "radio buttons", I'd suggest you dial a a colleague on the telephone and ask them.

From the palette, the radio buttons control looks as follows:

When added to the page, it looks like

Page 291

The properties of the Radio Buttons control are:

Property Description

Selection Service

Selection List A list of Strings or objects. Each entry in the list will contribute a new radio button
entry.

Selection Service Input Text

Display Name Property

Disable Sorting

Layout Vertical or Horizontal

The result of showing a radio button Coach View can look as follows:

The width of a radio button area (an individual button) can be set to a constant using the following
CSS recipe:

• Create a CSS Stylesheet the looks like
.radioWidth80 .dojoxMultiSelectItem {

width: 80px;
}

• Add the radioButton80 class to the class list of the radio button Coach View

If a validation error is thrown, it will be shown to the user:

Select

The Select Coach View provides a drop-down widget. This is also known as a Select or Combo
Box in HTML/Web programming.

In the palette, the "Select" item looks as follows:

When added to the canvas, the following is shown:

Page 292

This control allows the user to select a value from a set of possible values.

Example visuals on a web page:

The binding for this control should be a List variable. The content of the list will be used for the
content within the combo box. The entries in the list can be simple Strings. Each string will then
be a single entry in the combo box. Alternatively, the entries in the list can be business objects. If
business objects are used, we need to tell the Coach View which field in the list should be used for
display. This can be set with the "Display Name Property". What ever items in the list are selected
will also be initially selected in the visuals.

Configuration options:

Name Default Description

List Type Single
Selection

• Single Selection
• Multiple Selection

Selected Item If the list type is Single Selection, then this entry defines which
entry was selected.

Selected Items If the list type is Multiple Selection, then this entry defines which
entries are selected.

Selection Service A service which, when called, will return a list of possible values to be
shown as selectable. The signature for this service should be an input of
"text" of type String with an output of "results" which should be a
List of ANY.

Selection Service Input Text Input data to be sent to the selection service. This appears as the input
parameter called "text". If this property is bound to a variable then when
the variable changes its value, the Selection Service is called to
generate a new list of values to show.

Display Name Property Name The name of a property in the list of Business Objects to be used as the list
name.

Value Property Value The name of a property in the list of Business Objects to be used as the list
value.

Disable Sorting FALSE By default, the items in the selection list are displayed sorted
alphabetically. This may be different from the order in which the items
actually occur in the bound list data type. If we want the items to be shown
in the order that they occur in the list, we need to set this property to
"true" which disables alphabetic sorting of the items.

If the List Type property is set to be Multiple Selection, the list shows as:

Page 293

A good data type for binding to this control is the IBM supplied "NameValuePair" where the
display property is called "name" and the value property is called "value".

The height of the select area can be controlled with
<Root> .dojoCheckedMultiSelectWrapper {

height: xxx;
}

To set the visual width of the Select control, the following CSS can be used:

This CSS can be included in an HTML widget … eg:
<style type="text/css">
.em20Select div.dijitComboBox {

width: 20em;
}
</style>

Select Sample 1 – Selection based on other selection

In this sample, we will discuss how we can achieve the following effect. If the first select chooses
the US state of Texas, then the cities will be Texas cities.

If the user selects California, then the cities will be Californian cities:

The Human Service that contains the solution looks as follows:

Page 294

It prepares the static data for states and then shows the Coach.

The Coach looks like:

which is basically two Select controls. One for the State and one for the City.

The State control is bound to a list of Strings which represent the states:

The State control also has a configuration option as shown:

What this means is that when the selection value changes, that value will be stored in the
"selectedState" variable.

The second Select, the one called "City" is configured as follows:

Page 295

It uses a dynamic Selection Service to select the values it will show. The input parameter to the
service is the variable "selectedState". What that means is that when "selectedState"
changes, the Selection Service will be called to generate new values for the control. Here is the
what the "Choose Cities" AJAX service contains:

The variables for this service look as follows:

The input variable called "text" is passed in the "selectedState" value. The "results"
variable returns the list of cities. In my sample code, I have hard-coded the following code but it
could just as easily have been a database query or some other logic:

Page 296

Table

From the palette, the table looks as follows:

When dragged and dropped onto the canvas it shows as:

The table control provides a mechanism to show a list of business objects in a row/column format.
When the table control is added to the canvas we can then insert further controls as its children.
Each of these children will be used to visualize a particular column of data. The control will be
repeated in the same column for each row that is displayed. Some common control types that make
useful children include:

• Output Text – a cell with a text representation of a value that is not editable

• Text – a cell that displays a text representation of a value which can be edited

• Checkbox – a cell that displays a boolean representation of a value which can be edited

Examples of visuals on a web page:

Page 297

Name Default Description

Selection Type Single Selection • Single Selection
• Multiple Selection
• No Selection – If selected, no initial column is

inserted to allow for selection.

Double Click-to-Edit

Set Editable Columns

Show Add Button no When selected, a button (+) appears beneath the table which
allows us to add a new row into the table.

Show Delete Buttons no When selected, a (X) button appears to the right of each row.
If clicked, the selected row will be deleted.

Add Button Hover Text none Text which is shown in a tooltip when the mouse hovers
over the Add Button. Only meaningful if the corresponding
"Show Add Button" is also selected.

Delete Button Hover Text none Text which is shown in a tooltip when the mouse hovers
over the Delete Button. Only meaningful if the
corresponding "Show Delete Buttons" is also selected.

Disable Sorting

Enable Pagination

Number of Rows Per Page

Initial Width 700px Initial width of table

Column Widths (evenly sized) Comma separated list of integers

Column Width Unit % CSS Units for widths

Hide Columns

Sizing the table

In the properties of the table there are three attributes that define the size of the table and the
columns contained with. The first is "Initial Width". This value defines the size of the table as a
whole. Setting this to be 100% causes the table to fill the available space.

The next parameters work together. The first is "Column Width Unit" which is a CSS sizing
selector such as "%" or "px". The second is a comma separated list of "Column Widths". There
should be a value for each of the columns in the table.

Adding rows

New rows can be added by enabling the "Show Add Button". However, this is only one technique
and has some draw backs. Using this mechanism:

• The add button is hard-supplied as a "+" icon

• No initial values can be defined for the new row

By realizing that the table reflects the current list data, any changes made to the list data are
immediately reflected back in the table. What this means is that we can provide our own "add row"
capability. Imagine adding a button to the page (say beneath the table). The button can be styled in
any fashion we choose. When the button is pressed, it can call-back to a server script which can
create a new record of data with initial values and add that record into the list of existing records.
The server script can then loop back to the original coach. This will have achieved the same
function as the default add button but will have provided a wealth of additional options to us.

Page 298

Disabling selection

It is possible to disable a table from showing anything selected. To do this, we need to copy the
Table Coach View and add:
selectionMode: 'none'

to the construction properties of the DataGrid. In addition, we can switch off the cell highlighting
with:
.claro .dojoxGridCellFocus {

border: 1px solid transparent !important;
border-color: transparent #E5DAC8 #E5DAC8 transparent !important;

}

Tabs

The Tabs Coach View is a container for other Coach Views. It allows a page to be displayed where
the user can select from a set of Coach Views to be shown at one time. The selection is made via a
tab at the top of the control.

The width and height of the tab container is controlled by the style class called
"BPMTabControl". Knowing this you can change the size of the container as in:
.BPMTabControl {

width: 250px;
height: 250px;

}

The width can be set to 100% to size the tab container to be the width of the page. As of the time of
writing, the height must be sized to be a fixed pixel amount. No auto-sizing capability has yet been
determined.

Text

The text field displays a text input box that can be bound to a string. The value of the bound string
is shown within the text area. From here, a new value can also be entered.

From the palette, the Text Coach View looks as follows:

When shown on the Canvas, it looks like this:

The configuration properties of the Text Coach View are:

Name Default Description

Enable Autocompletion

Autocompletion Service

Page 299

Autocompletion Delay

Validation N/A A JavaScript regular expression that will be applied to the
entered data. If the data entered does not match the syntax, a
client side error will immediately be shown.

To set the size of the Text control, the following CSS can be used:
.em30 div.dijitComboBox {

width: 30em;
}

With the above CSS class defined, we can now add "em30" as a class in the HTML Attributes of
the Text Coach View:

This CSS can be included in a custom HTML Coach View … eg:
<style>
.em30 div.dijitComboBox {

width: 30em;
}
</style>

If a validation error is encountered, the Coach View shows the following indication:

Text Area

The Text Area Coach View shows an area of the screen into which text may be entered. From the
palette it looks as follows:

and when added to a Coach it looks like:

This Coach View has a configuration option called "Text Area Type". This can have one of
two possible values either:

Page 300

• Plain Text – The view is shown as plain text

• Rich Text – The view allows rich text (HTML) to be entered

When in Plain Text mode, the style of the Coach View remains as it is. However if Rich Text mode
is enabled, when the Coach View has focus, it changes to show rich text selection capabilities as
illustrated in the following image:

If a validation error is encountered, the Coach View shows the following indication in both plain
text and rich text modes:

Take care when using this Coach View as it seems to wish to add newline characters at the ends.

To style the body of the plain TextArea, the following CSS can be used:
.CV_TextArea .dijitTextArea {

color:red;
text-align:center;
font-weight:bold;

}

And add the class CV_TextArea to the Coach View.

Vertical Section

The vertical section control allows us to have multiple coach views placed in a vertical column. On
the palette, the control looks as follows:

When dragged and dropped into the layout area, it looks as follow:

The Vertical section can be bound to a list and the content of the section will repeat for each entry
in the list.

If the label is "nulled", then the section will show without a visual container.

Name Default Description

Show border FALSE Adds a border around the body of the container.

Square Border Corners FALSE If set to true and he borders are shown, then the corners of the border will be
square instead of round.

Page 301

The height of a vertical section can be explicitly set with:
.MyClass .BPMBorder {

height: 500px;
}

Where "MyClass" is the name of a class added as an HTML attribute to the vertical section.

The width of a vertical section can be set with the width property of the HTML attributes.

Here is a Vertical Section with a couple of colored <div> blocks within it.

See that there is space at border of the contained children. A common request is how to switch off
that space. If we were to use a CSS explorer, we would find that a class called
"BPMSectionBody" is adding a margin to the right and left. As of 8.5.0.1, this margin is "1em".
If we create a class definition that looks like:
.noMargin .BPMSectionBody {

margin: 0px;
}

and then add the class noMargin to the Vertical section, we would eliminate the left and right
space:

In addition, a class called CoachView also adds a top and bottom margin of 0.5em.
.noMargin .CoachView {

margin: 0px;
}

There is one final style that adds a margin at the bottom of the Vertical Section:
.noMargin > div.BPMBorder > .BPMSectionBody.LastContentBox > .CoachView:last-child {

margin: 0px;
}

putting it all together we have:
.noMargin .BPMSectionBody, .noMargin .CoachView, .noMargin > div.BPMBorder >

Page 302

.BPMSectionBody.LastContentBox > .CoachView:last-child {
margin: 0px;

}

which will result in:

Content Box

From the palette, the content box looks as follows:

Once added to the canvas, it is shown as:

The Content Box is an advanced control that shows up in the Advanced Section of the palette only
when building Coach Views. Its purpose is to hold other Coach Views that will be added later by
the UI designer.

As an example of using this control, consider a custom horizontal layout style. The Content box
would allow us to add arbitrary Coach Views into its space at design time.

Within a Coach where the Coach View that contains the Content Box is added, the Content Box
shows up as:

Name Default Description

Layout Preview Vertical One of:

• Vertical

Page 303

• Horizontal

• Table

• One at a time

This View will manage its own
Content

FALSE

It is important to understand how a Content Box creates HTML. First, it will insert a <div>
element with a class of "ContentBox". Its immediate children will be the children added to the
Content Box in Process Designer.

For example, imagine we have a Content Box that looks as follows in Process Designer:

As we see, it contains two further Coach Views of type Text.

The inserted HTML looks like:
<div class="ContentBox">

<div class="Text">...</div>
<div class="Text">...</div>

</div>

// AMD Mapping:
// dojo/_base/array → array

var cbElement = dojo.query("> *", this.context.element)[0];
var cbContentArray = dojo.query("> *", cbElement);

array.forEach(cbContentArray, function(item, I)
{

// Do something with each item
});

Each of the children will have an attribute called "data-viewid" which will correspond to the
ControlID or viewID of the Coach View that introduced it.

Page 304

Custom HTML

Custom HTML allows us to inject raw HTML into the generated Coach shown to the user.

From the palette it looks as follows.

When added into the canvas area, it looks like:

It's properties area contains the following:

The HTML can be entered directly into Process Designer, come from a managed file's content or
come from the content of a variable.

For Custom HTML components added to a Coach, the values of variables can be inserted by
enclosing them in dual curly braces:
"{{tw.local.myvariable}}"

If a Coach View contains a Custom HTML component, it can access the tw.businessData or
tw.options scoped variables.

Styling with CSS
The Coach Views supplied with IBM have a certain "look" to them. Since these Coach Views
eventually resolve to HTML sent to the browser, we find that the look is defined by standard
Cascading Style Sheets (CSS). This also means that the look can be changed by changing the CSS
applied.

Looking in the Toolkit that supplies the Coach Views (called Coaches) we find the master style
sheet called "coach_ng_controls.css". (Note: the "ng" here stood for "Next Generation …
i.e. the post v8 and beyond coaches). It is this style sheet that defines the look. In principle, one
could replace or edit this file with new CSS definitions and the result would be a new look.
However, I do not recommend doing that. This is an IBM supplied file and a patch/new-release
could reset the file back to its default and you would have lost your changes. Rather, I suggest
overriding this.

Let is look at an example. Here is a basic Coach view that has a Horizontal Section.

Page 305

We see that it is colored default "blue". What if we want our horizontal sections to have a different
color? One of the first things we need to do is determine which styles are affecting the existing
look. To do this, I use Google's excellent "Chrome" browser which has in-built development tools.
Switching to these, I can select an HTML "part finder" and click somewhere on the page. This
takes me to the HTML that renders that part. Once found, I can then see the class names and styles
that are being applied to that HTML. Again using Chrome, I can dynamically "tweak" those styles
to see what changes I would want to make in a custom style sheet to change the look.

For example, changing:

to

resulted in:

Page 306

Obviously, this change is not permanent, so now we need to look and see what would be necessary
to affect these changes in a broader scope.

Our first pass is to insert a "Custom HTML" control into the page which contains the following:
<style>
.BPMSectionHeader.box.blue {

background-image: -webkit-linear-gradient(bottom, #A21BBC 0%, #4B1280 100%);
}
</style>

What this has now done is overridden the original CSS property with the new property. Effectively
creating a union of the two CSS styles with the later definitions replacing the same previous
definitions.
Here is a second example for the button:
.BPMButton {

background-image: -webkit-gradient(linear, left bottom, left top, color-stop(0, #4B1280), color-
stop(1, #A21BBC))
}

which results in:

This looks like we are done … but not so fast. If we hover over the button we get:

What is happening here is that styles can be qualified. For example, we can have one style for
"normal" display and a second style to be shown when the cursor is hovering over the part.
Changing the definition to:

.BPMButton, .BPMButton:hover {
background-image: -webkit-gradient(linear, left bottom, left top, color-stop(0, #4B1280), color-

stop(1, #A21BBC))
}

Changes the style for both normal and hover. Digging further, we find that the button still turns
blue when it is held down. Looking at the generated HTML for a button press, we find that the
implementation code for the button adds a new class when it is pressed. That class is called
"BPMButton-down".

The final styling for our button is:

<style>
.BPMSectionHeader.box.blue {

background-image: -webkit-linear-gradient(bottom, #A21BBC 0%, #4B1280 100%);
}

.BPMButton, .BPMButton:hover, .BPMButton-down {
background-color: #4B1280;
background-image: -webkit-gradient(linear, left bottom, left top, color-stop(0, #4B1280), color-

stop(1, #A21BBC));
}
</style>

Great!! … well … not so fast. This works great in Chrome … but will it work in FireFox and
Internet Explorer? The answer is not quite. You see, the colors used in IBM BPM are not flat

Page 307

colors but are instead "gradients" and the CSS for gradients is browser specific. Yuk!! Fortunately,
this is such a common problem that there are some elegant gradient generators for us. See for
example:

http://www.colorzilla.com/gradient-editor/

To see how this works, we use the web page listed above and pick a green gloss:

Then we copy the generated CSS into our style. After application (and a few tweaks), we get:

This principle of overriding the default CSS formatting through the use of the Custom HTML
Coach View within coaches can then be applied to each of the different controls to achieve a
completely different look. So far we have concentrated on backgrounds but every aspect of the
appearance is customizable including fonts (type, size, color etc), margins, boundaries, spacings and
much more.

Once we have built our styles, we can then save them in a new CSS file and then make that a

Page 308

http://www.colorzilla.com/gradient-editor/

managed file. Once it is a managed file, we can then include the same styling in multiple Coaches
over and over.

Making Left Labels

When adding text or other fields into a Coach, the label for the field is shown above the input area
as shown in the following image:

This is fine, but it is a commonly asked request that the labels be shown to the left of the data input
as in:

It was initially thought that this would require modification of the existing Coach Views to achieve
but after some study of CSS, it was found that this could be achieved extremely easily. The
following style sheet fragment shows how this can be done:
<style>
.leftLabelText .textLabel {

display: inline-block;
width: 60px;

}

.leftLabelText .content {
display: inline-block;

}
</style>

For the text elements that you wish to have with left labels, add the class called
"leftLabelText" to the HTML Attributes:

And that is all there is to it. The styling will be slightly different for the various controls:

Page 309

Select control

.leftLabelSelect .selectLabel {
display: inline-block;
width: 60px;

}

.leftLabelSelect .content {
display: inline-block;

}

DateTimePicker control

.leftLabelDateTime .textLabel {
display: inline-block;
width: 60px;

}

.leftLabelDateTime .BPMDateTimePicker,

.leftLabelDateTime .dateTimePickerReadonlyDiv {
display: inline-block;

}

TextArea control

.leftLabelTextArea .textLabel {
display: inline-block;
width: 160px;
vertical-align: top;

}

.leftLabelTextArea .dijitTextArea {
display: inline-block;
width: 30em;

}

Adding a TextBox icon

A nice effect is to add an icon into the inside of a text box. For example:

This can be achieved with CSS similar to the following:

.dijitInputInner {
padding-left: 20px !important;
background-image: url('http://img.viralpatel.net/2008/11/magnifying-

glass.gif') !important;
background-repeat: no-repeat;

}

Styling a Dojo button for BPM

Buttons supplied by IBM Coaches have a particular look and feel, here is the recipe to create such a
styling for Dojo buttons:
<style>
.claro .myBPMButton .dijitButton .dijitButtonNode {
height: 26px;
 color: #f2f2f2;
 background-color: #1b69a9;
 -moz-border-radius: 4px;
 border-radius: 4px;
 text-align: center;
 font-size: 14px;
 font-weight: bold;
 background-repeat: repeat-x;

Page 310

 padding-bottom: 0px;
 border: 1px solid #21486c;
 border-top-color: #4178aa;
 border-left-color: #4178aa;
 border-bottom-color: #21486c;
 border-right-color: #21486c;
 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#1B76BC',
endColorstr='#124B80');
 -ms-filter: "progid:DXImageTransform.Microsoft.gradient(startColorstr='#1B76BC',
endColorstr='#124B80')";
 background-position: 0px 0px;
 background-image: linear-gradient(bottom, #124B80 0%, #1B76BC 100%);
 background-image: -o-linear-gradient(bottom, #124B80 0%, #1B76BC 100%);
 background-image: -moz-linear-gradient(bottom, #124B80 0%, #1B76BC 100%);
 background-image: -webkit-linear-gradient(bottom, #124B80 0%, #1B76BC 100%);
 background-image: -ms-linear-gradient(bottom, #124B80 0%, #1B76BC 100%);
 background-image: -webkit-gradient(linear, left bottom, left top, color-stop(0, #124B80),
color-stop(1, #1B76BC));
}

.claro .myBPMButton .dijitButton .dijitButtonNode:hover {
 color: #fff;
 border-top-color: #4178aa;
 border-left-color: #4178aa;
 border-bottom-color: #21486c;
 border-right-color: #21486c;
 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#429CE2',
endColorstr='#124B80');
 -ms-filter: "progid:DXImageTransform.Microsoft.gradient(startColorstr='#429CE2',
endColorstr='#124B80')";
 background-image: linear-gradient(bottom, #124B80 0%, #429CE2 100%);
 background-image: -o-linear-gradient(bottom, #124B80 0%, #429CE2 100%);
 background-image: -moz-linear-gradient(bottom, #124B80 0%, #429CE2 100%);
 background-image: -webkit-linear-gradient(bottom, #124B80 0%, #429CE2 100%);
 background-image: -ms-linear-gradient(bottom, #124B80 0%, #429CE2 100%);
 background-image: -webkit-gradient(linear, left bottom, left top, color-stop(0, #124B80),
color-stop(1, #429CE2));
 -moz-box-shadow: 0 2px 3px rgba(0,0,0,.5);
 -webkit-box-shadow: 0 2px 3px rgba(0,0,0,.5);
 box-shadow: 0 2px 3px rgba(0,0,0,.5);
}

.claro .myBPMButton .dijitButtonDisabled .dijitButtonNode, .claro .myBPMButton

.dijitButtonDisabled .dijitButtonNode:hover {
 color: #a0a0a0;
 background-color: #113f66;
 cursor: not-allowed;
}

.myBPMButton .dijitDisabled * {
 cursor: not-allowed;
}
</style>

.claro .myBPMButton .dijitButton .dijitButtonNode[disabled],

.claro .myBPMButton .dijitButton .dijitButtonNode[disabled]:hover {

 color: #a0a0a0;

 background-color: #113f66;

 cursor: not-allowed;

}

</style>

Data Validation

Page 311

When we present a Coach screen to a user we are expecting that user to enter some new
information. Once the user has entered their data it is common for them to click some form of
submission button to complete the coach and move on to the next activity. Unfortunately, humans
have the ability to enter incorrect information, miss adding necessary information or make other
types of mistakes. Ideally we want the coach to examine the data entered and, to the best of its
ability, validate that the data entered is logically correct and consistent. Generically, this is known
as data validation. Let us consider a trivial Coach that looks as follows:

We can imagine a user working with this screen. Examples of data validation rules for this might
be:

• Name must be entered

• Amount must be entered

• Amount must be positive and greater than zero

• Approved may not be checked if amount is greater than 10000

Looking at our Human Service diagram, the basic flow of a normal Coach mechanism is:

This should be read as the Human Service starts, the Coach is shown and when the OK button is
pressed the Human Service completes. At this basic level, there is no validation. Let us now look
at how to add our validation functions.

First we define when the validation is to be performed. The answer to this (in our story) is when the
OK button is pressed. Clicking on the OK labeled link, we see the following properties:

The one of interest to us here is the entry called "Fire Validation". The default value of this
is "Never" which means that no validation will occur. Changing this to "Before":

Page 312

informs the solution that when the link is followed, validation is to be performed. Although we
have not yet described how to achieve this, at a high level you can now imagine that some how
validation will be tested and, if the validation fails, it is as though we had not followed the link.
Turning that around, the link will only be followed if the validation passes its tests.

After setting the Fire Validation property, the Human Services diagram changes:

Specifically, two new entries can be seen attached to the Coach. The first is that the attachment
point on the Coach for the OK link now has a check-mark associated with it. This is a visual
indication that this link has validation enabled and associated with it.

The second change is that there is now a new attachment point on the Coach which is shown at the
bottom of the Coach. It is a filled green circle with a check mark inside it. This is the core of our
story. When the coach recognizes that it needs to perform validation, control is passed through this
validation attachment. Attached here will be logic which will perform the data validation rules to
ensure that the data entered is correct. When we finally reach the end of job, we will have a Coach
which, if rules fail, will visually indicate those errors:

Now we need to start getting technical and product specific and think about how the mapping
between the logic of our rules is made known to the Coach so that it can display correctly.

First we introduce the data structure called "CoachValidation". We should think of this as a
container for zero or more validation errors that we detect in our own logic. This data structure is
supplied for us by IBM. When we execute our validation logic, we will populate this data structure
with any errors we find. If we do not detect any errors, we will not have added any entries to the
structure and this will be an indication that the Coach is "good" and that the link that caused the
validation may proceed.

Within a Human Service, a singleton variable called "tw.system.coachValidation" is pre-
defined. This is an instance of "CoachValidation". It is this variable that will be used to
communicate between our validation logic and the Coach. With this in mind, we can fill in more of
the picture. Our Human Service now looks like:

Page 313

The way to interpret this is that when the "OK" link is to be traversed, validation is to be performed.
Control will now pass through the validation attachment point to a Server Script called
"Validate". This will perform the rules necessary for checking our variable values. This Server
Script will update the singleton variable called "tw.system.coachValidation" and the
return control back to the Coach. The Coach will now check to see if there are any errors indicated
and, if not, allow the "OK" link to be followed to completion. If there were indicated errors, the
"OK" link will not be followed and the screen will display indications of the errors. This will be the
end of the validation until the next time the "OK" link is to be followed at which time the story will
be repeated until there are no further validation errors.

Now we can turn our attention to the logic contained within the Server Script:
if (tw.local.name == "") {
 tw.system.addCoachValidationError(tw.system.coachValidation,"tw.local.name", "A name must be
entered");
}
if (tw.local.amount == undefined || tw.local.amount <= 0) {
 tw.system.addCoachValidationError(tw.system.coachValidation,
"tw.local.amount", "Invalid number");
}
if (tw.local.approved == true && tw.local.amount > 10000) {
 tw.system.addCoachValidationError(tw.system.coachValidation, "tw.local.approved", "Too big to
approve");
}

Within the script, we perform data validation rules. If a rule fails, we then execute the method
called:

tw.system.addCoachValidationError

This method takes three parameters:
Parameter Description

coachValidation An instance of a CoachValidation object which acts as a container of discovered
errors. This is likely to be the predefined tw.system.coachValidation object.

variable path The path to a variable that has failed the validation. It is important to note that the string
supplied here is the name of the variable (as known to the Coach) which is in error. We
are not validating individual Coach Views/controls in the Coach … rather we are
validating data. What this means is that when we encounter an error, we need to tell the
coach which "data" is problematic and the Coach itself then determines which controls
need to be updated to show the error.

message A text message that can be shown to the user to explain the reason for the failure.

Executing this method adds a new validation error entry to the CoachValidation container.
Remember that the singleton variable called "tw.system.coachValidation" is the variable

Page 314

that must eventually contain the errors for the Coach to work with them. It appears that each time
the Validation attachment is fired, this variable is initialized to an empty set of errors (which is what
we want).
From the previous description, we see that a validation service is associated with a Coach however
it is a single validation service. We may want to execute different validations depending upon
which button was pressed. One way to achieve this is to bind a Button control to a boolean
variable. When the button is pressed, the associated variable is set to true. This can then be used as
a distinction expression to determine which validations to perform.

Boundary Events
Within a Human Service a Coach can loosely be thought of as a screen or web page. When the user
interacts with the Coach there will come a time when the user would like to end their interaction
with the web page and pass control back to the server. This will logically mean the "completion" of
that Coach. To flag this, the Coach generates what it calls a "boundary event". This is an odd name
but I can't think of anything better. It flags the exit from the current Coach and the entry into the
next activity in the Human Service diagram.

By default, Button Coach Views within a Coach will generate a Boundary Event when they are
pressed. For each boundary event added to a Coach, the result will be the ability to wire from the
Coach to a subsequent activity within the Human Services definitions. Initially, when a new Coach
has been created, there will be no Coach Views within it. This means that until Coach Views which
generate boundary events are added, the Coach can not be wired as the source of a link in the
Human Services editor.

See also:

• context.trigger(callback)

Dynamically controlling visibility based on user
Note: As of v8.5, the visibility settings of Coach Views have been dramatically updated.

A recurring pattern that keeps appearing is the desire to show a Coach where the fields in the coach
are editable or not editable based upon the group a user belongs to.

For example, imagine a group called "managersGroup". If the user is a member of this group,
he can edit the a field.

If he is not a member of this group, he will be disallowed and any attempt to edit the field will be
prevented.

If we remember that a field has a visibility attribute and that attribute can be set to "EDITABLE" or
"READONLY" then we can build some logic that determines whether or not the current user is a

Page 315

member of the "managersGroup". If yes, we can set a variable to be "EDITABLE" and if not,
set the same variable to be "READONLY". If we then bind the visibility attribute of the control to
this variable, at run-time, the control will behave appropriately.

Here is the code for the "Set Visibilities" script:
tw.local.commentsVisibility = "READONLY";
var user = tw.system.user;
if (user == null) {
 log.info("User is null!");
} else {
 if (user.roles == null) {
 log.info("No roles!");
 } else {
 for (var i=0; i<user.roles.length; i++) {
 if (user.roles[i].name == "managersGroup") {
 tw.local.commentsVisibility = "EDITABLE";
 break;
 }
 }
 }
}

The TextArea coach view is then bound to the "commentsVisibility" variable:

and we have achieved the effect we were looking for. This recipe can be repeated for different
fields. A field can also be set to "NONE" to hide it from view so we can also hide a control from
visibility. Note that this should not be used for security as the data is still present at the Coach but
simply not shown.

IBM sample Coach Views
On the IBM BPM Wiki there are a ton of additional Coach Views that are supplied "as-is". What
this means is that the Coach Views can be freely downloaded and used in your own BPM solutions
but if something goes wrong with them, you are basically on your own. Because of this, the Coach
Views are provided with full source and the onus is upon you to read and review that source and
treat the Coach View as if you had written it yourself. If you come back to the provider of the
Coach View and are looking for support, there is no assurance that you will get any. This section of
the book provides some examples of using some of these Coach Views for different purposes.

Data Change Boundary Trigger

The Data Change Boundary Trigger is a non-visual Coach View. It monitors data variables and
when a variable changes, fires a boundary event.

See also:

Page 316

http://bpmwiki.blueworkslive.com/display/samples/Data+Change+Boundary+Trigger

• Boundary Events

Data Change Boundary Trigger - Updating one list when another changes

Imagine we have two lists on the screen. When the selected entry in one list changes, we want the
content of the second list also to change. The Data Change Boundary Trigger can help to make that
happen. What we do is insert a Data Change Boundary Trigger into the coach and bind it to the
data for the first list "listSelected" property. When the first list changes its selection, a boundary
trigger now fires. In the Human Service logic, we can now determine what the new selection of the
list is and change the content of the second list correspondingly. A sample called "KolbanTK –
Test – Data Change Boundary Trigger – List Changes" is supplied with the toolkit.

Building new Coach View types
The Coach Views supplied out of the box by the product are certainly not the only Coach Views
available. Coach Views can be obtained from IBPM community web sites as-is or you can build
your own Coach Views. When building your own, it is important to understand the architecture
associated with Coach Views. We will now look at that architecture in more detail.

The high level notion behind a Coach View is that it will have a visual appearance within a Coach
in order to present data to the user, solicit data from the user or improve the look and feel of the
Coach page with visual decoration or layout. The Coach View achieves all of this by a combination
of technologies including HTML and CSS which is interpreted by the browser, JavaScript for logic
inclusion and Dojo (or other UI toolkit) for visual representation.

A new Coach View can be created from the User Interface menu entry and selecting Coach View:

A name must be supplied for the new Coach View. The name entered must be a valid JavaScript
identifier.

Page 317

Once created, the Coach View editor page is shown. This consists of a number of separate tab
pages. On the Overview page we have some general settings:

The meanings of the attributes available to be changed are shown in the following table:

Tags The tags associated with the Coach View are extremely important. The tags define
which sections within the palette in the Coach Designer editor screen the new Coach
View will appear. If no tag is defined, the Coach View will simply not be shown and
hence not be usable.

Palette Icon The graphic image to be used as the icon in the palette area. If no image is supplied a
default image that looks like ' '. IBM has chosen icons 16x16 pixels wide and hence
it is suggested that custom Palette icons be the same size. If images other than this size
are supplied, they will be re-sized.

Layout Image The graphic image to be used as the icon in the coach composition area

Use URL binding If the data binding type for the coach is "URL" then use the data returned by that URL

Page 318

as the preview image in the layout. There are very few potential users for this. The
only one that seems to make sense is the Image control.

Preview Label Position • Top
• Right
• Bottom
• Left
• Center (stretch image to fit)
• Header

Can Fire a Boundary Event Set to true if this control can act as a boundary event source. If checked, then a wire
can be drawn from the Coach in the Human Service.

Use as a Template

Supports a Label This flag declares whether or not the label should be used within the layout.

Prototype-level event
handlers

The documentation on this boolean option is quite vague. It claims that it is related to
a performance optimization but no indication on the improvement gained is supplied.
It appears that the event handlers for the various Coach View events (load, change etc)
are internally defined as either function on the Coach View object or as prototype
members on the Coach View object. By default, they are functions. By changing to
prototype by checking this box, performance gains are said to appear. The
documentation seems to then describe the use of attaching variables to the object
instance as opposed to them existing "in context".

The next page of interest to us in the Behavior page.

This has sections for

Included Scripts These are JavaScript files defined as managed files which can be included in the page.

Inline CSS This section allows us to define CSS definitions.

Inline JavaScript This allows us to add a fragment of JavaScript. Since it is not define when this script will be
run, it is best to assume it will be run sometime "before" any of the other callback methods
and be run once only. The context of the JavaScript is the view object. One use of this
function is to perform any one-time initialization such as defining functions and hanging them
off the "this" object.

AMD Dependencies Names of AMD includable modules and the aliases associated with them. See below

Header HTML This is HTML that will be placed in the header of the page inside the HTML <head> tags.

Page 319

Event Handlers A set of JavaScript callback functions.

AMD Dependencies

Dojo has switched to using the Asynchronous Module Dependencies (AMD) technology to load
JavaScript modules into pages. In the AMD Dependencies section, we can name modules and an
alias JavaScript variable that will be used to hold a reference to the entry point into that module.

See also:

• Asynchronous Modules Come to Dojo 1.6

• The Dojo Loader

• Dojo FAQ: What is the map config option? - Sitepen - 2013-07-03

• Dojo FAQ: What is the difference between a package, a path and an alias? - Sitepen - 2013-06-20

The Variables tab allows us to define data associated with this Coach View.

Amongst these options we will find an entry for defining Configuration Options:

Page 320

http://www.sitepen.com/blog/2013/06/20/dojo-faq-what-is-the-difference-packages-vs-paths-vs-aliases/
http://www.sitepen.com/blog/2013/07/03/dojo-faq-what-is-the-map-config-option/
http://dojotoolkit.org/reference-guide/1.7/loader/
http://dojotoolkit.org/features/1.6/async-modules

Each configuration option has a variety of properties:

Name Description

Name The name of the configuration option as referenced in the code by
this.context.options.<name>

Type • Object
• Service

Is List A boolean to flag this configuration option as being a list/array of values or a singleton.

Variable Type The data type of this variable. The variable type has a direct bearing on how the configuration
property is shown. For example, a Simple Type → Selection will result in a pull-down with the
options defined in the selection being the only options.

Label The label to be shown in Process Designer in the Coach designer beside this configuration option

Group Name Here we can supply the name for a "group". Grouped entries will show up in the Coach editor
under the same heading.

Documentation Documentation for readability

Here is an example of what a configuration option entry would look like in Process Designer:

Once a Coach View has been created, we can see it in the palette in the Coach Designer.

Page 321

The palette is split into groups. When a new custom Coach View is created, it must be tagged as
belonging to one or more of these groups.

If it is not tagged then the Coach View will show up in a section called "No Tags".

Coach View Event Handlers

During the life of a Coach, each Coach View will be sent certain events over time. When these
events arrive, a Coach View can respond to these events in different ways by invoking custom code.
When an event happens, a callback function provided by the Coach View can be executed. Six
event types are defined by the Coach View architecture. These are:

• load

• unload

• view

• change

Page 322

• collaboration

• validate

Within the Behavior tab of the Coach View editor, we see a section called Event Handlers. Within
there are entries for each of the six different types of event handler. Selecting any one of them
gives us an editor area into which we can insert JavaScript code that will be executed when that
event occurs.

When code is associated with an event handler, the event handler appears with a check-box mark to
indicate that it will "do something":

Load event handler

The load function is called when the Coach View is initially loaded. This can be used to perform
initialization. Experience has shown that this is the most prevalently used handler in Coach View
construction.

View event handler

The view function is called just before the Coach View is to be displayed.

Page 323

Unload event handler

The unload function is called before the Coach View is disposed and allows it to perform any final
saving or cleanup of resources.

Change event handler

The change event handler is called when data associated with the Coach View changes. This data is
commonly either the single data item bound to the Coach or any of the data items set in the
Configuration section.

The data structure is available through the variable called "event" which is passed into the event
handler. This data structure contains the following properties:

Property name Data type Description

type String An event can occur because of either a change in binding or a change in
configuration. If the change occurred because of a configuration change then the
type property will have the value "config".

property String The name of the property that changed. Note that many of IBM's configuration
properties appear to show up as "_metadata.visibility". There is a
belief that this is not an object called "_metadata" with a property called
"visibility" but is instead a property actually called
"_metadata.visibility".

oldVal N/A The bound value before the change

newVal N/A The bound value after the change

insertedInto Integer

removedFrom Integer

Validate event handler

This event handler is called when a validation service has been called. The input parameter to the
event is either an error or clear object. An error object is used to indicate that the Coach View
should show an error while a clear object is used to indicate that a previous error indication is to be
removed.

An "error" object has a property called "errors" that is an array of records containing:

Property Name Data Type Description

binding String Path to the variable in error.

message String A description of the error.

view_dom_ids[] String[]

A "clear" object has no properties and is used simply to signal that there are no longer any errors.

How a Coach View should indicate to the user that a validation error has been encountered is a
decision left to the designer of that Coach View. It is probably wise to follow the same styles as
used by IBM for their supplied views. If we look at the Text view as an illustration of how IBM
approached the task, we find that the HTML template for the view contains the following:
<div class="coachValidationDiv">

Page 324

!
</div>

This basically means that we have an area of the control into which error information can be shown.
We see it has two tags. An image tag to show an icon and a span tag into which the error message
will be shown.
The high level logic for view update is
if the type of the event is "error"

Coach View Context

From a programming perspective, the Coach View context is probably the single most important
notion. It provides access to a broad variety of information. When JavaScript executes within the
browser environment, that JavaScript code can access an object called "this.context" which is
a reference to the Coach View context.

We will start by looking at the functions provided by an instance of object.

context.bindingType()

A function which returns the data type of the bound variable.

context.bpm.system

This variable holds a large number of properties that are useful when building Coach Views.

context.bpm.team

This item lists the teams that the user is a member of and which teams he is a manager of. The
values are arrays. The objects contains within the arrays contain:

• name – The name of the team.

• tkShortName – The acronym of the toolkit that the team belongs to. If the value is null,
then the team belongs to the current process app.

• id – A unique id for the team.

Page 325

context.broadcastMessage()

context.cancelBoundaryEvents()

context.containDiffLoopingContext()

context.createView(domNode, index, parentView)

context.deleteView(domNode)

context.element

This is the DOM element representing the root of the view in the DOM tree.

context.getDomNode()

context.getInheritedVisibility()

context.getSubview(viewId, requiredOrder)

Get the child Subview with the identity of "viewId". Only one level deep is examined.

context.htmlEscape(<string>)

A function which escapes HTML content and makes it a simple text string.

context.isTrustedSite()

context.parentView()

Returns a reference to the object describing the parent Coach View. If the current Coach View is
already on the Coach page itself then it has no parent and null is returned. This method should not
be called in the load() function as the environment has not yet been fully built.

context.refreshView()

context.setDisplay(isDisplay, domNode)

This is used to set the visibility of a DOM node. The isDisplay parameter is a boolean. The
value true will show the node while false will hide it. The domNode is optional. If not
supplied, the root of the DOM tree for the view will be used.

Page 326

context.setUniqueViewId()

context.subscribeValidation()

context.subview[viewid]

Retrieve the JavaScript object representing the Coach View instance of the immediate child called
"viewId". The viewid parameter is the Control Id supplied in the Process Designer editor. Be
careful with the objects returned. You really aren't "meant" to do anything with them. About the
best you can do is enumerate them to find the viewIds and then call getSubview() to get the
actual object.

The following will search the subviews looking for a named view:
function findView(context, viewId) {

for (var childName in context.subview) {
if (childName == viewId) {

return context.getSubview(viewId)[0];
}
var result = findView(context.getSubview(childName)[0].context, viewId);
if (result != null) {

return result;
}

}
return null;

}

See also:
• Navigating and access to Coach Views on a Coach page

context.trigger(callback)

When invoked, this method produces the publication of a boundary event. The callback
function is optional. If a callback function is provided, it will be invoked with no parameters. The
callback occurs when the coach regains control after the asynchronous processing of the event. If
we wish to use this API, ensure that the check-box called "Can fire a boundary event" is
checked.

See also:

• Boundary Events

context.triggerCollaboration(payload)

context.unsubscribeValidation()

context.viewid

This is the value of the Control Id in the properties view of the Coach Designer where the Coach
View is defined:

Page 327

This can be used as a key value in a number of of algorithms. Take care with tables. It appears that
the Control Id/context.viewid may be the same value in each row.

Coach View global data

Within a Coach View, we can also access information about other Coach Views also present in the
window. The variable com_ibm_bpm_global provides access to this.

com_ibm_bpm_global.topLevelCoachViews

This is a property which is an object (not a list) which has a property corresponding to each of the
Coach Views on the top level canvas. A little extra care appears to be needed when using this
variable. It appears that when access from a Coach View's load() function, the variable has not
yet been fully populated. This means that even though other Coach Views may be found on the
page, they have not yet been added as properties of the page. It appears that by the time the
view() method is called, the variable is properly and fully populated.

The following will list all the top level Coach Views:
var x = com_ibm_bpm_global.topLevelCoachViews;
for (var prop in x) {
 if (x.hasOwnProperty(prop) == true) {
 console.log("Property: " + prop);
 }
}

See also:

• Navigating and access to Coach Views on a Coach page

com_ibm_bpm_global.coachView.byControlId()

com_ibm_bpm_global.coachView.byDomId()

Coach View data binding and configuration

When a Coach View is added to a Coach, that Coach View can be associated with a piece of data
defined as a variable in the Human Service. The association of the coach view to a variable is
called data binding. It is highly likely that data binding will be used extensively with most custom
Coach Views … after all, a Coach View that doesn't display some configurable data probably isn't
that useful.

When a Coach View is displayed in the browser, a copy of the value of that variable is brought from
the server and stored as data associated with the Coach View. It is this copy that is used with
getters and setters when the Coach View code accesses the data. When a boundary event trigger
occurs, the current value of the variable in the Coach View is then sent back to the server and stored

Page 328

in the original variable from which the copy was taken in the first place. This is key. If one uses a
Coach View, changes some data and then closes the browser window without first submitting a
boundary trigger, the data is not sent back to the run-time environment. In addition, once a Coach
View is shown, should there be any changes (somehow) to the values of the variables in the Human
Service in the run-time, these changes will not be reflected in the Coach View as it will already
have loaded a copy of the original values when it was displayed.

The declaration that a coach view can be bound to data us defined in the Business Data entry of the
Variables section:

The value of the data can be obtained from within the code of a Coach View with the call:
var myValue = this.context.binding.get("value");

Note that the "value" parameter is a special keyword and is the actual phrase "value".

When the value of a variable that is bound to a view changes, the view's change() event handler
function is invoked to inform it of the change. This is true for simple values such as String and
Integer. For Business Objects, the view is notified only if the Business Object itself changes and
not if any of its contained properties change. To bind to lower level of a Business Object, we can
use the bindAll function.

There is also a bind() function that can name a particular property in the object.

The context.binding JavaScript object has the following properties:

Name Description

property The name of the variable

get A function to get the value

set A function to set the value

Note that a binding does not have to be applied to a Coach View. In the following, no binding has
been provided:

Page 329

What this means is that the context.binding property is not defined. The repercussion of this
is that an attempt to access a get() method through this undefined variable/property will cause a
failure. As such, it is essential to always check that context.binding is actually defined
before attempting to use it. Here is an example:
if (this.context.binding != undefined)
{

...
}

Working with bound list values provides yet another challenge. A change to an entry in the list if
not the same as a change to the list itself and hence no change event is fired. If "myList" is a list
variable, then we can provide a callback to be called if an element within the list is updated by
using:
var handle = myList.bindAll(function(param), scope);

The "scope" parameter is an optional scope in which the callback function will be executed. The
"param" is a JavaScript object that looks as follows:

• newVal – For an insert, the new value being inserted

• oldVal – For a removal, the old value being removed

• insertedInto – The list index into which the item is being inserted for an insert. If no
insert or removal has occurred, this property will not be present.

• removedFrom – The list index from which the item is being removed for a removal

When using binding, one should clean up the binding when finished by calling
handle.unbind();

where handle is the handle returned from a bind call.

In addition to the binding data for variables, a second set of data is also available. Configuration
options are options set on the Coach View during development. These are set in the Configuration
Options section. Multiple configuration options can be added.

Page 330

Within the code of the Coach View, the general form for getting a configuration property is:
this.context.options.myOption.get("value");

and for setting a configuration property is:
this.context.options.myOption.set("value", newValue);

The IBM BPM product provides a number of predefined options that are commonly present for all
coach views. These include:

Option Data type Description

_metadata.label String The value of the label if one has been provided.

_metadata.visibility String • DEFAULT
• EDITABLE
• REQUIRED
• READONLY
• NONE
• HIDDEN

_metadata.labelVisibility String • SHOW
• HIDE

_metadata.helpText String

_metadata.className String

_metadata.htmlOverrides Map

Data types found in IBM BPM are mapped to data types in JavaScript found in the Coach browser
environment

Server data type Browser data type

Date/TWDate JavaScript Date

Working with Coach View list data

If a variable is bound to a list, the story changes somewhat. Using the get("value") method
returns an object that represents the list. This object has properties and methods upon it which can
be used to work with the content of that list. Assume that the variable "list" in the following
examples is what is returned from a call to this.context.binding.get("value") of a
list bound variable. Do not think of the list object as a JavaScript array. Rather, think of it is a

Page 331

logical container for indexed objects. Do not assume you can perform arbitrary JavaScript like list
work against it.

When working with index values, "0" is considered the first element in the list.

Function Description

list.add(item) Adds a new item at the end of the list.

list.remove(index) Removes an item from the list at the specified position.

list.put(index, item) Replaces the item at the specified item in the list. The index must already exist.

list.length() Returns the current length of the list.

list.get(index) Return the item at the index into the list

list.items This is a property of the list object that returns a JavaScript array of the items in
the list. The content of the list should not be modified.

list.createListElement() This is an undocumented item that appears to create a new list element but does
not add it to the list.

Example: Remove all elements from a list
var myList = this.context.options.myList.get("value");
while(myList.length() > 0) {

myList.remove(0);
}

In addition to the content of the list, there is also the concept of the selected items in the list. These
can be accessed through "gettable" properties of the list object. Make sure that you realize that
these are properties of the list object and not of the binding itself.

Property Type Description

listAllSelectedIndices Array of integers An array of integer values. Each integer corresponds to the
index of an item in the list which is considered selected.

listAllSelected Array of Objects
(read only)

An array of objects. Each object corresponds to an object in
the list that is considered selected.

listSelectedIndex Integer (read
only)

The index of the first selected item in the list.

listSelected Object (read only) The object that is the first selected item in the list.

All of the above properties can be read but only the listAllSelectedIndices property may
be changed. Setting this to a new array results in a new concept of selected items in the list.

myList.set("listAllSelectedIndices", [<array of index values]);

If we want to know if these properties change, use the "bind" function. For example:
myList.bind("listAllSelectedIndices", function() {….});

Data Store

The Dojo toolkit has the concept of a "Store". This is a generic container for a list of data. The
store concept provides an abstraction to sourcing and sinking data. Since the store has an
architected specification, a program should be able to work on the store without knowledge of
where the data came from or where it is going. The list data returned in a Coach View also has a
"store" associated with it. It can be accessed with the property "dataStore".

Before we get too excited, as of 2013/02, this feature is not documented and hence may not be
supported.

Page 332

Dis-allowed Coach Binding data types

Not all IBM BPM data types may be bound to Coach Views, the following are data types that are
prevented:

• XMLDocument

• XMLElement

• Map

• Record

In fact, it is suspected that only the basic data types such as String, Integer, Decimal and Date plus
Business Objects that contain these are actually allowed.

IBM supplied Coach View utility functions

IBM has supplied a few utility functions which can be leveraged while developing Coach Views.

Getting URL of managed assets – getManagedAssetUrl

A global function called com_ibm_bpm_coach.getManagedAssetUrl is available which
will return the URL of Process App managed assets. This can be used to access assets stored with
the Process App. Common examples of usage for this would include accessing images, script files,
CSS or data.

The syntax is:
com_ibm_bpm_coach.getManagedAssetUrl(

assetName,
assetType,
projectShortName,
returnWithoutAssetName)

The return from this function is the String value of the URL for the asset.

Name Type Description

assetName String The name of the managed asset.

assetType String The type of the managed asset. This must be one of the following
values:

• com_ibm_bpm_coach.assetType_WEB
• com_ibm_bpm_coach.assetType_SERVER
• com_ibm_bpm_coach.assetType_DESIGN

projectShortName String Optional. The short name (acronym) of the process app or toolkit which
owns this managed file.

returnWithoutAssetName Boolean Optional, default is false. Determines whether the returned URL should
include the name of the asset or just the path to the asset.

Generated HTML

When a Coach View is inserted into a Coach within the Human Service editor, the HTML tags that
are generated look as follows:
<div id="random_generated"

class="??? topLevel CoachView"
data-eventid=""
data-viewid="controlId"
data-config=""
data-bindingtype=""

Page 333

data-binding=""
data-type="com.ibm.bpm.coach.<UUID>">

… content …
</div>

The attributes id and data-viewid seem to be the same and both appear to be the value
supplied inside Process Designer within the "Control Id" field:

Experimentation seems to show that data-binding contains the name of the variable in the
server but without the "tw" suffix. For example, if the variable bound at the server were
"tw.local.xyz" then the value of this HTML attribute would appear to be "local.xyz".
This may be the first sign that "tw" (which historically was used for the acronym for TeamWorks)
is being removed.

Custom JavaScript in Coach Views

In some cases, you will wish to insert custom JavaScript in your Coach Views. You can insert the
code in any of the event handler or in the "In-line JavaScript" section:

It is not uncommon to want to execute the same segment of code as the result of a load event,
change event or view event. Replicating the actual code is inefficient. A solution is to create a
function that contains that code and hang that function off the View Object which is available as
"this" in an "In-line Javascript".

Using JavaScript libraries other than Dojo

The IBM Coach technology is a framework for handling task interactions. When a task is created
by a process, the Coach technology (as found in a Human Service) can describe a screen to be
shown to the user. The screen is composed of multiple instances of "Coach Views" which are
"widgets" or "controls" in other UI languages. The internal architecture of the Coach framework is
obviously a combination of HTML, CSS and JavaScript as it runs within the browser. When the
browser is asked to "display a coach", the framework for loading and managing the Coach Views as
well as providing them data is IBM written logic. Because that logic is written in JavaScript and

Page 334

because browsers are not yet "consistent" in their operations, a JavaScript library is leveraged by the
IBM code in order to achieve its task. The library chosen by IBM is "Dojo".

What this means is that the IBM Coach framework has internals for managing the Coach that are
written to use Dojo. This requires that some small portions of the Dojo library are required to be
loaded into the browser for the Coach to function. There is no customer exposed mechanism for
disabling this nor are there any options to replace that code with another JavaScript library.

The inclusion of Dojo for use solely by the Coach framework should not interfere at all with the use
of other libraries (eg. YUI) for custom Coach View implementation. The inclusion of Dojo should
be transparent.

Generated content in a control

The DOM element in the browser that represents the control can be found by:
var element = dojo.query("*[data-viewid=\"" + this.context.viewid + "\"]")[0];

however, the reference to this DOM node is already set in the variable:

this.context.element

When a Context Box is added to a Coach View, it will be found in the DOM as:
<div … this Coach View instance … >

<div … class="ContentBox" …>
… Nested Coach Views …
… Nested Coach Views …
</div>

</div>

Making Ajax and REST requests from a Coach View

A Coach View runs within the browser and doesn't have direct access to any server side data.
However, IBPM exposes a type of service called an "Ajax Service". An Ajax Service, just like
other service types exposes inputs and outputs as either simple data types or as Business Objects.
An Ajax Service can be invoked remotely by the Coach View.

Invoking an Ajax Service involves performing a REST request from the coach view to the run-time
naming the Ajax Service to be called and passing in the parameters. IBM BPM provides a REST
API to invoke Ajax Services and these can be used directly.

An easier solution though is to create a service based configuration parameter on the Coach View.

Page 335

This can have a default Ajax Service named or else can be changed by the user of the Coach View
within the Coach editor.

To illustrate how to achieve this effect, here is an example of a new Coach View containing an Ajax
call. In the Configuration Options for the Coach View, we define a new option called
"targetService". We then define the type of this option to be "Service". Finally, we have
the option of defining a default service from the list of services available:

When an instance of this Coach View is added to a Coach within Process Designer, we will find
that we have an option available corresponding to the option define the Coach View:

Ok, so far so good. We have now defined a new option on a Coach View which is basically a
"reference" to a run-time Ajax Service. Now we need to consider how to invoke an instance of this
service.

Within the Coach View implementation, we have the "context" object which has the bound data
and configurations associated with it. For each configuration parameter defined, we have:
this.context.options.<optionName>

available to us. Because we have defined an option called "targetService" (in our example),
we will find that:
this.context.options.targetService

is a property. We will also find that this is an instance of a function. If we invoke this function, the
result will be an invocation of the Ajax Service on the server. That was pretty easy.

so:
this.context.options.targetService();

will invoke the Ajax Service.

We should now consider passing data into and getting data from the Ajax service. Because we are

Page 336

working in JavaScript here, it is assumed that you understand the concept of JavaScript objects.

Each Coach View configuration property that is a service takes a single JavaScript object as a
parameter that is passed when the Coach View JavaScript code calls the service. The following
fields are defined for this object:

• params – A JavaScript object with a property for each of the input variables expected by
the service that will be called.

Note: As of 2013-11-24 – We seem to have a problem passing in data of type "Date".

• load – A function which will be called when the Ajax Service returns. It has a parameter
which contains the data returned from the Ajax Service.

• error – A function which will be called if the Ajax Service returns with an error.

Here is a snippet of code which shows invoking an Ajax Service from within a Coach View:
this.context.options.targetService(

{
params: {

bo1: {"a": "A Value", "b": "B Value"}
},
load: function(ret) {

console.log("Returned");
},
error: function(ret) {

debugger;
}

}
);

As an alternative to making an Ajax call as shown above, we can also make explicit REST requests
using the Dojo XHR technology.

REST requests can be made from a Coach View quite easily. The trick is to use the Dojo XHR
functions.

Within the code of your Coach View, code the following:
var args = {

url: "<target URL>",
handleAs: "json",
load: lang.hitch(this, function(data) {

// Code to process response goes here
})

}
xhr.get(args);

Two Dojo AMD bindings are used:

• dojo/_base/xhr → xhr

• dojo/_base/lang → lang

Remember that REST requests are asynchronous and that the load function is called at some time
later in the processing.

Navigating and access to Coach Views on a Coach page

Consider a Coach shown to the user. The Coach is composed of Coach Views on the page. These
Coach Views exist in tree oriented structures.

Let us start with the page itself. At the root of the page, there will be one or more top-level Coach
Views. These are the ones added directly to the canvas of the Coach itself. A variable called

Page 337

com_ibm_bpm_global.topLevelCoachViews is an object which contains a property for
each canvas top level Coach. Note that com_ibm_bpm_global.topLevelCoachViews is
a JavaScript object and NOT a list.

Given a particular Coach View object, the context.viewid property names the view ID for that
Coach View instance.

For a given Coach View, the variable called context.subview is an object that contains a
property for each of the Coach Views that it contains. However, be careful. The corresponding
property in subview is not the root of the corresponding Coach View. It is somehow related to an
HTML DIV in a mysterious way. If we want the Coach View object for the view ID then we
should use the method context.getSubview(viewid) which will return an array of real
Coach View objects corresponding to the viewid. It is not yet known how there can be more than
one element returned since it was believed that at a given level, all Coach View instances had to be
unique.

A method called context.parentView() will return us the parent of our current Coach View,
assuming that our current Coach View is not already on the base Coach in which case it has no
parent.

Here is some example code for walking all the Coach Views in a page:
tvar showChild = function(parentCoachView, indent) {
 for (var child in parentCoachView.context.subview) {
 if (parentCoachView.context.subview.hasOwnProperty(child)) {
 var childList = parentCoachView.context.getSubview(child);
 for (var j=0; j<childList.length; j++) {
 var currentCoach = childList[j];
 var pad = "";
 for (i=0; i<indent; i++) {
 pad = pad + " ";
 }
 console.log(pad + "> " + currentCoach.context.viewid);
 showChild(currentCoach, indent + 2);
 }
 }
 }
};

for (var child in com_ibm_bpm_global.topLevelCoachViews) {
 if (com_ibm_bpm_global.topLevelCoachViews.hasOwnProperty(child)) {
 var currentCoach = com_ibm_bpm_global.topLevelCoachViews[child];
 console.log("Canvas > " + currentCoach.context.viewid);
 showChild(currentCoach, 2);
 }
}

See also:

• com_ibm_bpm_global.topLevelCoachViews

• context.parentView()

• context.subview[viewid]

• context.viewid

Learning resources to build new Coach Views

The skills required to build new or customize existing Coach Views can be quite broad and varied
and includes:

• HTML

• JavaScript

• Dojo

Page 338

• CSS

• IBM BPM Coach View Framework

The source of the controls supplied with the product can be examined to understand how they
function and how they were put together by IBM. These controls can be found in the Coaches
toolkit.

In addition, there are a growing wealth of "as-is" Coach Views available at the IBM BPM Wiki site.

See also:

• BPM Community Wiki – Working with Coach Views

• BPM v8 Tutorial Video – Building a custom Coach View - 2012-06-06

Debugging Coach Views

While developing Coach Views, it can be useful to use debuggers to see what is going on. Most of
the browsers available today have debugging tools built into them including FireFox, IE and
Chrome. Using these debuggers we can set break points and examine the content of the DOM tree
and Java Scripts.

As an example, if we insert the statement:

debugger;

into a load() function callback and view the coach in Fire Fox with Fire Bug installed, we see
the following:

Looking on the right hand side, we can see the value of bindings as well as of configuration options.
At the time of writing, my weapon of choice for browser/client side debugging is Google Chrome.
Chrome has a built in development tools so no 3rd party plug-ins are needed.

When debugging a Coach View, you may find that the code shown in the debugger appears
"compressed" and un-readable. The IBM supplied code, including Dojo is what is called
"minified". What this means is that the interpreted JavaScript that comprises the IBM code and
Dojo code has been "compressed" by shrinking variable names and whitespace (including line
breaks). The reason for this is that by being compressed, it is smaller in size and hence there is less
data to be moved over the network when the libraries are being used in the browser. This is a
standard technique. However when debugging your own code, it can be confusing. Fortunately,

Page 339

https://vimeo.com/groups/ibmbpm/videos/43546216
http://bpmwiki.blueworkslive.com/display/samples/Working+with+Coach+Views

IBM has provided a solution. There is a debugging flag that can be enabled which causes a
different version of the JavaScript libraries to be used. That alternate version is not minified and
hence does not show compressed in the debuggers.

Here is the recipe to enable the debugging:

1. Open up the WAS admin console.

2. Expand Resources > Resource Environment > Resource Environment Providers

3. Select the provider called "Mashups_ConfigService"

4. Select Custom Properties

Page 340

5. Select the "isDebug" property. The easiest way to find this is to use the filter

6. Change the value from false to true (or true to false to disable again) and click OK

Page 341

7. With the resource definition changed, save/commit the changes in the WAS admin console
and restart the WAS server. Your debug changes will not start happening until after a server
restart. Once the server has been restarted, code will now show up non-minified. Realize
that this may have an impact on overall performance but a small price to play during Coach
View debugging. If you are using a shared environment with other developers, be sensitive
to their needs as well as your own.

Coach View Construction Tips

DOM root access in a Coach View

It is common to include a "Custom HTML" entry in a Coach View so that content may be added to
it, a typical example might be:
<div class="MyClass">
</div>

Within the load() event, we would then create DOM content and add it into the DOM model.
To find the appropriate entry in the DOM tree, the following code fragment will work:
var myNode = query(".MyClass", this.context.element)[0];

Editing JavaScript for Coach Views

Unless the edits are small, it is not recommended to build the code of the callbacks for Coach Views
in the Process Designer editors. There is very little assistance here and mistakes can easily happen.
Instead, use a professional JavaScript editor with entry assist and copy/paste the code from the
editor into Process Designer. You will forget to perform this copy/paste a few times during
development but the trade between making that mistake and the errors you will introduce by not
using a proper JavaScript editor will more than compensate. I also recommend prefixing your
JavaScript code (in the editor) with some dummy definitions for the commonly used functions that

Page 342

will be used in your own code. This will provide the ability to have entry assist.

Adding a label

Many IBM supplied controls have a label associated with them. This label can be shown above the
new Coach View.
<div class="textLabel">

<label class="controlLabel"></label>
</div>

In the load code, we can set the text of the label with:
var labelDom = query("label", this.context.element)[0];
if (this.context.options._metadata.label != undefined &&

this.context.options._metadata.label.get("value") != "") {
labelDom.innerHTML = this.context.htmlEscape(this.context.options._metadata.label.get("value"));

}

In addition, we will want to handle the visibility settings of the label:
var labelDivDomNode = this.context.element.querySelector(".textLabel");
if (this.context.options._metadata.label == undefined ||
 this.context.options._metadata.label.get("value") == "" ||
 (this.context.options._metadata.labelVisibility != undefined &&
 this.context.options._metadata.labelVisibility.get("value") == "HIDE")) {

// hide the label div
this.context.setDisplay(false, labelDivDomNode);

} else {
// show the label div
this.context.setDisplay(true, labelDivDomNode);

}

Working with visibility

The Coach View framework makes available a Visibility concept.

This is set on a Coach View by Coach View instance basis. The values are:

• Default (inherit from parent) – DEFAULT – Inherit the value from the parent coach view

• Required – REQUIRED – The Coach View is editable and MUST have a value

• Editable – EDITABLE – The Coach View is editable

• Read Only – READONLY – The Coach View is read only

• None (hide or disable) – NONE – The Coach View is hidden

It is up to each Coach View implementation to implement code to honor these settings. One way is
to create a handler function in the load:
this._handleVisibility = function() {

var visibility = "DEFAULT";
if (this.context.options._metadata.visibility != undefined) {

 visibility = this.context.options._metadata.visibility.get("value");
}

if (visibility == "NONE") {

Page 343

 this.context.setDisplay(false);
} else {

this.context.setDisplay(true);
}

}

Then we will call this handler in the view function and also when the _metadata.visibility property
changes as seen in the change function.

Using a Dijit Widget in a Coach View

When using a Dijit Widget in a Coach View, each widget is expected to have a unique "id" value.
Unfortunately, when we place a Coach View in a table, the same "context.viewid" is used for
each row in the column and hence the widget can end up with the same id which won't work.
Fortunately, Dojo provides an answer. The method
dijit.getUniqueId("<widgetType>")

will generate a unique id. The AMD object to load is:

dijit → dijit

Including a custom Dijit Widget in a Coach View

There are times when you might want to create your own custom Dijit Widget and use that when
creating a new coach view. Here is the recipe for achieving that. At a high level, the story
progresses by:

• Writing and testing our new Dijit Widget

• Packaging that widget in a ZIP file with a directory structure mapping to the module

• Adding the ZIP containing the Widget as a Web managed file

• Creating a "requires" JavaScript fragment mapping the module name to the ZIP file

• Adding the "requires" JavaScript fragment as a managed Web file

• Defining the "requires" JavaScript as an included JavaScript fragment

• Defining an AMD definition for our new widget

We will illustrate by example. Let us imagine that we are creating a new Widget called
"DateProgress" that exists in the module called:

kolban/widget/DateProgress

we will assume the following source level tree structure.
kolban

widget
DateProgress.js
templates

DateProgress.htm

We can export from an Eclipse based environment using the Export to File System:

Page 344

Page 345

We now zip this structure up

We add this zip (kolbanWidgets.zip) as a Web managed file to our BPM Process App.

Next we create a JavaScript file (AMDMap.js) that contains:
require({
 packages:

[
 {

name: "kolban",
 location:

com_ibm_bpm_coach.getManagedAssetUrl('kolbanWidgets.zip',
com_ibm_bpm_coach.assetType_WEB, '<ToolkitAcronym>') + "/kolban"

}

]
});

This JavaScript source file then also gets added as a Web managed file. Now we have two
managed files. One is the ZIP that contains our Dijit widgets and the other is the JavaScript AMD
mapper. In the Coach View included scripts, we reference the AMDMap.js file:

Finally, we can now create a AMD dependency on our new module and map it to a variable.

Describing a Dojo based page declaratively

Within Dojo, we can describe the Dojo widgets to be used either programatically or declaratively.
Programatically means that we build the page layout within JavaScript by creating instances of
widgets and placing them at the appropriate DOM locations within the DOM tree. This gives us
optimal control over placement and parameters but has the significant down-side that we can't use
any visual editor to build them out. In addition, modification becomes complex as we have to
remember the layout at the program level. All in all, except for the simplest of pages, it is a slow
and cumbersome process.

The alternative is known as declarative layout. In this instance, we describe our screen through the
use of HTML which can be constructed in a suitable Dojo aware HTML editor such as Worklight
Studio or Maqetta. The HTML that describes the Coach View can then be placed in a Custom

Page 346

HTML component within the layout section of the Coach View definition. When the Coach View
is loaded, the HTML contained within that area is parsed looking for Dojo declarations. Those
Dojo declarations then cause the creation of the associated widgets. At the conclusion, we have a
Coach View which contains widgets and looks great.

The power of Coach Views is that they are not just static HTML but contain BPM data and respond
to events. We want to then augment the Coach View with JavaScript code that will handle
interactions with those widgets. When we created the widgets programatically, we had access to
the object that represented those widgets and could add handler and other logic. When we create
the description of the page declaratively, we need a little bit more work to get those widget object
references.

Dojo provides a class called "dijit/registry" which has a method upon it called
"byId(<name>)". This method returns a reference to the Dojo widget on the page that has the
corresponding id name. So for example, if we have a button on the Coach View that has an id of
"mySubmit", we can gain access to the Dojo widget corresponding to that button with:
var myButton = registry.byId("mySubmit");

There is one final snag with this though and that is the rule that each Widget on the page must have
a unique id value. Defining:
<div id="mySubmit"

data-dojo-type="dijit.form.Button"
data-dojo-props="label:'Submit'">

</div>

Has a problem. If we have two instances of the Coach View on the page then both buttons will be
given the same id and things will break. IBM BPM has a solution to this. If instead we code:
<div id="$$viewDOMID$$_mySubmit" data-dojo-type="dijit.form.Button"

data-dojo-props="label:'Submit'">
</div>

The special code of "$$viewDOMID$$" is replaced with the DOM ID of the Coach View itself.
So if we want to retrieve the button widget, we can now code:
var myButton = registry.byId(domAttr.get(this.context.element, "id") + "_mySubmit");

For any Dojo widgets used in a declarative style, always ensure that you have also used the AMD
loader to load the corresponding Dojo implementation of those widgets.

See also:

• Error: Reference source not found

Accessing images by CSS

It is not uncommon to use CSS to access an image. For example, instead of using the tag to
show an image, one can use CSS to set the image in a <div>. For example:

.myClass {
width: 24px;
height: 24px;
background-image: url(A URL to an image);

}

will set the image. The "url" function in the CSS defines where the image is loaded. Unfortunately,
there appears to be a puzzle when we build Coach Views. What should the URL be to the image
file? We desire that the image be packaged with the Coach View so the first notion of adding the
image as a managed Web File seems like it might be sound … however there is a problem. The
URL to the image can only be determined programatically. It doesn't have a fixed value. With CSS

Page 347

styling, we don't have access to the JavaScript and hence can't dynamically define the location.

One solution to this puzzle is really quiet elegant. It works as follows:

1. Build the CSS you want to include in the Coach View. When you need reference to images,
supply the URL for those images as file names relative to where the CSS file can be found.

2. Place the images relative to the CSS file on the file system.

3. ZIP up the CSS file and the images maintaining the relative directory structure.

4. Add the resulting ZIP file as a managed web file.

5. Include the CSS file in the Coach View in the Coach View editor naming the ZIP file and
the CSS file contained within.

What happens is that when the CSS is loaded, its reference to the image files will be local to the ZIP
file and the server will satisfy those requests from the content of the ZIP.

If you need to update the CSS or image, you must repeat the process which includes packaging up
the file system into the ZIP and refreshing the managed web file that corresponds to that ZIP.

See also:

• Error: Reference source not found

Commonly used AMD loaders

When building Coach Views, there are AMD functions that simply keep coming up over and over.
Here we capture a cheat sheet for some of the most common:

AMD Alias Example Functions

dojo/query query query

dojo/_base/lang lang lang.hitch

dojo/dom-attr domAttr domAttr.get, domAttr.set

Sample Coach Views

Sample Coach View – trivial "hello world"

We start by creating a new Coach View. I called this one "HelloWorld1".

I defined the new Coach View as having a tag of "Control":

Page 348

This causes the new Coach View to appear in the Controls section of the Coach Editor.

Next, I built an icon that was 16x16 pixels. I used GIMP to create it but you can find many free
icons on the Internet. I added this icon into the Files of my Process App as a Web managed file.

By doing this, when the new Coach View appears in a Coach editor, it will have that icon in the
palette of available Coach Views. Looking ahead, it will look like:

Next an image was defined for the layout in the Coach Designer editor:

By defining an image here as the layout image, when the Coach Editor is shown, an appropriate

Page 349

place holder will be seen in the editor canvas area when an instance of the Coach View is added to
the canvas.

In the Layout tab, a CustomHTML component was added.

In the HTML properties, a small fragment of HTML was added to provide some visualization.
When I now create a Coach and add the Hello World Coach View component into the body of the
coach and have the Coach display, we end up with an HTML output as desired/expected.

Page 350

Sample Coach View – Data Change Boundary Trigger

When data changes in a coach view, unless that causes a boundary trigger, no other coach view on
the page will be informed of the change. This is not always a good thing. Consider a table that
shows a list of customers by region. We might also wish to have a combo box in which we can
select the region. If we use the Select coach view, changes to the selection causes nothing else to
happen. We can conceivably edit the Select coach view to cause a trigger to occur but this would
result in a second coach view for this customized select. Not a good thing. What we want to
happen is for a boundary event to fire when the Select changes its data.

Here we examine a way to make that happen. What we will do is build a new Coach View called
Data Change Boundary Trigger (a long name … but very descriptive of what it does). This Coach
View will have no visual appearance. Instead, what it will do is monitor a data value and, if that
data value changes, cause a Boundary Trigger event to fire.

The Coach View is configured to fire a boundary event.

The Coach View has a handler for the "change" event. When the local change event fires, we
trigger a boundary condition.

Page 351

and … that's it. No more complexity than that.

Coach View Templates

When a new Coach View is created, it can be flagged as a Template. What this means is that the
new Coach View will not be available for inclusion in Coaches but instead, when future new Coach
Views are created they can use the Coach Views flagged as templates as starting places for the new
Coach Views.

Dashboard Coach Views
A toolkit is supplied with the product named "Dashboards". When added to a Process App project
an additional set of Coach Views are available. By default, these are not shown in the Coach editor
and must be explicitly enabled within the filter menu:

Once done, a new set of building blocks will be found underneath the Dashboard grouping:

Page 352

With the controls now available to be added to our Coaches by the coach designer, we will turn our
attention to descriptions of each of them.

See also:

• Team Performance

• Process Performance

Batch Modify Dialog Control

Palette icon:

Canvas appearance:

Configuration parameters:

Page 353

Chart Control

The Chart control is used to create and display charts that show data to the end user. The types of
charts available include pie, bar, column and line. The data type used for binding this control is
called "ChartData". These charts are based upon the Dojo charting controls.

Before we get into the details of a Chart Control, let us first ensure that we are grounded in what we
want to achieve. A chart is used to graphically display some data. Commonly, we can visualize
that data as a table:

Month Sales

January $1,000.00

February $3,000.00

March $600.00

April $2,500.00

If we now think of the Month values as the X-Axis and the Y-Axis as the values, we can achieve a
chart like:

It is important to visualize in ones mind the relationship between table data and a potential chart to
show that data. If necessary, write down on paper some sample table data and ensure that you
solidly comprehend how your would take that table data and create a chart.

Palette icon:

Canvas appearance:

Configuration parameters:

Page 354

The primary chart configuration is its data binding which is of type ChartData. It is a highly nested
structure which is described next bottom up.

The ChartDataPoint object contains two fields:

• name (String) – The name of the data point. This contributes to the point's label.

• value (Decimal) – The value of the data point.

The ChartDataSeries object contains two fields:

• label (String) – The label shown in the legend

• data (List of ChartDataPoint) – The list of ChartDataPoint objects that comprise this
series of data items.

A ChartDataSeries contains the data to be shown in the chart. For different chart types, the
ChartDataPoints represents different entities:

• Pie – A pie chart

• Bar – A single horizontal bar

• Column – A single vertical column

• Line – A single point included in the line

A ChartDataPlot object contains the following:

• series (List of ChartDataSeries)

The ChartDataPlot contains multiple ChartDataSeries.

A ChartData object contains the following:

Page 355

• plots (List of ChartDataPlots)

The resulting structure then looks like:

Here is an example of a template of a variable to hold a ChartData object:
tw.local.myChartData = {
 plots: [
 {
 series: [
 {
 label: "My Label",
 data:

[
{ name: "name1", value: 1 },

 { name: "name2", value: 2 }
]

 }
]
 }
]
};

So, with this interesting series of data structures out of the way, let us look at some simple plots of
data.

Horizontal Bar Vertical Bar Line Area Line Pie

The primary configuration of a chart is through the chart properties page which contains:

• Title (String) – The title of the chart. This appears to be an HTML Head Level 2 tag.

• Width (Decimal) – The width of the chart in pixels.

• Height (Decimal) – The height of the chart in pixels.

Page 356

• Theme – The theme used to describe the visuals of the chart. Values include:

◦ Default

◦ At risk and overdue

◦ Turnover trend

◦ Use custom theme

These themes are supplied by IBM BPM.

• Custom Theme – If the Theme setting is "Use custom theme", this property
describes the style of theme to use. This will be a JSON version of a dojox.charting
style object. The JSON data is provided as constructor information to the Theme() object.

• Legend (ChartLegendPositionSelection)– Where (if anywhere) the chart legend
is shown. Choices are:

Page 357

◦ None (none) – No legend is shown.

◦ Left (left) – The legend is displayed to the left of the chart.

◦ Bottom (bottom) – The legend is displayed on the bottom of the chart.

◦ Right (right) – The legend is displayed to the right of the chart.

In the following image, we see a legend shown to the right:

• Stack bar plots

• Stack line plots

• Stack area plots

• Force categorical data – Forces the scale on the X axis to include space for items not present
and scales from the minimum value to the maximum value in width to make the chart
"even".

• On Click – This option can be bound to a variable of type ChartClickEvent. This
data type contains:

◦ seriesLabel (String) – The series that was clicked

◦ dataPointIndex (Integer) – The index into the series that was clicked

◦ dataPoint (ChartDataPoint) – The ChartDataPoint object that was clicked

When a section of the chart is clicked on by the user a boundary trigger event is fired and the
variable's values changes to reflect the item clicked. This can be used by other Coach Views or
functions to cause an update as a result of a user selection. A good example of this might be a drill-
down where the user sees something interesting in the chart and wishes to see more about that item.

When one clicks on a chart, we can see it become hi-lighted. This may not always be the desired
effect. We can disable this by setting the chart's style attribute to "outline-style: none".`

• Chart refresh (Boolean) – If set to "true" the chart refreshes itself and then resets
the flag variable to false. This causes the chart to redraw itself completely. Necessary if we
wish the chart to update itself based upon any configuration property changes.

The way the data is shown is based on the configuration property called "Display options". This is
a rich data structure that contains a list of ChartPlotDisplayOptions:

Page 358

• plotType (ChartPlotType) – The type of chart to draw for this plot. The choices are

◦ Bars – Draw a horizontal bar

◦ Columns – Draw a vertical bar

◦ Lines – Draw line

◦ Areas – Draw an area

◦ Pie – Draw a pie

• plotTypeFixed (Boolean)

• displayHorizontalAxis (Boolean) – If set to true, a horizontal axis is drawn for
all chart types but Pie. Pie has no axis. Here are samples for columns and bars:

Bars Columns

• displayHorizontalAxisScrollButtons (Boolean)

• horizontalAxisTitle (String) – Adds a title to the horizontal axis. This is not
shown if the display of the horizontal axis is not enabled.

• flipHorizontalAxisToTop (Boolean) – By default the horizontal axis is shown
beneath the chart. Setting this property to true causes the horizontal axis to appear above the
chart.

• horizontalAxisMajorTickMarks (Decimal) – How often to draw the major tick.

Page 359

0 disables.

• horizontalAxisMinorTickMarks (Decimal) – How often to draw the minor tick.
0 disables.

• horizontalAxisWindowScale (Decimal)

• horizontalAxisWindowOffset (Decimal)

• horizontalAxisWindowOffsetIsTrailing (Boolean)

• displayVerticalAxis (Boolean) - If set to true, a horizontal axis is drawn for all
chart types but Pie. Pie has no axis. Here are samples for columns and bars:

• verticalAxisTitle (String)

• flipVerticalAxisToRight (Boolean)

• verticalAxisMajorTicks (Decimal)

• verticalAxisMinorTicks (Decimal)

• pieLabels (ChartPieLabelsSelection)

• tooltipTemplate (String)

• gap (Integer) – The gap between bar and column entries in pixels.

In this example, we set the gap to be 1 pixel:

• minBarSize (Integer) – The minimum width of a bar or column in pixels. The width
of each bar will be scaled as a function of the width of the chart, the number of bars to be
shown and the gap requested between bars. This provides guidance on the minimum width
of a requested bar.

• maxBarSize (Integer)

When working with chart data, we also have the opportunity to show corresponding tables of the
data. If we look carefully at the Series, we see it is a list of ChartDataPoint objects where each
of those contains a name and a value property. If we bind a BPM Table Coach View to the list of
ChartDataPoint and then create two columns … one of text and bound to "name" and other of
decimal bound to "value", we end up with a pleasant table showing the data in the chart:

Page 360

Chart with Time Selector Control

Although this control advertises itself as a chart with time selection, reality seems to show that it is
actually a specialized chart that shows bar and column items with a trend line running through it.
This seems to "spoil" it for general purpose use.

Palette icon:

Canvas appearance:

Configuration parameters:

• Title

• Width

• Height

• Theme

Page 361

• Custom Theme

• Legend

• Stack bar plots

• Stack line plots

• Stack area plots

• Force categorical data

• Display options

• Localization Service

• Trend Unit

• Trend unit service

• Trend service

This is an Ajax service that has the following inputs:

• units (String)

• numPeriods (Integer)

• endPeriod (String)

• timezone (String)

• searchFilter (String)

• processId (String)

• processAppId (String)

• teamId (String)

which returns the following output:

• categoricalData (ChartData)

• Trend service input

• Process ID

• Process Application ID

• Team ID

Dialog Control

The dialog control is used to open a child window within the Coach. Initially, when the Coach
appears, the dialog box is not shown. The control can be bound to a Boolean typed variable. When
the variable becomes true, the dialog is shown. Here is an example of what the dialog control looks
like:

Page 362

Its top area is composed to two title areas. One defined by the property called "Title" and the
other defined by the "Subtitle" property. In the upper right of the dialog is a close button which
appears to be the only way to close the dialog.

Palette icon:

Canvas appearance:

Configuration parameters:

The properties for this Control are:

• Dialog box height (Integer)

• Dialog box width (Integer)

• Movable (Boolean)

• Non-modal dialog (Boolean)

• Title (String) – The text shown in the title of the dialog.

• Subtitle (String) – The text also shown in the title of the dialog.

Page 363

Floating Layout Control

Palette icon:

Canvas appearance:

Configuration parameters:

Gantt Chart Instance Details Control

The binding type for this control is an instance of GanttChartInstanceDetailsData. This data
structure contains:

• processId

• Phases

• Tasks

• processName

• processStartDate

• processEndDate

• processDueDate

• processEstimatedCompletionDate

• Stream

Here is an example of this control:

Page 364

Palette icon:

Canvas appearance:

Configuration parameters:

• Show task details

• Update service

• Unsaved Changes

• Chart Reset

• Localization Service

• Preview Service

• Calendar Type

• Available actions

Gantt Chart Process Overview Control

The binding data for this control is an instance of GanttChartProcessOverviewData. This
contains the following fields:

• processId

• processName

• Tasks

• processAverageDuration

A service provided as part of the Dashboards toolkit called "Process Gantt Chart

Page 365

Initialization Service" returns an instance of this object when called with:

• ProcessAppId – The ID of the process application containing the process model. An
example would be an instance of TWProcessApp.id.

• BPDId – The ID of a process model. An example would be an instance of
TWProcess.id.

• SearchFilterString – Unknown.

Here is an example of what this control looks like:

Palette icon:

Canvas appearance:

Configuration parameters:

• Localization Service

• Chart refresh

Navigation Controller Control

The Navigation Controller control appears to be an unusual component in the mix. It almost
appears as an after-thought. It provides no visual appearance, no parameters and no data-binding.
It simply "is". The documentation on it is light … presumably because there is so little that can be
done to configure it. However, from examination and reverse engineering, it seems to be an event
subscriber that, when triggered, causes a jump to a different web page or a refresh of the current
web page with different content.

Palette icon:

Page 366

Canvas appearance:

Configuration parameters:

None.

Process Diagram Control

Palette icon:

Canvas appearance:

Configuration parameters:

• Zoom Level (Decimal) – The zoom level of the diagram. A value of 1 through 10.

• Process ID

Page 367

• Snapshot ID

• Branch ID

• Project ID

• Process Instance ID (String) – The process instance ID who's diagram will be shown. This
value has precedence over the "Process ID" value.

• Activity Summaries

• Show Activity Summaries

• Risk State

• Traversed Path

• Projected Path

• Custom Path

• Localization Service

• Available Actions

Process Due Date Control

Palette icon:

Canvas appearance:

Configuration parameters:

Process Instances List Control

Palette icon:

Canvas appearance:

Configuration parameters:

Page 368

• List title

• Retrieval service

• Height (Integer) – The height of the control in pixels. The default is 600 pixels.

• Number of instances displayed

• Risk state

• Step

• Step risk rate

• Search filter

• Process application ID

• Process ID

• Process application name

• Process name

• Estimated completion service

• Process instances

•

Process Summary Control

This control provides a summary in terms of numbers of overdue, at risk and on track counts of a
given process type.

Page 369

The binding data for this control is a ProcessSummary instance. An example of sourcing data for
this might be:
var myProcess = tw.system.model.findProcessByName("Process 1");
tw.local.processSummary = myProcess.performanceMetrics.retrieveProcessSummary(null, false);

Palette icon:

Canvas appearance:

Configuration parameters:

• Localization Service

• Expanded Mode

• Custom Theme

See also:

• Data Type – ProcessSummary

Search Control

Palette icon:

Canvas appearance:

Configuration parameters:

Page 370

Stream Control

Palette icon:

Canvas appearance:

Configuration parameters:

Task List Control

This control shows the list of tasks available for a user. The control seems to be able to update
itself dynamically so as tasks are added or removed, the control dynamically changes. Here is an
example of a task list with three tasks:

The heritage of this Control models the Process Portal that was built for v8.0 of the product. The
Task List basically shows horizontal bars with one bar for each task. If we click on a task, the
details of that task are shown. This is the value defined in the "Narrative" section of the task
definition.

A pull-down menu on each task allows the user to perform additional actions.

Page 371

The "Modify Task" option opens a dialog which allows the priority and due date of the task to be
changed.

We have the option of only showing a subset of available tasks using the "Initial list size" option.
This controls how many items are initially shown. If there are more items to be shown than we
have initially asked for, a "Show More" button is displayed:

Clicking on the description of the task should launch the Coach for that task. At present, it is not
known how to achieve this. When clicked and there is no current own

If no tasks are available, the phrase "No tasks were found" is shown:

The Task List Control has a relationship to the "Navigation Controller" control.

Unfortunately, it appears that the height of the Task List controller is fixed at 600 pixels. There is
no apparent way this can be changed through the use of a style sheet.

Page 372

Palette icon:

Canvas appearance:

Configuration parameters:

• Height (Integer) – The height of the control measured in pixels. If not supplied, the
default value is 600 pixels. If more tasks are available to be shown than can be displayed in
the supplied height, scroll bars are automatically added. A special height of "0" causes the
control to be tall enough to show all the available tasks.

• Initial list size (Integer) – The initial number of items to show in the list. The
default is all of them.

• Team ID

• User ID

• List scope – The options for this property are:

◦ Open Tasks

◦ Unassigned Tasks

◦ Assigned Tasks

◦ Completed Tasks

• Include assigned users

Page 373

• Filter by due range

• Search filter

• Retrieve task list

• Expand all rows (Boolean) – Show each of the tasks in the list already expanded and hence
their details are also shown.

• Assigned users

• Tasks

See also:

• Navigation Controller Control

• Data Type – TaskListData

• Data Type – TaskListProperties

Tasks Due Control

Palette icon:

Canvas appearance:

Configuration parameters:

Team Roster Control

This control display a list of users belonging to a team:

Page 374

The binding data for this control is a List of TeamRosterEntry. This data type has the following
structure:

• userid (String)

• name (String)

• fullName (String)

• jobTitle (String)

• emailAddress (String)

• phoneNumber (String)

• totalOpenTasks (Integer)

• tasksCompletedToday (Integer)

The function called retrieveTeamMemberList() can be used to retrieve a list of TeamRosterEntry
structures:
var myTeam = tw.system.org.findTeamByName("Team A");
tw.local.rosterList = myTeam.dashboard.retrieveTeamMemberList();

Palette icon:

Canvas appearance:

Configuration parameters:

Page 375

• Title (String) – The title shown above the roster

• Priority team members

• Team ID

• Height (Integer) – The height of the list. The default is 600 pixels.

• Localization Service

• Retrieve team data

See also:

• Data Type – TeamDashboardSupport

Team Summary Control

Palette icon:

Canvas appearance:

Configuration parameters:

Zoom Control

Palette icon:

Canvas appearance:

Page 376

Configuration parameters:

Exposing a Human Service as a portlet
Java provides a standard called JSR-286 which describes how visual components called "Portlets"
can be build to be used in products called "Portlet Servers". IBM builds a product called IBM
WebSphere Portal. IBM BPM provides the ability to expose certain types of Human Services as
JSR-286 compliant portlets for inclusion in such a portal server.

For a Human Service to be used as a portlet, we must define the Human Service as "Exposed As:
Dashboard". From there we will find an option to create a portlet:

Before the portlet can be created, the Process App which includes it must be part of a snapshot.
Once done, the "Create a Portlet from the Dashboard" link can be clicked. This will launch a
wizard used for the creation of the portlet. The screen for the wizard is shown next:

Page 377

We are asked for the name of the portlet which will be shown to the portal user. We are also asked
for a description. Possibly the most important attribute at this stage is the notion of the "File
location". A portlet manifests itself as a Java EE Web Archive File (a .war file). We supply the
location where the war file will be written.

Once the wizard is complete, we will now find that the WAR file has been generated for us. We are
now able to deploy this to our portal server.

To deploy the WAR to Liferay, we can copy it to the <Liferay>/deploy directory where it
will be automatically consumed.

Page Flow/ Screen Flow Solutions
The model of using Coaches with Human Services is that when a Human Service is reached, the
BPMN process described by the BPD pauses until the Human Service completes. When the
Human Service is reached, a new entry is added to the task list commonly seen in the Process
Portal. A user selects the task from the task list and at that point sees the Coach. The user then
works on the Coach/Human Service and completes the Coach allowing the process to continue.
When the next Human Service is reached, the story repeats including picking the task from the task

Page 378

list.

This story paints the picture of human interaction as "task" oriented meaning that each Human
Service is a discrete tasks that has a beginning and end and, when ended, has no relationship to the
next.

In some scenarios, an alternate style of human interaction is desired that is termed "screen-flow". In
this style, the desire is for a screen to be shown to the user and, when the user completes the screen,
the BPD/BPMN process gets control back, does some further work and then reaches the next
Human Service. At this time, a new screen is shown to the user as soon as possible. The effect is a
page transition under process control as opposed to a task claim, view, complete, claim, view,
complete story.

Unfortunately, this style of process modeling and user interface design is simply not possible with
the IBPM product at this time when working with Coaches. A circumvention is to code/design a
series of Coaches in a single Human Service such that transition from one Coach to another follows
a screen flow. Nested Service calls in the Human Service can then be used to call additional
services. The down-side of this approach is that it bypasses all the features of BPDs. This includes:

• Analysis and optimization

• Nested BPDs

• Timer based activities

• Event based activities

• more …

Let us now drill down to see what would be involved in creating a Human Services style screen
flow solution. We will start by assuming that there is a Human Service which contains multiple
Coaches wired together perhaps with logic and service calls between them.

To begin, we need a mechanism to start an instance of this Human Service. We will assume the
existence of a function called “startInstance”. What this will take as input is a description of
which service to start. This will be of the form “<ProcessApp>@<ServiceName>”.

We can next make a REST call that looks as follows:
/rest/bpm/wle/v1/service/<service>?action=start&createTask=true

This will start our task instance. The return data from the REST request is also important. It
contains a lot of details about the newly started Human Service. Among these, the following fields
of information will be necessary to keep around:

• data.step – The name of the first/next Coach to be displayed

• data.key – The TaskId/ServiceId of this instance of the Human Service

• data.data – Data available in the Human Service

• data.actions – The Control Ids of the buttons on the first/next Coach. Sending these in
as “action” requests causes the corresponding Coach to believe that the button has been
pressed and navigate onwards as appropriate

• data.serviceStatus – The status of the Human Service. While in the middle of a
Human Service, this will have the value “coach” while at the end when the Human Service
has completed it will have the value “end”.

In a screen flow solution, we will be instructed on which screen to show next. We retrieve that

Page 379

from the “data.step” data. We should then assume that the UI knows how to display the
information on such a screen.

When the user has completed the current screen, the UI code will invoke a function I have called
“finishUI”. This function takes two parameters:

• The data that should be returned from this screen (if any)

• The name of the “button” that should be assumed to have been pressed

The design of “finishUI” looks as follows:
if we have return Data then

REST /rest/bpm/wle/v1/service/<serviceId>?action=setData¶ms=<jsonParams>
Complete the page using

REST /rest/bpm/wle/v1/service/<serviceId>?action=<action>
Save the response data

Screen Flow using BPD

Let us take a second look at Screen Flow techniques. This time we will look at how this might be
achieved at the BPD level. The first thing we have to do is read the section on:

• Automatic Flow

One of the challenges of this techniques has been that virtually anything between two Human
Activities on the BPD diagram will cause the auto-flow to break. However, an intriguing
opportunity has been noticed. Imagine we have two BPD Human Activities (lets call them A and
B) and we wish to perform other work between them. If we place yet another Human Activity
between A and B but the Human Service that implements this activity has no Coach UI within it,
then screen flow progresses. This means that we can include a variety of service integration calls as
nested services.

The activity labeled “Integration” is defined as a Human Activity but its content can include a
variety of different integration functions.

User Interface fragments
As experience with IBPM grows, a number of useful fragments and techniques can be captured.
Here are a sample of such:

Embedding another HTML page

We can embed an HTML page from another location within the coach. We can achieve this
through the use of the HTML iframe tag. Create a Custom HTML component and define its body
to looks as follows:

<iframe src="http://www.ibm.com" width="100%" height="620px"></iframe>

The src attribute names the web page to be shown. The width and height should also be supplied to

Page 380

describe the size of the internal frame used to display the content. Here is an example:

Error Handling
Building a solution where one expects everything to behave correctly is only part of the story. A
solution should accommodate error conditions as well.

When an error is caught, the XMLElement at tw.system.error contains some data.

Page 381

Within a service, we can define an Error End Event. When this is reached, the service comes to an
end and an error condition is raised.

The name or identity of the error condition is supplied in the Implementation tab in the "Error
Code" field.

In a BPD where a call might be made to such a service, an Error Intermediate Event can be attached
to handle such an error:

Page 382

A handler can be added to catch a particular named error or a handler can be added to catch all
errors. If we can't remember the names of all the errors, we can be provided with a list of possible
errors from the selection entry on the far right.

An additional way to handle errors in our environment is to provide an "Event Subprocess". This is
a sub-process which will be invoked when an error condition (general or specific) is detected.

See also:
• Error End Event

• Error End Event

• Catch Exception

Error Handling in JavaScript
Code within services that is written in JavaScript can include the try/catch mechanism to surround
code that may fail. For example:

try
{

// Some code here
}
catch(myException)
{

Page 383

log.error("Caught an exception: " + myException.message);
}

BPD Events
Events are occurrences that happen associated to the process and which the process should be
notified about. There are various types of events associated with the solution. Events are usually
triggered by some occurrence. The general occurrence types are:

• An external message arrives

• A time period has elapsed

• An exception has been detected

Start Event – see Start Event

End Event – see End Event

Timer Event – see Timer Events

Start Message Event – see Timer Events

Intermediate Message Event – see Error: Reference source not found

Intermediate Tracking Event – see Tracking Intermediate Event

Start Ad-hoc Event – see Ad-hoc Start Event

Intermediate Exception Event – see Error: Reference source not found

End Exception Event – see Error End Event

Terminate Event – see Terminate Event

Page 384

Undercover Agents (UCAs)
An Undercover Agent (UCA) listens for triggers from external systems, Invoke UCA service
components or for scheduled time based events. UCAs are also responsible for firing either a
Message Start Event or for firing an Message Intermediate Event that is contained within a BPD.

See also:
• Message Start Event

• Invoke UCA

• Starting a UCA from REST

A UCA definition is created from the implementation category within Process Designer.

Once selected, a wizard will appear. In this wizard we get to give the new UCA a name and define
how it is started.

Page 385

The "Schedule Type" attribute has two possible options:

• On Event – Fired as a result of an explicit Invoke UCA in a service

• Time Elapsed – Fired on schedule from the run-time

Event Initiated UCAs
When an Event Initiated UCA is defined, it looks as follows:

When a UCA is activated, it will basically represent an event. That event can carry payload data
with it. IBPM provides two distinct mechanisms to define the payload data that may be carried
with a UCA event. The simplest way is to select "variable".

With that radio button checked, we get to supply a single variable data type. When a UCA is
invoked, it will expect an instance of that type of data to be passed along with it. The second option
is available when Service is selected:

Page 386

Now we get to supply the reference to a service (commonly a general service definition). The input
data to the general service is then used to build some output data and the output data is what is
passed along with the UCA. It is extremely common to have a general service map directly from
the input parameters to the output parameters without modification. This allows a UCA to pass
more than one parameter.

Once created, the UCA definition will look as follows:

The Enabled check box can be used to enable or disable the execution of the associated service
when an event arrives.

In the Event section, we see a correlation value called Event Message that is used to associate
an incoming event with the instance of a UCA that is watching for that kind of events. The
majority of times this can be ignored. This is of particular importance when using JMS to initiate a
UCA. See: Java Message Service – JMS.

When an event arrives and triggers a UCA, the UCA in turn will execute an IBPM service. This is

Page 387

specified by the Attached Service attribute and is commonly an IBPM General Service. The
way that the UCA causes the service to be called is not by invoking that service explicitly, instead,
the UCA queues the request to start the service on a logical queue. It must be stressed that this is
indeed a logical queue and has no relationship to JMS or SI Bus. The queuing mechanism here is
used to serialize the execution of UCA originated events. When the UCA places a request on a
queue, any further requests placed on that queue are not processed until the previous events have
completed which means that the associated services have completed. One exception to this is the
special queue called the Async Queue. If the UCA start service request is placed on this queue,
further requests to start services will not wait for previous services to complete.

The number and names of these queues can be changed in the IBPM Process Admin Console.

Schedule initiated UCAs
A schedule (time based) UCA has an additional set of attributes:

The Time Schedule defines recurring periods of when the UCA should fire. The Time Schedule is
quite flexible in its configuration. Each time the schedule is reached, the UCA fires.

The icon for a Timer Event UCA looks as follows:

Page 388

Within Process Center there is a Process Server used for testing. It doesn't make much (if any)
sense for a UCA to fire for each of the schedules held in the repository in the Process Center Server.
As such, they simply don't. For testing, the Run now button can be used to explicitly fire an
instance of the UCA.

When a UCA is scheduled, we can see it in the Process Admin Console under Event Manager >
Monitor:

See also:
• Process Scheduling with Job Scheduler

UCAs and queued events
Consider a UCA firing which results in an event being generated for processing by either a Start
Message Event or an Intermediate Message Event.

Disabling UCA processing
Within the Process Admin Console under the Deployed Apps section, we can see lists of the UCAs
associated with an application.

From here we can selectively enabled or disable their processing.

UCAs and Toolkits
One common usage pattern for UCAs is to have them used in a publish/subscribe model. This
means that a publisher publishes an event by invoking a UCA. Any interested subscribers then
listen on that UCA to be triggered if and when a UCA is invoked. The implication of this is that
both the publisher and subscriber must share the UCA definition. If the publisher and subscriber

Page 389

are in different Process Applications then the UCA definition must be stored in a toolkit that is
common to both Process Applications. Care should be taken that UCAs added to Toolkits be only
event processing UCAs and should not be time based UCAs. This technique is a powerful solution
to having one BPD invoke another BPD when both BPDs are in different process apps. There is no
known alternate solution to that puzzle.

Page 390

Token Management
As a process instance executes, it can be thought of as having a current step that is being processed.
If we were to draw out our process on a sheet of paper, we could imagine placing a pebble on the
current step being executed. We would think of this pebble as a "token" to indicate which step has
control. The IBPM product exposes the concept of tokens to indicate where within the process the
current step may be found. The REST API exposed by the product provides a set of commands that
can be used to interrogate the process to find the current token, a command to move a token from
one step to another and a command to delete a token from the instance. When we combine these
capabilities we have the notion of being able to achieve some interesting effects.

By moving a token from one step to another, we effectively have fine grained control over the flow
of the process. Specifically, we can jump backwards or forwards within the process. Using this
technique we can effectively jump to a previous step and have execution continue from there.
Alternatively, we can jump forward skipping current steps and end up at some future step.

Before we go one to discuss these ideas further, let us introduce a note of caution. A process
instance is characterized by a number of item. Most important of these are the states of variables
contained within the process. Steps within a process change or modify the values of these variables.
The output of a previous step may be the population of a variable which is essential for the correct
operation of a subsequent step. What this means is that if we move a token forward, steps which
would have been responsible for variable population are skipped with the result that the variables
are not properly set. When a step is reached which relies on these values, the step may fail to
operate as we expected.

In addition, jumping around within a process subverts the design intent of the process designer. A
process is a sequence of activities that when executed in order, achieve a well defined business
outcome. Jumping around within a process effectively breaks that design. This could result in
technical failure of the process or, worse, it could result in erroneous outcomes. For example, if we
re-run a step which bills a customer's credit card, the result would indeed be a double billing. If we
skip over a billing step, then the customer may not be billed at all. Neither are acceptable outcomes
for the process as a whole.

With these notions in mind, the idea of moving a token within a process has to be carefully
considered. It should rarely be considered a "go-to" practice and should only be used by expert
process designers and even then with caution.

With those disclaimers and caveats in place, let us now look at how this technology can be used.

At the core there is a REST API called "Move Token" which has the following syntax:
POST /rest/bpm/wle/v1/process/{processInstanceId}?action=moveToken&tokenId={tokenId}&target={stepId}

This is quite a technical looking command so let us break it down.

In effect, it is a function call that takes three parameters:

• processInstanceId – This is the identifier of the process instance within which a
token will be moved. Obviously if we are jumping from one step in the process to another,
there has to be an instance of the process within which we are jumping.

• tokenId – This is the identifier of the token that is going to be moved. More will be said
on this soon.

• target – This is the step within the process to which the token will be moved. Again,
more will be said on this shortly.

When we run a process within Process Designer and look at it within the Inspector view, we see

Page 391

diagrams that look as follows:

Notice the marker. This is a visual indication of the token within the process. Each token has an
identifier associated with it that we all the tokenId. It should be noted that this is not a computable
nor fixed value. When a token is at one step it will have a certain tokenId value but as soon as it
moves to another step, the token will have a completely new tokenId. It appears in fact to be an
illusion that we are "moving tokens". Instead a token is the marker showing which step we are at
and when we say we are moving a token, what we really appear to be doing is "ending" the current
token and creating a "new"token (with a new tokenId) at the next step. Despite this subtlety, it
appears that we can simply think of the token as having moved and still hold our model cleanly.
Just ensure that the you realize that a "token" doesn't have the same identifier throughout its life.

How then can we find the current token within a process instance?

Again, another REST command comes to our aid.
GET /rest/bpm/wle/v1/process/{processInstanceId}

This function returns a detailed data structure describing the process supplied by the
processInstanceId. Contained within this data structure is a sub-structure called the
"executionTree". This structure lists all the steps within the process instance which currently
have tokens associated with them. The details of the structure will not be described here and can be
found elsewhere. However, the astute reader will have noticed that I attempted to sneak something
into our story. I suddenly started to talk about token existence within a process in plural form.

Yes … this is correct and was not a mistaken. Within any given process instance, multiple steps
within it may indeed be available to be executed concurrently and hence each of those steps have
their own associated token. Because of this, when we are working with process instances and are
looking for the identity of a particular token to move, we need to be cautious that a process instance
may have multiple tokens and not be fooled into simply taking the first token we come across.

Let us recap. In order for us to move a token within a process, we need to know the
processInstanceId of the process instance that is going to be manipulated. Knowing the
processInstanceId we can then ask for the tokenId for the token that we wish to move.
What remains is to define the step within the process which should be the target of the move. At
the conclusion of the move, the token will now reside at that step.

When we look at a process diagram, we see that steps have nice human-readable labels associated
with them. In principle, we could use those labels as the identity of a step but the reality is that is a
bad idea. If we coupled our logic for moving processes to what a designer chose to name a step on
a particular day, we will quickly become broken if someone should simply rename the step. Putting
it simply, we don't want the process designers to break our solution if they change a step name nor
should we wish to constrain them from changing those names. What we need is some unique
identity for a step in a process that isn't going to be related to its label. Fortunately, there is exactly
such a thing. If we look in Process Designer at a particular step, we see that in its General

Page 392

Properties tab, there is an entry called "System ID". This weird and wonderful code is assured to
be unique and distinguishes this step in this process model from any other step in any other process
model. Note that to actually see this field in the tooling, you have to enable the "advanced options"
within the tool.

With this notion in mind, we can return to the last parameter of our Move Token function. The last
parameter which is the target of the token move is exactly an instance of this kind of identifier for a
step. Note that if we wish, there is another REST API that will allow us to list all the steps in a
process model. This list contains their names as well as their stepIds. From this information, we
can present the user a list of possible targets instead of hard-coding.

Now we have all the piece parts we need to achieve the token move functions.

Let us now turn our attention to the semantics of moving tokens. If we move a token from a human
activity, that human activity is canceled. If we move a token to an activity, it is as though we had
just reached that activity through normal flow means and it is executed appropriately.

Having now given a brief overview of how to move tokens within a process, let us now look at
when and why we would use such a technique.

When we build processes, there are a variety of patterns that we would like to accommodate. Once

Page 393

such pattern is that we may wish to correct an in-flight process instance. Perhaps we have executed
a sequence of steps only to realize that a change has been made in our assumptions. Perhaps a
customer has called in to amend an existing order or an application for a mortgage has to be
reworked because the individual's circumstances have changed. We could always abandon the
process and start it again but in certain cases, that may not be the best result.

Within a process we can model an "ad-hoc" entry point. This means that while the process is
running, we also have the ability to asynchronously execute steps within its context as a result of an
external event. Here we see a process which has an ad-hoc entry point.

When this entry is called, a human service is presented to the user. Within that human service we
can design the logic to choose the current token within the process as well as ask choose the step in
the process that the token will be moved to. Example screens for this might look like:

Page 394

Here are shown the list of current tokens and the set of potential target steps. Selecting these
appropriately and clicking execute will move the process accordingly.

See also:

• Moving a token within a process using REST

Page 395

Security
IBPM leverages both its own model of users and groups as well as leveraging the underlying
WebSphere Application Server security sub-systems. User administration of the IBPM private
security is performed through the IBPM Process Admin Console in the User Management section
(see: Process Admin - User Management).

Unless you are running a pure sand-box development environment or simply are not concerned
about security, one of the first tasks that should be performed against IBPM after installation is
changing the passwords for the default userids. IBPM documents the default passwords and until
those are changed from their default values, the system must be considered completely in-secure.
An IBPM TechNote was written on the subject:
• 1448216 - How to Change the Default User Passwords (including tw_admin) on WebSphere Lombardi Edition

Some of the passwords needed for operation are stored in encoded formats in files on the file
system within the sub directories associated with the IBPM product configuration. These
passwords are not encrypted but rather "re-arranged" so that a simple eyeball of the content of the
file will not expose their values. If an administrator needs to know the value of the encoded
password, a web site on the Internet can be used to enter the value and return the plain text
representation. Note that nothing is known about this web site other than its existence so users
beware:

http://www.sysman.nl/wasdecoder/

See also:
• TechNote - WebSphere Lombardi Edition Access Control Settings Overview – 2011-04-20

Security Groups
Group management of the IBPM supplied private group system is performed in the IBPM Process
Admin Console under the User Management > Group Management section.

A new group can be created by clicking upon the New Group link.

Page 396

http://www-01.ibm.com/support/docview.wss?uid=swg21497231
http://www.sysman.nl/wasdecoder/
http://www-01.ibm.com/support/docview.wss?uid=swg21448216

A dialog appears in which the name of the new group can be entered:

Once created, user members can be added to the group:

A dialog appears into which users can be selected and added:

Existing groups can be listed by typing in "spaces" or the prefix of the names to be shown.

See also:

Page 397

• Data Type – TWRole

Teams
A team is used to represent a set of users in your organization or enterprise locally within an
application. Teams can be found in the Processes category within PD. The members of a Team are
local to the application in which it is defined. Security Groups provide a global mechanism to
define groups. It is key to understand that a Team is a logical group that does not exist outside of
the concept of the Process App in which it is defined.

During the creation of a new Team, the name desired for the new group is prompted:

Once created, the details of the new Team can be seen. When newly created, a Team has no
members associated with it.

Page 398

Within the Members section is where we define who belongs to the team. The Members selection
criteria can be one of three types:

• Standard Members

• Using Expression (Deprecated)

• System (Deprecated)

Using the Standard Members selection, the members of the participant group are taken from
the users and groups defined in the Process Admin Console or from the underlying WebSphere
Application Server security system.

Since the other two types of Member selection are deprecated, we will no longer discuss these.

An alternative mechanism to define who are the members of a team is to click on the "Specify
Team Using Service" check box. If selected, then the result of executing a BPM service will be
used to determine who the members of the team are. The service has to have a specific signature
and can be built from the "Team Retrieval Service Template".

This service has an input called "name" which is the name of the team who's members are to be
determined. The service returns an output called "team" which is an instance of the Team business
object. This defines who will be members of the team.

As well as supplying the members of a team, you can also determine who the manager or managers
of the team will be. This is itself achieved by defining another team that can contain one or more
members who will be considered the managers. From there you can then name that management
team.

Page 399

When a Task is added to a BPD, that task is added to a lane within the diagram. A default Team
can be associated with that lane. Unless otherwise specified, that task will be associated with the
members of the associated Team at run-time. Selecting the lane and viewing the properties allows
us to select a Team:

From within the Process Admin Console, the set of users associated with a Team can be changed at
run-time. To achieve this start the Process Admin Console and select Installed Apps:

A list of the installed application is shown. Select the application that contains the Participant
Groups that are to be changed:

Page 400

From there, a list of the Participant Groups can be found with their associated members within the
Role Bindings section. Members can be added or removed.

See also:
• Pools and Lanes

• Security Groups

• Data Type – TWParticipantGroup

• Data Type – Team

• Assigning Activities – Mapping staff to work

• Vimeo - IBM BPM 8.5 Teams

Page 401

https://vimeo.com/groups/ibmbpm/videos/68961023

Securing Access to the repository
The Process Center repository is secured as it hosts the projects within the enterprise. We typically
do not want just anybody to either see or make changes to our Process Applications. In the Admin
section of the Process Center console, we can select to Manage Users. From here we can add
new users and groups to the list of authorized users.

When the Add button is clicked, a dialog appears into which the additional users and groups can be
added:

If a user wishes to login through PD, the user must be authorized to login or else the following error
will be produced:

Notice that users and groups of users can also be removed from Process Center access. It is vital
that this be done with care. If no users are defined to have Admin rights to Process Center then you
have effectively locked yourself out. Simply put, don't do this. Take great care that this does not
happen.

Securing development of a Process Application

Page 402

Granting a user authority to access the Process Center allows them to login through the PD but this
does not mean that they now have privileges to work on or even see all the Process Apps in the
environment. Process Apps and Toolkits are individually controlled with their own access control
lists. From within the Process Apps section of the PD or the Process Center Console, an application
can be selected and the Manage tab selected. In there we have a section into which users and
groups may be associated. These define the permissions for those entities.

There are three roles a user or group can have:

• Read – This allows a user or group to see the project and see the artifacts within it. The read
role can not be removed without removing the user or group association completely. If a user
or group is not associated with the a Process App then the user or group has no authorities on
that application. If an artifact is opened and the user only has Read authority, the artifact is
flagged as Read-Only in the editor.

• Write – This role allows the user or group to update or add artifacts into the Process
Application.

Page 403

• Admin – This role allows the user or group to administer the Process Application.

See also:
• Process Admin - User Management

Page 404

Securing the ability to start an application
Typically, we do not wish just any arbitrary user to be able to start a new instance of a process
application. Instead, we want to allow only sufficiently authorized users. In the Overview page
of a BPD we can find a section called Exposing.

In there is an attribute called "Expose to start". This can be set to the name of a participant
group. Only the members of this participant group will be allowed to start a process. If a user is
not in this group, they will not be allowed to start the process:

Securing ability to work with tasks (Human Services)
An activity in the BPD has a Routing section. Within there, the names of the potential staff
members who can work on the task are defined. If a user is in this list, then the task will appear in
their process portal page and they can work upon it. If they don't appear in this list, then they can't
work upon it.

Securing Process Portal capabilities
Many of the tasks of interacting with IBPM are performed through the Process Portal. We wish to
control who can do what through this interface.

IBPM exposes a set of configuration parameters that define the role a user must have in order to be
able to perform a function. The different functions available for configuration are:

Capability Description

ACTION_ABORT_INSTANCE Terminate an instance of a process.

Page 405

ACTION_SUSPEND_INSTANCE Suspend an instance of a process.

ACTION_RESUME_INSTANCE Resume a previously suspended instance of a process.

ACTION_ADD_COMMENT Add a comment to an instance of a process.

ACTION_ADD_HELP_REQUEST Create a help request associated with this instance of a process.

ACTION_RESPOND_HELP_REQUEST Respond to a help request previously raised against a process.

ACTION_ASSIGN_TASK Assign the task to the current user making the request.

ACTION_ASSIGN_AND_RUN_TASK Run a task and assign it to the current user.

ACTION_REASSIGN_TASK Return the task to the original group to which it was originally
assigned.

ACTION_REASSIGN_TASK_USER_ROLE Assign the task to a different user or role.

ACTION_CHANGE_TASK_DUEDATE Change the due date on a task.

ACTION_CHANGE_INSTANCE_DUEDATE Change the due date on a process instance.

ACTION_CHANGE_TASK_PRIORITY Change the priority of a task.

ACTION_MOVE_TOKEN Skip the current task in the BPD and move to the next one.

ACTION_DELETE_TOKEN Delete token.

ACTION_INJECT_TOKEN Start an ad-hoc event. Note that by default, only admin users can
start ad-hoc events. This trips up a lot of folks.

ACTION_VIEW_PROCESS_DIAGRAM Ability to view the process diagram.

ACTION_VIEW_PROCESS_AUDIT Ability to view historical data about process variables.

ACTION_CHANGE_CRITICAL_PATH

ACTION_ADD_DOCUMENT

ACTION_UPDATE_DOCUMENT

ACTION_DELETE_DOCUMENT

ACTION_DELETE_INSTANCE

ACTION_FIRE_TIMER

ACTION_RETRY_INSTANCE

ACTION_SEND_EVENT

The configuration for these parameters used to be achieved via XML customizations and the
instructions for that are shown later. However from 8.5 onwards, wsadmin scripting can be used to
achieve this task. There is an AdminConfig object called "BPMPolicyActions" that has methods on
it to list, set and get values. This will probably be used to provide scripted or programmatic access.
Fortunately, IBM has supplied a sample script to work with these options. The script can be found
at <ROOT>/util/Security/BPMSecurityConfig_sample.py. Asking it for its usage shows:
Usage: Use this script to get/modify the configured security properties.

 -E|--de DE_name -option
 -g|--get property_name
 -s|--set property_name , new_value
 -a|--add console_property_name , constraint_value
 |action_policy_name , role to be added
 -r|--remove console_property_name , constraint_value
 |action_policy_name , role to be removed

An example of running it would be:
C:\IBM\BPM\v8.5\util\Security> wsadmin -f BPMSecurityConfig_sample.py -lang jython -user kolban

Page 406

-password password -E De1 -g ACTION_ABORT_INSTANCE
WASX7209I: Connected to process "dmgr" on node Dmgr using SOAP connector; The type of process is:
DeploymentManager
WASX7303I: The following options are passed to the scripting environment and are available as
arguments that are stored in the argv variable: "[-E, De1, -g, ACTION_ABORT_INSTANCE]"

Current value for property ACTION_ABORT_INSTANCE in DE De1 is:
tw_admins

The configuration settings for these capabilities are made in the 100Custom.xml file. The
default settings can be found in the 99Local.xml file found in:
<Install>/profiles/<profileName>/config/cells/<cellName>/nodes/<nodeName>/servers/<serverName>/proce
ss-center/config/system/99Local.xml

The default section in this XML file looks as follows:
<portal>

<default-action-policy>
<action type="ACTION_ABORT_INSTANCE">

<role>tw_admins</role>
</action>
<action type="ACTION_SUSPEND_INSTANCE">

<role>tw_admins</role>
</action>
<action type="ACTION_RESUME_INSTANCE">

<role>tw_admins</role>
</action>
<action type="ACTION_ADD_COMMENT">
</action>
<action type="ACTION_ADD_HELP_REQUEST">
</action>
<action type="ACTION_RESPOND_HELP_REQUEST">
</action>
<action type="ACTION_ASSIGN_TASK">
</action>
<action type="ACTION_ASSIGN_AND_RUN_TASK">
</action>
<action type="ACTION_REASSIGN_TASK">
</action>
<action type="ACTION_REASSIGN_TASK_USER_ROLE">
</action>
<action type="ACTION_CHANGE_TASK_DUEDATE">

<role>tw_admins</role>
</action>
<action type="ACTION_CHANGE_INSTANCE_DUEDATE">

<role>tw_admins</role>
</action>
<action type="ACTION_CHANGE_TASK_PRIORITY">

<role>tw_admins</role>
</action>
<action type="ACTION_MOVE_TOKEN">

<role>tw_admins</role>
</action>
<action type="ACTION_INJECT_TOKEN">

<role>tw_admins</role>
</action>
<action type="ACTION_VIEW_PROCESS_DIAGRAM">
</action>
<action type="ACTION_VIEW_PROCESS_AUDIT">

<role>tw_admins</role>
</action>

</default-action-policy>
</portal>

The <role> entry names a security group (see: Security Groups) which is a global group with
defined members. If no <role> is defined within an action tag then all users are allowed to
perform that action.

The following is an example of an entry that can be made in the 100Custom.xml file to change
the authorities:
<portal>

Page 407

<default-action-policy>
<action type="ACTION_VIEW_PROCESS_DIAGRAM">

<role>Test Group 1</role>
</action>

<default-action-policy>
</portal>

It is strongly recommended not to edit the content of the 99Local.xml file. Instead, edit the
100Custom.xml file and add/replace all changes there. When Process Server starts, it will
merge the 99Local.xml with the 100Custom.xml producing a combined result. Editing only
100Custom.xml keeps all the changes in one place and aids in maintainability. Changes made to
these configuration files don't take effect until after the next restart of the Process Server/Process
Center.

Securing access to publish Integration Designer projects
In order to publish modules from Integration Designer, the connected user must have the WAS
Administrative permissions of "deployer" or "configurator". These can be set from the WAS admin
console under Security > Global Security > Administrative Security:

Page 408

Lightweight Directory Access Protocol - LDAP
LDAP is a commonly used registry of information and is typically used to hold organizational
information including the definitions of users, passwords and group membership. WAS can
leverage an LDAP server for management of users and passwords. IBM's implementation of LDAP
is called IBM Tivoli Directory Server.

See also:
• Redbook - IBM Business Process Manager V7.5 Production Topologies – Chapter 5.6

• DeveloperWorks - Associating WebSphere Lombardi V7.2 attributes with users defined in OpenLDAP and routing tasks - 2012-01-18

• DeveloperWorks - Integrate an LDAP user registry into a WebSphere Lombardi Edition business process - 2011-10-31

• DeveloperWorks - Secure integration of an LDAP user registry with WebSphere Lombardi Edition - 2011-06-29

Tivoli Directoy Server

As of July 2012, the latest version of Tivoli Directory Server is 6.3.

The installer for TDS looks as follows:

Page 409

http://www.ibm.com/developerworks/websphere/bpmjournal/1106_yang/1106_yang.html
http://www.ibm.com/developerworks/websphere/tutorials/1111_balani/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1201_balakrishnan/1201_balakrishnan.html
http://www.redbooks.ibm.com/redpieces/abstracts/sg247976.html

Page 410

Page 411

Page 412

See also:

Page 413

• Home page for Tivoli Directory Server

• InfoCenter for TDS 6.3

Apache Directory Server

The Apache Directory Server is an implementation of LDAP completely written in Java and made
available as Open Source. The home page for this free product is:

http://directory.apache.org/

It is a relatively small download (11 Mbytes) and is self contained for execution. Once installed,
here are some basic properties that are useful:

Userid uid=admin,ou=system

Password secret

Default port 10389

Installation of Apache Directory Server

What follows is a walk through of the installation of the Apache Directory Server.

When initially downloaded, the server comes as a single setup file.

Once launched, the common boiler plate is shown.

Page 414

http://directory.apache.org/
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBMDS.doc/welcome.htm
http://www-01.ibm.com/software/tivoli/products/directory-server/

Next comes the license agreement. Read and accept if you agree.

Page 415

There are installation choices, a Full setup is what is shown in this walkthrough.

The file system location where the Apache Directory Server is to be installed is configurable.

Page 416

An LDAP directory contains data describing the structure of an organization. The location on the
file system of where this data is stored can be configured.

The Apache Directory Server is written in Java and needs a Java runtime. The location of the Java
runtime to be used must be supplied.

Page 417

Finally, the installation progresses.

At the conclusion, a completion page is shown.

Page 418

Apache Directory Server Studio

Another free Apache product is the Apache Directory Server Studio. This is a fantastic
configuration tool for the Apache Directory Server and other LDAP servers.

Installation of Apache Directory Studio

Page 419

Page 420

Installation of Apache Directory Server Studio Eclipse Plugins

Apache Directory Server Studio can be installed as a set of Eclipse plugins. This set of Eclipse
plugins that can be installed into ID or RAD. This provides a set of LDAP maintenance tools as
well as an in-built LDAP server that is excellent for development and testing.

It can be installed directly into ID through dynamic retrieval.

Web site for Eclipse plugins:

http://directory.apache.org/studio/

Go to Help >

Page 421

http://directory.apache.org/studio/

For the download URL for the eclipse plugins, enter:

http://directory.apache.org/studio/update/1.x

Page 422

The packages will now be dynamically downloaded from the web and installed into WID.

Once installed, a new perspective called LDAP is available:

In addition to being able to work with external LDAP Servers, the Studio provides its own LDAP
server instance. This provides the ability to quickly create an LDAP instance for testing but realize
that once the studio has been shut down, the LDAP server shuts down too. It is probably much
safer to run an LDAP server outside of the Studio.

Page 423

To create a Studio hosted LDAP server, create a New Server definition.

Give the new server a name:

Provide any properties that are specific to the new server.

Page 424

Start (run) the Server from the Servers panel.

Create a connection to the new server to access and populate it with content.

Page 425

Installation of JXplorer

JXplorer is an Open Source GUI LDAP browser tool. If you don't install the Apache LDAP
Directory Studio, this can provide a useful alternative. It can be found at:

http://www.jxplorer.org/

A walk through of the installer is shown next.

First comes the basic welcome/setup screen.

The license agreement is shown next and should be read. If agreed, accept the license and continue.

The directory in which the tool will be installed is shown next.

Page 426

http://www.jxplorer.org/

Following this, installation is ready to progress.

After installation is complete, a summary is shown.

Page 427

The tool can now be found in the Start Menu under the JXplorer folder.

Getting locked out of WAS

While configuring WAS for LDAP, if an error is made during this time, you might find yourself
getting "locked out". This means that you can't login to WAS to perform repairs. The resolution to
this is to stop the WAS server and temporarily switch off security. Unfortunately, if you have lost
admin access to WAS, you won't be able to stop it cleanly. You will have to locate the process id at
the operating system level of the Java JVM running WAS and kill it. Process Explorer is a good
tool for finding the correct process ID and killing it.

Once WAS has been stopped, we can run a wsadmin command to disable security.

wsadmin -conntype NONE
wsadmin> securityoff
wsadmin> exit

When the WAS server is restarted, security will be off. Access to the WAS admin console can then
be made through a browser at:

https://localhost:9043/ibm/console/unsecureLogon.jsp

Configuring WAS for LDAP

In order to include an LDAP server in the mix of security repositories, work must be performed
through the WAS Admin Console. Let us assume we have an Apache Directory server with base
dn of ou=system.

We login to the WAS Admin console using admin/admin. In the Security settings, we select global
security:

Page 428

https://localhost:9043/ibm/console/unsecureLogon.jsp
http://technet.microsoft.com/en-us/sysinternals/bb896653

Next we click on the Configure... button associated with Federated repositories:

Click the Manage repositories link:

Page 429

Click the Add button

Enter values for the Repository identifier, host name and port.

Page 430

Back in the Global security page, click the Configure button again.

Click the Add Base entry to Realm... button

Page 431

Ensure the correct repository is selected and now supply the root DN for the searches for this
repository.

Restart all the servers.

Configuring LDAP for IBPM

IBPM expects the following resources to be available:

• user – tw_portal_admin

• user – tw_user

• group – teamworks_admin

Page 432

• group – teamworks_authors

• group – tw_admins

• group – TWSecurityProviderUsers

Debugging LDAP

If the authentication system being used by WebSphere is LDAP, then it can occasionally be useful
to examine the requests and responses flowing to and from the LDAP server. TDS has a an audit
log where one can see requests being sent to it but there is no obvious way to see the responses
being returned. In addition, other LDAP providers may be used that you are not familiar with. A
solution to tracing the LDAP flows is to use the package called SLAMD. Although this package is
all about performance and load testing, as part of this package, in the tools folder, a tool called
ldap-decoder is provided. This tool acts as a proxy/interceptor between an LDAP client and an
LDAP server and displays LDAP queries and responses.

Here is a quick cheat sheet on using ldap-decoder. First, understand that it is a DOS command
window tool and hence must be run from the DOS prompt. It sits between a real LDAP provider
and a client (such as IBPM) that is making LDAP requests. When IBPM makes a query against
LDAP, it is really making the request to ldap-provider. Ldap-decoder then forwards the request to
the real LDAP provider which in turn sends a response back to the ldap-decoder tool. This in
turn sends the response back to IBPM. This means that ldap-decoder sees both the requests to
LDAP and the responses returned from LDAP. Ldap-decoder knows how to parse the LDAP data
stream (which is binary) and displays the requests and corresponding responses in the DOS console
window.

The ldap-decoder tool can be found in the tools sub folder of the slamd installation directory.
Before starting the tool, edit the file called set-java-home.bat and change the JAVA_HOME
environment variable to point to a Java runtime.

To run ldap-decoder, execute the following from the <slamd>/tools folder:

ldap-decoder -h LDAPProviderHostname -p LDAPProviderPort -L LocalListenPort

For example:

ldap-decoder -h localhost -p 10389 -L 10390

Ldap-decoder will then start listening on the LocalListenPort and when it receives a request,
it will be forwarded to the LDAPProviderHostname at port LDAPProviderPort.

Page 433

http://www.slamd.com/

User Attribute Definitions
A User Attribute definition is an attribute (property) that can be configured on user definitions in
IBM BPM. For example, if we needed to route a process task to users who speak Spanish, we need
to know the languages spoken by our users. This example is not an attribute present by default on
our user definitions. Through the creation of a User Attribute, we can augment the existing
attributes with new ones.

A User Attribute definition made within a Process Application has the unusual effect of changing
the environment as a whole. Normally we think of Process Application definitions as only being
applicable to the Process Application in which they reside. User Attributes are different. Defining
a new User Attribute causes that attribute to be created against all users for every process.

A User Attribute definition can be created from within the Data category of the Library.

When created, a dialog appears asking for a name for this attribute:

The definition parameters for a User Attribute looks as follows:

Page 434

The fields contained in this definition are:

• Name – The name of the User Attribute.

• Modified – The person, date and time who last changed the definition.

• Documentation – Notes and other documentation about this definition

• Variable Type – The data type associated with this attribute

• (Obtain current value from...) Source – Only "IBM BPM" is available here

• (Obtain possible values from...) Source – This has two possible settings.
The default is Any Allowed. This means that any text value can be set as the value of the
attribute. The other setting is List meaning that the values are constrained to be taken from a
list of possible values. If this selection is made, a list entry field is shown into which the
possible values may be entered:

The value of the attribute for a particular user can be set within the Process Admin Console. See
Bulk User Attribute Assignment.

The default attributes for a user are:

• Alert on Assign and Run

• Base Text Direction

• Calendar Type

• Image

Page 435

• Job Skill

• Locale

• Phone Number

• Portal Dashboard Display Order

• Portal Default Page

• Portal Mention Timestamp

• Portal Notification New Task To Me

• Portal Notification New Task To My Group

• Portal Notification Post Mention

• Primary Role

• Send Connections Notification On New Task

• Show Unfollow Messages

• SkillLevel

• Task Email Address

• Task Notification

• TaskThreshold

• Title

•

Attributes can be accessed from the JavaScript data type called TWUser. This has a
property/object on it called attributes. The attributes can be accessed from that object by name. If
an attribute name contains a space then JavaScript associative array access should be used. For
example:
var myValue = tw.system.user.attributes['My Attribute'];

See also:
• Security

• Bulk User Attribute Assignment

Page 436

Process Admin Console
The Process Admin Console is a web based application that can be accessed from the following
URL:

http://<hostname>:<port>/ProcessAdmin

The login screen looks as follows:

After a successful login, the screen looks as follows:

Page 437

The Process Admin Console is used to administer a Process Server instance.

At a high level, the following tasks can be performed:

IBM BPM Admin

Manage Caches

Task Cleanup

User Management

User Management Working with users. See: Process Admin - User Management

Group Management Working with global groups and group membership. See: Group Management

Bulk User Attribute Assignment Setting attributes on user definitions. See: Bulk User Attribute Assignment

User Synchronization

Monitoring

Instrumentation

Process Monitor

Event Manager

Monitor

Blackout Periods

Synchronous Queues

EM JMS Error Queue

Admin Tools

Manage EPVs

My Password Management

Change Password

Saved Search Admin

Saved Search Admin

Process Admin - IBM BPM Admin
The IBM BPM Admin section of the Process Admin console provides for cache and task cleanup.

The columns on the cache table mean the following:

Column Name Description

Page 438

CA (Cache Access) The number of times the cache was refreshed and accessed.

UCA (Un-refreshed Cache Access) The number of times the cache was accessed but not refreshed.

UCP (Un-refreshed Cache Percentage) The percentage of un-cached access versus cached access.

Last A. (Last Access) The time of the last access.

Status Is caching on or off.

Actions Links to show and reset cache contents.

Task Cleanup

Process Admin - User Management
The set of users known to IBPM can be updated from the Process Admin Console. A number of
pre-defined resources are already present:

tw_admins group

tw_admin user

tw_author user

tw_portal_admin user

tw_runtime_server user

tw_webservice user

To retrieve a list of all existing users, use the wild card character '%' as the profile name to retrieve:

Page 439

New users can be added by entering the details of the user and pressing the Add button.

IBPM sets some requirements on the password values including:

• Must have a minimum length of six characters

• Must not be the same value as the user name

• Must not be the same as an existing password or the previous three passwords

Page 440

Group Management

In the User Management > Group Management section of the Process Admin Console we
can work with the global groups. We can create a new group or work with existing groups.

To see all groups, enter three spaces. For more details, see Security Groups.

Bulk User Attribute Assignment

Attributes associated with users can be setup in this area. We can select an attribute and see the
values that each user has for that attribute or else we can select a user and see all the attributes for
that user.

Here we see the value of an attribute for a set of users.

and here we see the attributes for a given user:

Page 441

The default attributes for a user are:

• Alert on Assign and Run

• Image

• Locale

• Primary Role

• Task Email Address

• Task Notification

If a user attribute is defined as having values from a list of possible values then a drop-down entry
is displayed from which the possible values can be selected:

See also:
• Security

Process Admin - Monitoring

Page 442

See

Process Admin - Event Manager
Within the Event Manager section of the Process Admin Console we are presented with a number
of options relating to event processing within IBPM.

Event Manager > Monitor

Within the Monitor section, we are shown a list of the scheduled items that are to be executed when
the event time is reached:

Event Manager > Blackout Periods

We can define periods of time when the scheduling of events should be suspended. This can be set
in the Event Manager > Blackout Periods

Page 443

Event Manager > Synchronous Queues

When the Event Manager is ready to dispatch a job for execution, it can place the request in a
queue. In IBPM there are two "types" of queues. Asynchronous queues and synchronous queues.
If a job is dispatched through an Asynchronous queue then the work associated with that job does
not need to complete before the next job can be submitted for processing.

For synchronous queues, when work is dispatched to a synchronous queue, that work must be
completed before the next piece of work can be processed from the same queue.

By default, IBPM provides three synchronous queues but others can be added. A synchronous
queue is utilized in an UCA definition.

Event Manager > Event Managed JMS Error Queue

If the Event Manager is unable to dispatch a job for processing, the "data" associated with that job
is saved in an error queue managed by the underlying JMS subsystem. The content of this queue
can be examined:

Admin Tools > Manage EPVs

As discussed here: Exposed Process Values (EPVs), EPVs allow us to dynamically change values
available to a process at run-time. These values can be changed through the Process Admin
Console in the Admin Tools > Manage EPVs section:

Page 444

When selected, the Snapshot (which includes acronym and snapshot name) is selected from the
snapshot pull-down. The lists of EPVs associated with that entity are then selectable and one
should be selected for the Name field.

The list of variables in the named EPV container is then displayed along with their current values:

A particular variable name may then be selected at which point a new panel appears allow us to set
a new value:

Page 445

Clicking on the New button opens a window in which a new value for the variable may be defined
including a date and time at which that new value should become effective:

The ability to schedule EPV variable changes for the future is incredibly useful. If we know in
advance that some law or rule is to take effect from a given date/time then we can define that those
changes can take effect in the future automatically. If the changes were not automatic but were
instead manual

Note that the effective date/time must be in the future. Unfortunately, the date/time set by default is
"now" which means that if it isn't changed to a future date, pressing the OK button will result in an
error. One a value has been created for a scheduled future change, that value and date/time may be
edited until the change happens.

After a change has happened, the change becomes fixed until another change request entry is
created. The history of changed including the old values, who changed them and when the changes
were made are recorded for subsequent viewing.

See also:
• Exposed Process Values (EPVs)

Process Admin – Saved Search Admin
Under the Saved Search Admin area we can find the entry to create Saved Searches. A Saved
Search is a way to define searches that can be given a name and then a user can execute such a
search merely by providing that name.

Page 446

Once selected, the Saved Search editor is presented:

From here we can enter a description of the search we wish to have saved.

If we wish to build and create saved searches programatically, we can use the REST API for
searching which has a "Save As" option.

See also:

• Process Portal – Saved Searches

• Working with REST Search Queries

Process Admin – Process Inspector

Page 447

Within the Process Admin console is a primary section called "Process Inspector". This is a search
and filter mechanism to allow the BPM administrator to view the state of the system. It is not
intended to be used by any kind of business user. At the highest level, we can execute a search for
process instances. We can filter those processes by a variety of different states, owners and date
ranges. The result is a set of processes that meet the desired criteria. The following is an example
screen shot of such a search:

The filtering rules available include:

• Process states

• Process names

• Person – The person who started the process

• Date ranges

After executing a search, the results are shown in the middle of the page. Selecting a process then
shows addition details on the right of the page as well as actions that can be performed against that
process instance.

Each process instance has an icon beside it. These icons are:

Icon Description

Active

Completed

Terminated

Suspended

TBD Failed

Page 448

Process Admin - Installed Apps
The Installed Apps section of the Process Admin Console allows us to see which applications and
their snapshots are currently deployed on the Process Server. From here we can perform some
administration.

If we select an individual application, we have options including:

• Deactivating the application

• Migrating data

• more …

For applications which have UCAs associated with them, we can choose to enable/disable their
execution.

Customizing the Process Admin Console
The Process Admin Console contains a list of actions that can be performed in the left hand side of
the web page:

Page 449

These actions are configurable. New ones can be added and the existing ones removed. This
allows administrators to add new functions specific for the local environment. To add a new entry,
create a new Human Service within a Process Application. In the Exposed As selection, choose
Administration Service. This is the attribute that says it will be exposed in the Process
Admin Console.

(See also: Exposing the Human Service for starting)

When a user logs into the Process Admin Console, they will see a new entry corresponding to the
Process Application in which the service is defined. Underneath the Process Application, will be
the name of the new Human Service definition. Selecting that entry will cause the service
definition to run.

To remove the original entries for the console, the file located at:

<Profile Root>/config/cells/cell name/node/node name/servers/sever name/process-
server/config/console.xml

can be edited. This XML file contains entries for the folders and choices that appear by default on
the console. Rather than delete the entries, it is suggested that they be commented out by
bracketing the XML element with the <!-- and --> pair.

Page 450

Process Portal
With the release of IBM BPM v8, the whole implementation of IBM Process Portal was reworked.
The following focuses on IBM BPM v8 and above. If you are running a version of IBM BPM prior
to that release, this information will not be applicable to you.

Process Portal is the IBM supplied environment from which users can interact with processes
managed by IBM BPM. Process Portal is a browser based framework for interacting with process
instances.

It can be reached at the following URL:
https://localhost:9444/ProcessPortal/login.jsp

From that location we are prompted to login with a userid/password pair.

After logging in we are shown the primary portal page.

Page 451

Let us start by looking at a user's settings. In the top right of the screen is the your name. This is
actually click-able and can be used to change your own profile settings.

When selected, a page is shown which shows the current details.

Page 452

Most of these details can be changed.

Page 453

The image used to represent the user is shown in a number of other dashboards. The biggest image
seen in the web pages seems to be 105 pixels square.

Process Portal – My Tasks
The primary area of the portal is called "My Tasks" and shows lists of tasks awaiting your attention.
It can be reached by clicking on the “Work” tab:

Page 454

The tasks are grouped into categories:

• Due Today – Tasks which should be completed today

• At Risk – Tasks which should be completed very soon

• Overdue – Tasks which should already have been completed

The tasks shown in the My Tasks section have two primary textual eye-catchers. One is take from
the task's Subject while the other is taken from the task's Narrative:

Immediately beneath the subject is the instance name of the process.

To the very right of the task entry is a flag which colors according to the priority of the task:

Very Low

Page 455

Low

Medium

High

Very High

If a task is assigned to a group you are a member of (as opposed to assigned to you), it will have an
indication of such:

This indicates that it is both associated with a group and names the group as well.

To work upon a particular task, we click the title of that task.

If you do not already own the task (i.e. it is owned by a group that you are associated with) a dialog
appears confirming your request:

Page 456

The dialog can be disabled so that it is not shown each time a new claim is made. When a task is
opened, the Coach associated with the Task is displayed.

To the right of the Coach area is a summary of information about the process instance which owns
the Coach:

Each task has a context menu associated with it:

The context menu allows a number of administrative items to be performed:

Modify Task The ability to assign the task to another person or group, change the priority or change
the due date/time:

Page 457

Reassign Back to Group Reassign the task back to the group which originally owned it.

View Instance View the process instance associated with the task.

Modify Instance Modify the process instance. This currently means modifying the process instance due
date/time:

View Audit History

Critical Path Management

View Process Diagram View a diagram showing the overview of the process and where we are in that process.

When working on a particular task, there is a menu box that can be shown that allows you to
perform related items to that task:

Page 458

Modify Task The ability to assign the task to another person or group, change the priority or change
the due date/time:

Reassign Back to Group

Collaborate

View Instance

Modify Instance

View Audit History

Critical Path Management

View Process Diagram View a diagram showing the overview of the process and where we are in that process.

Page 459

Process Portal – Saved Searches
When there are large numbers of tasks and process instances it can become difficult to find what
one is looking for. To solve this problem, IBM BPM provides the capability to create custom
searches. These searches are queries made against process instances and task instances which
determine what information is to be shown and which tasks and instances qualify to be shown.
These searches are generically called "Saved Searches" and can be defined in the Process Admin
Console. Once defined, these searches can then be executed from within the Process Portal.

In the Process Portal, we can click the show/add entries button:

From there, a pull-down of options will be shown. Included in the options will be the option to see
previously defined saved searches.

By selecting one of these, the search is performed and the results shown in a tabular form.

Page 460

To the right of each row there are icons which allow the user to open the task, see details of the
process instance associated with the task or change some of the properties of the task.

See also:

• Process Admin – Saved Search Admin

Starting Ad-Hoc entry points
A BPD process can have ad-hoc entry points defined with it. This means that for a given instance
of a process, additional work can be performed by that process at any time by invoking its ad-hoc
entry. Within Process Portal, ad-hoc starting points are shown in both a task instance and a process
instance view. Imagine a BPD that has an ad-hoc entry point called "My Adhoc Start". By
selecting a task within the BPD process, we see the ad-hoc entry point in the task's pull-down.
Selecting this will start that ad-hoc portion of the flow.

Additionally, looking at the similar area within the Process Instance section we see an additional
location from which the ad-hoc start can be fired:

Page 461

See also:

• Ad-hoc Start Event

• Securing Process Portal capabilities

In-line Tasks in process portal
When displaying tasks that a user may work upon, the default action is that when the user selects
such a task, a new window will appear showing the coach for that task. However, there are certain
tasks that may simply need a yes/no answer or some input equally simple. Rather than opening a
whole new Coach window, we might simply wish the task to be completed in-line within the
process portal.

IBM provides three per-implemented Human Services that can be defined as implementations for a
BPD Human Service.

The first is the "Simple Approval". When displayed in the Process Portal, it looks as follows:

It has data mappings as follows:

Inputs: None

Outputs:

approved boolean A true or false outcome. The outcome is determined by whether or not the "Approve" or
"Reject" button is pressed. Reject does not become selectable until after comment text has
been entered.

comment string A piece of comment text that can be used to describe the reason for the outcome.
Comment text is required for a rejection.

The second type of inline entry is the "Simple Completion". When displayed in Process Portal it
looks as follows:

Page 462

It has data mappings as follows:

Inputs: None

Outputs:

comment string A piece of comment text that records the completion notes (if any)

The third type of inline entry is the "Simple Choice". When displayed in Process Portal, it may
look similar to the following:

Inputs:

choices List of String A list of possible choices that the user can select

Outputs:

decision String The value of the string (button) selected by the user

comment String A textual comment optionally provided by the user

Team Performance
Built into Process Portal is the ability to examine work by teams. To view this dashboard, click the
Team Performance tab:

This will bring up a page showing the summary of all the teams:

Page 463

Each box represents a specific team. A pie chart is shown within the box showing how many tasks
are associated with each team and how many are overdue, at risk or on track.

If we drill into a specific team, we are given details of that team:

We see a pie chart for that team, the count of how many tasks are opened and how many completed
today. In addition, we see a chart over time of how new tasks have been arriving and how existing
tasks have been completed.

To the right of the chart, we see a roster showing the members of the team.

Team Tasks

In the Team Tasks view we can see a calendar of when tasks are due to be completed. From there
we can Assign those tasks to different team members if we are logged in as a manager of the team.

Page 464

Clicking Assign allows us to change the owner of the task if we are logged in as a manager of the
team. The allowable staff members are filtered by the team memberships although we can over-ride
those as needed.

Process Performance
Built into the Process Portal is the ability to examine the performance of the overall solution. To
view this dashboard, click the Process Performance tab:

This will then display the details of Process Performance that is show in the next screen shot:

Page 465

As we can see, there is a lot of "stuff" in this screen so we need to spend some time looking at it.

We will break the screen down into four sections:

• Quick Stats – shown at the top

• Turnover Rate – shown in the middle

• Average Duration – shown in the bottom

• Instances In Progress – shown on the right

Quick Stats

The Quick Stats sections shows the number of processes that have not yet completed. This means
that there is work still to be performed against them. The pie chart is split into their states meaning
on track, overdue and at risk. Next to the pie chart is a count of the total number of processes in
progress. Finally, there is a statistic on the average duration that it takes a process to complete.

Turnover Rate

The Turnover Rate section shows the arrival and completion rate of process instances over time. If
we hover our mouse over the chart, additional data is shown:

Page 466

The chart needs a little explanation. First notice that the mid-line axis of the chart is zero. As new
instances arrive, the blue portion (top) of the chart will grow upwards. As process instances are
completed, the green portion (bottom) of the chart will grow down. The line chart shows the
number of processes in progress.

One way to interpret the chart is simply to focus on the line. If it is trending upwards then the
processes are not being completed fast enough.

The chart can be scrolled left and right to see previous time intervals. The scale can also be
changed between Days and Hours. The hover data shows details of the selected period.

Average Duration

The average duration chart shows an entry for each step in the process (top to bottom). The width
of the entry is the average duration that step takes. The left edge of the element is the average point
in time when that step in the process is reached.

Each entry is labeled with the name of the step. Hovering over a step shows a pop-up with details
which includes the numeric average duration and the percentage of time that step is executed as part
of a process instance (remember processes can take different paths and hence not all steps in a
process may be executed for each instance of that process).

Instances In Progress

On the far right is a list of the instances currently in progress. Hovering the mouse over these will
show their details including:

• Process name

• Due date and time (of the process)

• Age of the process

Page 467

• Estimated completion date

Diagram View

Clicking on the tab at the top labeled "Diagram" will show the process diagram of the process. The
diagram will be annotated with the number of instances at each task step.

Clicking on a task counter will filter the process instance to show only those ones which are
blocked at the associated tasks.

Gantt View

If we click on a process instance in the "Instances in Progress" list, we are shown a Gantt chart view
of the expected times of that process instance:

The chart shows pictorially which step we are on and when subsequent steps are potentially going
to start and complete.

Page 468

Set Path View

When determining whether or not a process is on target for completion within its due dates, IBM
BPM makes assumptions about the process based on averages of similar processes seen before. In
many cases, the path a process takes is a function of the decisions made within that instance of the
process. As a user of the Process Performance dashboard, we can see the expected path the process
will take and decide to change the anticipated path for reporting and modeling purposes. Changing
the path in the Process Performance dashboard has no effect on the actual path that the process will
finally take but does allow us to use our judgement when examining such an instance.

From the "Set Path" view we can see the current step, see the anticipated path and change the
anticipated path route.

Searching in Process Portal
At the top of many of the portal pages there is a search box that looks as follows:

Entering search criteria within this box and then clicking the magnifying glass will filter what you
see to only include matched entries.

To clear the search and show all entries, click the "x" also shown in the search:

The search has a variety of options and meta data filters. Here are some notes on this:

• Searching is not case sensitive. Searching on "John" or "JOHN" will produce the same
result.

• The default operator between terms is the logical "and". So if we enter "John Smith"
the search will return results which have both "John" and "Smith".

• We can search for results which have one value or another using the "OR" operator. If we
enter "John OR Smith", we will find entries which have "John" or "Smith".

Page 469

• We can combine logical operators using bracket notation. For example "(John OR
Susan) AND Smith" will find "John Smith" and "Susan Smith".

• We can include and exclude items. For example "+Smith -Susan" will find all the
"Smiths" but will exclude any that contain "Susan".

• We can use wild cards in terms. The "?" character is a single character. The "*" character
represents a set of one or more characters.

• We can match on exact terms by enclosing the search in quotes. Wild card characters will
not be honored.

We can also prefix search queries with the context in which they should be sought. For example,
searching on "subject:IBM" will find all tasks which contain "IBM" in their subject line but will
not return entries that contain "IBM" within other properties.

The list of prefixes are:

Prefix Description

subject: The subject line of a task.

instancename: The instance name of a process.

application: The name of the process app.

atriskdate: A range of dates for the At Risk value of a task.

bpd: The name of a BPD (Process).

createdate: A range of dates for the creation of an entity.

duedate A range of dates for the due date of a task or process.

username: The user id of a user.

userfullname: The real name of a user.

teamname: The name of a team.

isassignedtouser: Whether or not a task has been claimed or assigned to a specific user.

activityname: The name of the Task.

<Business Data>: The value of a specific business data item.

The data used to populate the Process Performance dashboard
As a BPM process runs, the history and state of that process is written to the database used by IBM
for internal and operational purposes. It is that data that is used to populate the Process
Performance dashboard.

The data that is used can be managed through the Process Admin console through the Process
Inspector area.

Customizing Process Portal look and feel
The Process Portal supplied by IBM has a distinct look and feel. Given that the Process Portal is
the suggested mechanism for interacting with end users, we wish to be able to customize the
Process Portal so that it may look more like a particular user community would like it to look.

IBM has exposed a way to achieve that task.

Page 470

Process portal's design is achieved through a series of files that include images, CSS, JavaScript and
HTML. These files can be updated or replaced with alternatives to change the style.

Access to these files is achieved through WebDAV. It is believed that Windows 7 claims to have
some WebDAV support but the reality is that no-one seems to have been able to get it working (at
least that is what I find when I search Google). The alternative is to use a client tool to access the
WebDAV data. I performed an Internet search of WebDAV client tools and found "BitKinex".
However, I was not able to get that tool working with IBM BPM's WebDAV data. I then found a
second tool called "Cyberduck" which worked just fine.

After installing Cyberduck, I configured a new connection within it to access the BPM WebDAV
data.

The BPM product exposes its WebDAV information via HTTP/SSL. The name of the server and
SSL port number must be supplied as well as a user with sufficient authorities. In addition, a path
to the WebDAV data must be supplied. This is:

/mum/mycontenthandler/mm/dav/filestore

Page 471

Prompts will be issued about SSL self signed certificates. These should be accepted.

Page 472

Once connected, we will be presented with a list of the folders and files managed by IBM BPM
through WebDAV.

Customizing the login screen

The default Process Portal login screen looks as follows:

Page 473

Page 474

Versioning Solutions
Snapshots
A snapshot is a "copy" of the state of all the artifacts in a Process Application or Toolkit at the point
in time when the snapshot was made. The purpose of taking a snapshot is to allow you to revert
back in time to the state of the snapshot if that is desired.

A snapshot can be captured by clicking on the Snapshot icon in IBPM PD.

When selected, a dialog appears prompting for the name of the new Snapshot. This must be unique
from other snapshots.

The revision section of IBPM PD will show the list of current and past snapshots:

A snapshot is required in some circumstances such as:

• A snapshot of a toolkit is required before it can be added as a dependency on other toolkits or
process applications.

• A snapshot of a process application is required before that application can be installed on a
Process Server

• A snapshot is required before a new "workspace" can be created.

Clicking a Snapshot in the Revision History area gives that Snapshot focus allowing you to see the
state of the solution at that point in time.

Page 475

The fact that it is a historic snapshot we are viewing is shown in the top of the IBPM PD:

Clicking the close button on this marker will return us to the current environment.

While viewing a snapshot, you can select an older version of an asset and copy it into the latest
version. Alternatively, you can revert back to an earlier snapshot, effectively taking you back in
time to a previous version.

Managing Snapshots

There are a number of relatively low-level commands available that will allow you to manage
snapshots. These are:

• BPMDeleteSnapshot

• BPMSnapshotCleanup

• BPMShowProcessApplication

• BPMShowSnapshot

• BPMDeactivate

• BPMStop

• BPMUndeploy

BPMDeleteSnapshot

This command can be used to delete a named snapshot from a Process Server. This will not work
against a Process Center.

BPMSnapshotCleanup

This command can be used to delete snapshots from a Process Center.

The command has a number of options:

• containerAcronym – The acronym of the process app that contains the snapshots to be
deleted.

• containerTrackAcronym

• containerSnapshotAcronyms – The acronym of a specific snapshot to be deleted.

• keptNumber

• createdBeforeLocal

• createdAfterLocal

• createdBeforeSnapshotAcronym

Page 476

• deletedArchivedSnapshot

• ignoreDependency – Whether or not the snapshot can be deleted if it is currently a
dependency of some other project. The default is false which means that it won't be deleted
if another project depends upon it.

• outputFile

First we must connect to the server using wsadmin. For example:
C:\IBM\WebSphere\AppServer\profiles\Node1Profile\bin>wsadmin -conntype SOAP -port 8881 -lang jython
-user cadmin -password password

One particular useful application of this command is to reload a Toolkit that has become "out of
sync" with the rest of the world.

Imagine we have a SN1 and then SN2 … and now we wish to reload SN1 so that it becomes the tip.
We can't do that because Process Center will tell us that SN1 still exists. To achieve our goal, we
first have to tell Process Center to forget SN1. The recipe for this is as follows:

1. From Process Center, archive SN1.

2. Run the BPMShowProcessApplication to list the details of the Process App containing the
snapshot to be deleted

print AdminTask.BPMShowProcessApplication('[-containerAcronym XYZ]')

3. Examine the list to find the "Acronym" for the archived snapshot. It will have an entry that
looks like:

Name: SN1
Acronym: XXXX
Created On: 2013-12-19 12:31:29.041
Created By: User.1002
Is Default: false
State: State[Archived]
Capability: Capability[Standard]
No of running instances: 0

4. Run the command to delete the snapshot
print AdminTask.BPMSnapshotCleanup ('[-containerAcronym XYZ -containerSnapshotAcronyms XXXX
-ignoreDependency true]')

The results of the command's operation will be seen in the Console Log for Process Center:
PALAdminComma I PALAdminCommands snapshotCleanup Entering
SnapshotDelet I [BPMSnapshotCleanup] -- There is/are 1 snapshot(s) in total that has/have been
deleted within this transaction.
[BPMSnapshotCleanup] -- The following snapshot(s) for the process application KolbanTK was/were
deleted:
[ID: Snapshot.bd2d9b64-e081-4b80-a6a6-1e9eca361379 | Name: 2013-12-19-1 | Created on: 2013-12-19
12:31:29.041]
PALAdminComma I PALAdminCommands snapshotCleanup Total amount of snapshot to be deleted: 1
PALAdminComma I Total amount of snapshot to be deleted: 1
PALAdminComma I PALAdminCommands snapshotCleanup Exiting
Restore the Toolkit from its archived state

BPMShowProcessApplication

This command lists the status of a Process Application. It has one mandatory parameter.

• containerAcronym – The name of the process app acronym to list

Here is an example of usage:
wsadmin>print AdminTask.BPMShowProcessApplication('[-containerAcronym XYZ]')
Name: XYZ

Page 477

Acronym: XYZ
Description:
Toolkit: false
Tracks:

 Track Name: Main
 Track Acronym: Main
 Default: true

 Tip:
 Created On: 2013-11-19 10:00:23.123
 Created By: User.1002
 State: State[Inactive]
 Capability: Capability[Standard]
 No of running instances: 0

 List of Snapshots:
 Name: backup
 Acronym: B
 Created On: 2013-11-19 09:56:44.363
 Created By: User.1002
 Is Default: false
 State: State[Inactive]
 Capability: Capability[Standard]
 No of running instances: 0

 Name: 2013-11-19-1
 Acronym: 2013111
 Created On: 2013-11-19 10:00:23.123
 Created By: User.1002
 Is Default: false
 State: State[Inactive]
 Capability: Capability[Standard]
 No of running instances: 0

Migration of in-flight BPMN process instances
Consider the notion of versioning a process where we already have instances of that process
running. What should happen to any instances that are already running? We term these as "in-
flight" instances. I believe this name comes from the notion of an airline flight from one city to
another. We can do maintenance on the plane at the "from" city or the "to" city but not while the
plane is "in-flight".

First let us consider the base of the problem.

Imagine we have a process that looks as follows:

Now imagine we have a new version that now looks like:

As we can see the step that was known as "Step B" is simply no longer part of the process model. If
we have instances of this process in-flight then instances which are at "Step A" will be migrated to
"Step A" in the new version. The same will be true for instances at "Step C". But what about
instances currently at "Step B"? What should happen to them in the new story?

It feels like we have a number of possibilities:

Page 478

• Move the token to Step A (previous step)

• Move the token to Step B (next step)

• Ask the administrator what to do and let him choose the new token step

• Terminate the process

• Force the existing processes to continue on the original process model

Let us back up a little and think about when migration of in-flight instances may be required. When
a process instance is live, it is based upon a snapshot definition of a process application. If we
deploy a new snapshot definition of the same process, this is where migration can take effect.

When we deploy a new snapshot version we are presented with a dialog that contains the following
options.

• Leave – Instances currently running will run to completion on the original snapshot. New
instances will be carved from the new snapshot.

• Migrate – Instances currently running will be migrated to the new snapshot. At the
conclusion of this, there should be no remaining instances on the original snapshot.

• Delete – All instance currently running on the original snapshot will be terminated.
Nothing will be migrated to the new snapshot.

Let us now look at the migration option. If we had selected "Leave" then the process instances in
the old snapshot will still run against the old snapshot. If we now wish to migrate, we can select
that option. Here we see a page from the Process Admin Console where we have two snapshots of
the same application. SN2 has an instance of the process called BPD1 still running.

Page 479

If we click on SN3, we are presented with an option to migrate inflight data:

Upon selecting that option, we are now asked which snapshot instances we wish to migrate the data
from:

Page 480

We also see that we are prompted to choose a "policy file". A policy file can be generated using the
wsadmin command:
print AdminTask.BPMCheckOrphanTokens

Name Description

-processAppAcronym

-sourceSnapshotName

-targetSnapshotName

-outputFile

-overwrite

AdminTask.BPMCheckOrphanTokens('-processAppAcronym MIG1 -sourceSnapshotName SN2 -targetSnapshotName
SN3 -outputFile c:/temp/dat.xml -overwrite')

The format of the policy file is:
<orphanTokenPolicy>

<processApplication acronym="..." id="..." name="...">
<sourceSnapshot acronym="..." id="..." name="..." />
<targetSnapshot acronym="..." id="..." name="..." />
<process bpdId="..." name="...">

<step id="..." name="...">
Command

</step>
</process>

</processApplication
</orphanTokenPolicy>

The commands can be one of "move" or "delete".

If "delete", then the token is deleted.

If "move", then the token is moved. If moved, we need to specify the id of the new target with a
"targetStepId" option.

For both the "delete" and the "move" commands, an attribute called "suspendProcess" can

Page 481

be supplied with a value of true or false.

In addition to the recipe described above, the REST API provides API for both moving and deleting
tokens. The Methods are:

• /rest/bpm/wle/v1/process/<instance>?action=moveToken

• /rest/bpm/wle/v1/process/<instance>?action=deleteToken

See also:
• Deployment of applications to servers

Notes on testing

We need a real Process Server …. Process Center will not do. In my tests, the name of the Process
Server was PS1:

Page 482

BPD Integrations
IBPM BPM has the ability to call out from a process to invoke the services of an external service
provider running outside of BPM. Unless the processes being built (and even then) are solely
composed of Human Services, it is extremely likely that interaction with external applications and
systems will be needed. There are a number of technologies that can be used to interact with back-
end systems. The following describe some of the more commonly used.

Outbound Web Services
One of the more common ways that a service is exposed is through the technology known as Web
Services. Web Services is an encoding of an XML document sent over an HTTP transport. Web
Services is an open an industry standard composed of a number of key specifications including
SOAP and WSDL.

In the IBPM PD, we can create an IBPM service that encapsulates the invocation of a Web Service.
When this IBPM Service is called, the result is a call to the Web Service provider that the IBPM
service is configured to call.

To achieve this, select the Implementation category in the Library and in the Create New
menu, select Integration Service.

Once selected, a new dialog will appear asking for a name for the new integration service
component.

Page 483

Once completed, an empty service diagram is shown. From the palette, a Web Service Integration
primitive can be dragged and dropped onto the canvas and wired into the flow. It is this component
that will perform the call to the external Web Service. Notice the icon representing an external
integration on the component. Learn this icon so that when you see it again you will know that this
service component represents an external call.

Simply placing a Web Service component on the canvas isn't the end of the story. The component
doesn't yet know which external service to call. The next step on our journey is to select the Web
Service calling component on the canvas and examine its Implementation properties.

Page 484

Now we need to pause for a moment. Prior to v8.5 of IBM BPM, the mechanism for defining how
we call a Web Service was performed one way but from v8.5 onwards, it is performed a very
different way. Both styles are fully supported. The two styles are called "From process application
settings" and "Provide in-line configuration". The selection is made from the "Discovery Scheme"
selection at the top of the implementation section.

The primary difference between the two styles is that in one, the definition of the Web Service is
made globally and then any integration service can call it by an alias name while in the other style,
the target web service is defined there and then. The new style was introduced to allow a single
place to define a Web Service that can then be leveraged throughout the solution. If the web service
definition needs to be changed, it can be changed in one place rather than having to hunt through all
the project artifacts.

Let us first look at the process application settings style.

From the Process App Settings of our Process Application, we can define a new server definition of
type Web Service:

In this section, we can define an external Web Service by supplying the URL to its WSDL. This

Page 485

web service then becomes a "named" entity.

In the Integration Service, when we wish to invoke the Web Service, we can now select it from a
pull-down list:

Here is the inline configuration style.

The description of an external Web Service is commonly described in a Web Services Definition
Language (WSDL) file. In order for IBPM to know how and where to call a Web Service, we need
to make the WSDL document that describes that service known. A common convention is that
when a Web Service is published a URL can be supplied which will return the WSDL for that Web
Service. This is usually the URL of the web service with the suffix ?WSDL added.

For example, if a service is available at

http://localhost:9080/MyProject/MyWebService

then sending a request to

http://localhost:9080/MyProject/MyWebService?WSDL

will return the WSDL description for that service. In the WSDL URI: entry field in the editor, the
URL pointer to the WSDL can be entered. One entered, the Discover button can be pressed to
dynamically retrieve the WSDL from the remote server and have IBPM parse the content to
determine what operations are available and what data types are expected for those operations.

Note: If the service is provided by IBPM Advanced SCA Exports, you can not use this mechanism
to properly discover the artifacts. Fortunately, there is a solution. Open a web browser and enter
the URL of the service description as the page to load. You will find that the WSDL returned has

Page 486

a new URL in the address bar of the browser.

For example:

Entering:

http://localhost:9080/SampleWebServiceProviderWeb/sca/MyWebService

resulted in a redirect to:

http://localhost:9080/SampleWebServiceProviderWeb/sca/MyWebService/WEB-
INF/wsdl/SampleWebServiceProvider_MyWebService.wsdl

Using this URL will work with IBPM

When the Discover button is pressed, a new dialog is presented. This allows you to enter a
username/password combination if the access to the target URL is restricted.

A button called View can be used to open a browser at the defined URL so that the WSDL file can
be viewed in its source form.

Once this step has been completed, the development tooling is now aware of all the operations that
are available at the target service. From the Operations: pull-down, select the operation you
wish to call. Also notice that the endpoint information for the service has now been determined.

The next step is to generate the data types (if any) that are expected for the operations you wish to
call. Click on the Generate Types button to create data type definitions for the data types used
as inputs and outputs from the service. A dialog is presented to allow you to create some or all of
the data types. Typically you would only need to select the operations that you plan to use and only
data types associated with those operations are created.

Page 487

A list of the data types to be created or mapped is shown.

A second dialog is produced before completion.

Page 488

Once done, all that is left is to map variables to the data to be passed in and returned from the
service call.

The names of the formal parameters are shown. If one hovers a mouse over these names, the
associated data types can also be seen:

If the operation has multiple input and output parameters, each of the input and output parameters
can be individually mapped:

If the service being called throws an exception, this can be caught by adding a Catch handler to the

Page 489

service:

See also:
• Catch Exception

The target of the Web Service request is defined in the Endpoint Address URL box. By default, it
has the value defined in the WSDL file. By checking the Override Endpoint Address check box, a
new URL value can be entered and that will be the target of the request. The URL string can be
retrieved from a variable's value with the <#= variable name #> technique.

A good service for testing Web Service interactions can be found here. This public web service
returns weather forecast data for US cities.

It is important to note that 7.5 and prior releases of the product only support SOAP 1.1 as the
transport protocol. Putting this another way, SOAP 1.2 is not yet supported. If SOAP 1.2 is
required, consider using the IBM BPM Advanced edition.

There are times when the Web Service target is defined over an HTTPS protocol as opposed to an
HTTP protocol. This means that SSL certificate exchanges need to also occur. Fortunately, if a
problem is encountered, IBM BPM generates this extremely useful guidance message:

[10/23/12 15:04:07:411 CDT] 00000007 SystemOut O CWPKI0428I:

The signer might need to be added to the local trust store. You can use the
Retrieve from port option in the administrative console to retrieve the
certificate and resolve the problem. If you determine that the request is
trusted, complete the following steps:

1. Log into the administrative console.

2. Expand Security and click SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations.

3. Select the appropriate outbound configuration to get to the (cell):win7-
x64Node01Cell:(node):win7-x64Node01 management scope.

4. Under Related Items, click Key stores and certificates and click the
NodeDefaultTrustStore key store.

5. Under Additional Properties, click Signer certificates and Retrieve From
Port.

6. In the Host field, enter <hostname> in the host name field, enter 443 in
the Port field, and <hostname>.<domain>_cert in the Alias field.

7. Click Retrieve Signer Information.

8. Verify that the certificate information is for a certificate that you can

Page 490

http://www.webservicex.net/WS/WSDetails.aspx?CATID=12&WSID=68

trust.

9. Click Apply and Save

If the instructions contained within this message are followed, the problems with SSL will be
resolved.

See also:
• Web Service Integration

Setting up security for outbound Web Services

It is often the case that a Web Service that is being called needs to know the identity of the caller in
order to authorize the request to be performed. Settings in the Web Service integration component
can be used to provide such information:

There may be a potential "bug" in this area. Setting security parameters here appeared to be ignored
unless security was also set in the Implementation screen for accessing the raw wsdl.

See also:
• Enable WS-Security and Transport Layer Security in IBM Business Process Manager Standard - 2013-08-28

Inbound Web Services
An inbound Web Service is the notion that a IBPM solution can "advertise" or "expose" itself as a
Web Service allowing it to be called from an external Web Service caller or client. In a typical
Web Service, there can be multiple "operations" defined on a single service. IBPM's mapping to
the concept of Web Services is that when a web service definition is made, one or more operations
may be defined. For each operation defined on that Web Service, an IBPM Service definition is
mapped to it.

This is illustrated in the following diagram. There we see a IBPM Web Service definition with
three operations defined upon it. For each operation, there is a reference to a corresponding IBPM
Service definition.

Page 491

http://www.ibm.com/developerworks/bpm/library/techarticles/1309_balakrishnan/1309_balakrishnan.html

To construct an inbound Web Service definition, the selection can be made from the
Implementation category and selecting Web Service.

A dialog will appear allowing us to name the Web Service definition:

Page 492

Once completed, the properties of the Web Service definition can be completed.

Page 493

In the Operations section, press Add for each operation that is desired to be exposed on the Web
Service. For each operation added, an IBPM Service needs to be associated with it. This implies
that the service must be created before adding the operation. When deployed, a call to a named
operation will result in the invocation of the corresponding IBPM Service.

Any parameters defined as input on the IBPM Service will be exposed as parameters on the Web
Service call. Any parameters defined as output on the IBPM Service will be returned as parameters
on the Web Service call.

Take special note of the WSDL URI in the behavior section. This is the Web URL that can be used
to retrieve the WSDL file that describes the exposed Web Service.

Testing an Inbound Web Service with soapUI

One of the most popular Web Service testing tools on the Internet is called soapUI. It can be found
at the following web address:

http://www.soapui.org/

This tool/package can be used to exercise calls to IBPM that are exposed as Web Services. The
following is the recipe used to achieve this task.

Launch the soapUI tool and select File > New soapUI Project

Give the new project a name and click OK to complete

Right click the new project and select Add WSDL

Page 494

http://www.soapui.org/

In the WSDL location text box, enter the URL for the WSDL describing the Web Service. This can
be obtained from the IBPM PD Web Service definition in the "Behavior" section.

Clicking on this URL opens a Web Page to the WSDL content. The URL can then be copied from
the address bar of the newly opened browser.

Page 495

Once entered, soapUI will retrieve the WSDL description and parse it. From the WSDL, a sample
request message will be built. This request message is a SOAP message that, if sent to IBPM, will
cause the service to execute. Drilling down into the request will show the details of the SOAP
message which can be modified.

Pressing the submit button (green arrow) will send the SOAP message to IBPM for processing.
Multiple soap Request messages can be created representing different tests. The project can be
saved for later replay of these requests.

If the service associated with the Web Service definition is changed, the soapUI WSDL will have to
be reloaded before testing continues otherwise an out-of-date WSDL will be used with
unpredictable results.

The Update Definition menu option will re-load the WSDL:

Page 496

Invoking a BPD as a Web Service

It is not uncommon to want to expose a BPD to be invoked as a Web Service. To achieve this, a
few steps are involved. Working backwards from the BPD, it must first be defined as being started
by Start Message Event node. Here is an example BPD:

Associated with a Message Start Event node is a UCA. A UCA acts as the "trigger" to the Start
Message Event. Before we can define a UCA, we need a General Service that is to be associated
with the UCA. The result (output) of the General Service is the "value" passed by the UCA to its
associated partner which in this case will be the Start Message Event Node in the BPD.

A suitable General Service may just pass the input to the output. For example:

Finally, a Web Service definition is also associated with a second General Service. It is this
General Service that will be called when the Web Service is invoked. This General Service should
cause the invocation of the UCA. A suitable General Service may be:

Page 497

So, putting it all together we have:

This looks pretty scary so it won't do us any harm to speak about it some more. From the bottom
left, we have a Web Service definition which refers to a General Service. This General Service
includes an invocation of a UCA. The UCA has to have an associated General Service (because
that is the rules) that knows how to build the data to be passed onwards by the UCA. The UCA is
used as the trigger to the Start Message Event in the BPD.

See also:
• Vimeo - Invoking a BPD through a Web Service call

Invoking an IBPM Web Service from a Java POJO

The following is a recipe for building a Java application that calls an exposed IBPM Web Service.
Although not strictly related just to IBPM, it is useful to see the steps here to see how simple it is
and for future reference. The sample here utilizes IBM's RAD/WID for the Java and Web Service
client development.

Create a new Java Project to host the Java code that will call the Web Service.

Page 498

https://vimeo.com/groups/ibmbpm/videos/40469133

Using the File > New, start a wizard for creating a new Web Service Client:

Page 499

Page 500

At the conclusion of this step, a series of Java classes will have been created conforming to the
JAX-WS specification. In these classes will be one named for the service.

Create an instance of that class and then use the getter to retrieve the SOAP object. That object has
methods on it corresponding to the operations on the service.

A test caller can then be written:

import
win7_x64._19086.teamworks.webservices.tests.myinboundwebservice.MyInboundWebServ
ice;
public class Main {

public static void main(String[] args) {
MyInboundWebService miws = new MyInboundWebService();
miws.getMyInboundWebServiceSoap().op1("Hello");

}
}

Web Services and data types

When we talk about passing data to and from a Web Service, we are implicitly talking about
converting data types from one format to another. In IBPM, we have simple data types and
complex data types. In Web Services, we have similar concepts but the data types are described by
XML Schema Definitions (XSDs). The question now raised is just how compatible are these two
environments? Are there data types in IBPM that don't map to XSDs and/or visa versa. In the
following section we work through the different permutations of data of interest to us and execute
tests against Web Services that expose those types and see how IBPM handles them.

In these tests, we have a variety of back-end Web Service that we wish to call from IBPM. Each
Web Service differs from the other by the data types it returns.

Page 501

Simple Data Type

Interface: ISimple

Endpoint: http://localhost:9080/WLEDataTypeTestsWeb/sca/ISimpleExport

Generated data types:

Results

Conclusion

No issues at all with a simple data type. Surprised to see "String" being offered as a data type
mapping as it seems to say that will create a new data type … but it appears that the table shows
mappings as well as new types to be created.

Page 502

Complex Data Type

Interface: IComplex

Endpoint: http://localhost:9080/WLEDataTypeTestsWeb/sca/IComplexExport

Generated data types:

Results:

Conclusion:

No issues. Complex data type created as expected.

Page 503

Nested Complex Data Type

Interface: INestedComplex

Endpoint: http://localhost:9080/WLEDataTypeTestsWeb/sca/INestedComplexExport

Generated data types:

Results:

Page 504

Conclusion:

No issues … again all as expected.

Array of Complex Data Type

Interface: IArray

Endpoint: http://localhost:9080/WLEDataTypeTestsWeb/sca/IArrayExport

Generated data types:

Results:

An error was received.

Runtime error in script ("Process: 'WLE IArray' ProcessItem: 'Call IArray' Type:
'ITEM'" 1:0).Internal Script error:
com.lombardisoftware.core.TeamWorksRuntimeException: Property field1 in class
ComplexArrayHolderType is not declared. It must be declared to be used.
Script (line 1):

Page 505

 1 : tw.local.outVar = __teamworks_temp_wsconnector_variable_;

The full stack trace was:

com.lombardisoftware.core.TeamWorksException: Runtime error in script ("Process:
'WLE IArray' ProcessItem: 'Call IArray' Type: 'ITEM'" 1:0).Internal Script
error: com.lombardisoftware.core.TeamWorksRuntimeException: Property field1 in
class ComplexArrayHolderType is not declared. It must be declared to be used.
Script (line 1):
 1 : tw.local.outVar = __teamworks_temp_wsconnector_variable_;

at
com.lombardisoftware.core.TeamWorksException.asTeamWorksException(TeamWorksExcep
tion.java:129)

at
com.lombardisoftware.core.RegexExceptionRewriter.rewrite(RegexExceptionRewriter.
java:73)

at
com.lombardisoftware.core.ExceptionHandler.returnProcessedException(ExceptionHan
dler.java:305)

at
com.lombardisoftware.servlet.ControllerServlet.doError(ControllerServlet.java:14
6)

at
com.lombardisoftware.servlet.ControllerServlet.doCommon(ControllerServlet.java:4
09)

at
com.lombardisoftware.servlet.ControllerServlet.doPost(ControllerServlet.java:130
)

at javax.servlet.http.HttpServlet.service(HttpServlet.java:738)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:831)
at

com.ibm.ws.webcontainer.servlet.ServletWrapper.service(ServletWrapper.java:1657)
at

com.ibm.ws.webcontainer.servlet.ServletWrapper.service(ServletWrapper.java:1597)
at

com.ibm.ws.webcontainer.filter.WebAppFilterChain.doFilter(WebAppFilterChain.java
:131)

at
com.lombardisoftware.servlet.ClearThreadCachesFilter.doFilter(ClearThreadCachesF
ilter.java:24)

at
com.ibm.ws.webcontainer.filter.FilterInstanceWrapper.doFilter(FilterInstanceWrap
per.java:188)

at
com.ibm.ws.webcontainer.filter.WebAppFilterChain.doFilter(WebAppFilterChain.java
:116)

at
com.lombardisoftware.servlet.CrossSiteScriptingFilter.doFilter(CrossSiteScriptin
gFilter.java:29)

at
com.ibm.ws.webcontainer.filter.FilterInstanceWrapper.doFilter(FilterInstanceWrap
per.java:188)

at
com.ibm.ws.webcontainer.filter.WebAppFilterChain.doFilter(WebAppFilterChain.java
:116)

at
com.lombardisoftware.servlet.SetCharacterEncodingFilter.doFilter(SetCharacterEnc
odingFilter.java:35)

Page 506

at
com.ibm.ws.webcontainer.filter.FilterInstanceWrapper.doFilter(FilterInstanceWrap
per.java:188)

at
com.ibm.ws.webcontainer.filter.WebAppFilterChain.doFilter(WebAppFilterChain.java
:116)

at
com.ibm.ws.webcontainer.filter.WebAppFilterChain._doFilter(WebAppFilterChain.jav
a:77)

at
com.ibm.ws.webcontainer.filter.WebAppFilterManager.doFilter(WebAppFilterManager.
java:908)

at
com.ibm.ws.webcontainer.servlet.ServletWrapper.handleRequest(ServletWrapper.java
:934)

at
com.ibm.ws.webcontainer.servlet.ServletWrapper.handleRequest(ServletWrapper.java
:502)

at
com.ibm.ws.webcontainer.servlet.ServletWrapperImpl.handleRequest(ServletWrapperI
mpl.java:179)

at
com.ibm.ws.webcontainer.servlet.CacheServletWrapper.handleRequest(CacheServletWr
apper.java:91)

at com.ibm.ws.webcontainer.WebContainer.handleRequest(WebContainer.java:864)
at

com.ibm.ws.webcontainer.WSWebContainer.handleRequest(WSWebContainer.java:1583)
at

com.ibm.ws.webcontainer.channel.WCChannelLink.ready(WCChannelLink.java:186)
at

com.ibm.ws.http.channel.inbound.impl.HttpInboundLink.handleDiscrimination(HttpIn
boundLink.java:445)

at
com.ibm.ws.http.channel.inbound.impl.HttpInboundLink.handleNewRequest(HttpInboun
dLink.java:504)

at
com.ibm.ws.http.channel.inbound.impl.HttpInboundLink.processRequest(HttpInboundL
ink.java:301)

at
com.ibm.ws.http.channel.inbound.impl.HttpICLReadCallback.complete(HttpICLReadCal
lback.java:83)

at
com.ibm.ws.tcp.channel.impl.AioReadCompletionListener.futureCompleted(AioReadCom
pletionListener.java:165)

at
com.ibm.io.async.AbstractAsyncFuture.invokeCallback(AbstractAsyncFuture.java:217
)

at
com.ibm.io.async.AsyncChannelFuture.fireCompletionActions(AsyncChannelFuture.jav
a:161)

at com.ibm.io.async.AsyncFuture.completed(AsyncFuture.java:138)
at com.ibm.io.async.ResultHandler.complete(ResultHandler.java:204)
at

com.ibm.io.async.ResultHandler.runEventProcessingLoop(ResultHandler.java:775)
at com.ibm.io.async.ResultHandler$2.run(ResultHandler.java:905)
at com.ibm.ws.util.ThreadPool$Worker.run(ThreadPool.java:1563)

Caused by: [TeamworksException name='Process: 'WLE IArray' ProcessItem: 'Call
IArray' Type: 'ITEM'', message='Internal Script error:
com.lombardisoftware.core.TeamWorksRuntimeException: Property field1 in class
ComplexArrayHolderType is not declared. It must be declared to be used.',
line=1, pos=0 nested=]

Page 507

at
com.lombardisoftware.core.script.js.JavaScriptRunner.execute(JavaScriptRunner.ja
va:283)

at
com.lombardisoftware.core.script.js.JavaScriptRunner.evalExpression(JavaScriptRu
nner.java:338)

at
com.lombardisoftware.component.common.workflow.ExecutionContext$3.call(Execution
Context.java:563)

at
com.lombardisoftware.component.common.workflow.ExecutionContext.doWithParams(Exe
cutionContext.java:620)

at
com.lombardisoftware.component.common.workflow.ExecutionContext.evaluateJSScript
(ExecutionContext.java:561)

at
com.lombardisoftware.component.common.workflow.ExecutionContext.evaluateJSScript
(ExecutionContext.java:584)

at
com.lombardisoftware.component.common.workflow.ExecutionContext.executeJSScript(
ExecutionContext.java:548)

at
com.lombardisoftware.component.wsconnector.worker.WSConnectorWorker.bindOutput(W
SConnectorWorker.java:164)

at
com.lombardisoftware.component.wsconnector.worker.WSConnectorWorker.doJob(WSConn
ectorWorker.java:125)

at
com.lombardisoftware.component.common.workflow.ExecutionJob.doJob(ExecutionJob.j
ava:399)

at
com.lombardisoftware.server.ejb.workflow.EJBWorkflowManagerBean.doResumeWorkflow
Engine(EJBWorkflowManagerBean.java:942)

at
com.lombardisoftware.server.ejb.workflow.EJBWorkflowManagerBean.resumeProcess(EJ
BWorkflowManagerBean.java:337)

at
com.lombardisoftware.server.ejb.workflow.EJSRemoteStatefulEJBWorkflowManager_824
78d70.resumeProcess(Unknown Source)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at

sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:48)
at

sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.jav
a:25)

at java.lang.reflect.Method.invoke(Method.java:600)
at com.ibm.rmi.util.ProxyUtil$2.run(ProxyUtil.java:528)
at java.security.AccessController.doPrivileged(AccessController.java:251)
at com.ibm.rmi.util.ProxyUtil.invokeWithPrivilege(ProxyUtil.java:514)
at com.ibm.CORBA.iiop.ClientDelegate.invoke(ClientDelegate.java:1156)
at $Proxy93.resumeProcess(Unknown Source)
at

com.lombardisoftware.server.ejb.workflow._EJBWorkflowManagerInterface_Stub.resum
eProcess(_EJBWorkflowManagerInterface_Stub.java:518)

at
com.lombardisoftware.component.common.workflow.EJBWorkflowManagerDelegateDefault
.resumeProcess(EJBWorkflowManagerDelegateDefault.java:142)

at
com.lombardisoftware.component.common.workflow.EJBWorkflowManagerDelegateWebSphe
re$6.run(EJBWorkflowManagerDelegateWebSphere.java:84)

at

Page 508

com.lombardisoftware.client.delegate.common.WebsphereDelegateHelper.doAsCurrentS
ubjectContextSensitive(WebsphereDelegateHelper.java:128)

at
com.lombardisoftware.client.delegate.common.WebsphereDelegateHelper.doAsCurrentS
ubjectContextSensitive(WebsphereDelegateHelper.java:116)

at
com.lombardisoftware.component.common.workflow.EJBWorkflowManagerDelegateWebSphe
re.resumeProcess(EJBWorkflowManagerDelegateWebSphere.java:82)

at
com.lombardisoftware.component.common.web.WebWorkflowManager.callEJBWorkflowMana
ger(WebWorkflowManager.java:686)

at
com.lombardisoftware.component.common.web.WebWorkflowManager.processRequest(WebW
orkflowManager.java:238)

at
com.lombardisoftware.servlet.ControllerServlet.doCommon(ControllerServlet.java:3
16)

... 36 more
Caused by: com.lombardisoftware.core.TeamWorksRuntimeException: Property field1
in class ComplexArrayHolderType is not declared. It must be declared to be used.

at
com.lombardisoftware.core.TWObject.getDeclaredPropertyByName(TWObject.java:548)

at com.lombardisoftware.core.TWObject.setTWClass(TWObject.java:344)
at com.lombardisoftware.core.TWObject.cast(TWObject.java:317)
at com.lombardisoftware.core.TWObject.setArrayItemTWClass(TWObject.java:434)
at com.lombardisoftware.core.TWObject.cast(TWObject.java:315)
at com.lombardisoftware.server.core.SymbolTable.set(SymbolTable.java:366)
at

com.lombardisoftware.core.script.js.AbstractTWSymbolTableScriptable.put(Abstract
TWSymbolTableScriptable.java:170)

at
org.mozilla.javascript.ScriptableObject.putProperty(ScriptableObject.java:1729)

at
org.mozilla.javascript.ScriptRuntime.setObjectProp(ScriptRuntime.java:1557)

at
org.mozilla.javascript.ScriptRuntime.setObjectProp(ScriptRuntime.java:1547)

at org.mozilla.javascript.Interpreter.interpretLoop(Interpreter.java:3036)
at org.mozilla.javascript.Interpreter.interpret(Interpreter.java:2487)
at

org.mozilla.javascript.InterpretedFunction.call(InterpretedFunction.java:164)
at org.mozilla.javascript.ContextFactory.doTopCall(ContextFactory.java:398)
at org.mozilla.javascript.ScriptRuntime.doTopCall(ScriptRuntime.java:3070)
at

org.mozilla.javascript.InterpretedFunction.exec(InterpretedFunction.java:175)
at com.lombardisoftware.core.script.js.JSScript.exec(JSScript.java:56)
at

com.lombardisoftware.core.script.js.JavaScriptRunner$2.execute(JavaScriptRunner.
java:242)

at
com.lombardisoftware.core.script.js.PreparedScope.executeWithScope(PreparedScope
.java:199)

at
com.lombardisoftware.core.script.js.JavaScriptRunner.execute(JavaScriptRunner.ja
va:240)

... 66 more

Investigation of this issue turned up an interesting situation. Let us break down the scenario into
more detail.

The Web Service we are calling returns a complex data type that I called
"ComplexArrayHolderType". This data type contains a single field called "arrayHolder" which is

Page 509

defined as a 0..* (an array/list) of data types of type ComplexDataType2. In WID as a Business
Object, this looks as follows:

From a raw XSD perspective, it looks like:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://WLEDataTypeTests"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:bons0="http://WLEDataTypeTests">
<xsd:include schemaLocation="ComplexDataType2.xsd"></xsd:include>
<xsd:complexType name="ComplexArrayHolderType">

<xsd:sequence>
<xsd:element minOccurs="0" name="arrayHolder"

type="bons0:ComplexDataType2" maxOccurs="unbounded">
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

The XSD is consistent with the model Business Object representation model.

When a request is made to the Web Service, we see the following SOAP message being returned:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body xmlns:axis2ns8="http://WLEDataTypeTests/IArray">
 <io:opIArrayResponse xmlns:io="http://WLEDataTypeTests/IArray"
xmlns:io2="http://www.w3.org/2003/05/soap-envelope"
xmlns:io3="http://www.ibm.com/websphere/sibx/smo/v6.0.1"
xmlns:io4="http://www.ibm.com/xmlns/prod/websphere/mq/sca/6.0.0"
xmlns:io5="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:io6="http://www.ibm.com/xmlns/prod/websphere/http/sca/6.1.0"
xmlns:io7="wsdl.http://WLEDataTypeTests/IArray"
xmlns:io8="http://www.w3.org/2005/08/addressing"
xmlns:io9="http://WLEDataTypeTests" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <iArrayOut>
 <arrayHolder>
 <field1>Index 1 Value 1</field1>
 <field2>Index 1 Value 2</field2>
 <field3>Index 1 Value 3</field3>
 </arrayHolder>
 <arrayHolder>
 <field1>Index 2 Value 1</field1>
 <field2>Index 2 Value 2</field2>
 <field3>Index 2 Value 3</field3>
 </arrayHolder>
 <arrayHolder>
 <field1>Index 3 Value 1</field1>
 <field2>Index 3 Value 2</field2>
 <field3>Index 3 Value 3</field3>
 </arrayHolder>
 </iArrayOut>
 </io:opIArrayResponse>

Page 510

 </soapenv:Body>
</soapenv:Envelope>

Again, this appears consistent. The tag called <iArrayOut> is the name of the output variable
which does indeed appear to be an instance of "ComplexArrayHolderType" as evidenced by
the repeating occurrences of the tag called "arrayHolder" which is the only field in
"ComplexArrayHolderType".

Looking for a IBPM perspective, we find that the generation of types from IBPM created two IBPM
types. The first is called ComplexArrayHolderType and matches the XSD. This data type, as
expected, has a single field called "arrayHolder" that is defined as a list of ComplexDataType2.

ComplexDataType2 looks as follows:

Page 511

In the IBPM Integration Service, the output parameter of the following integration:

In the data mappings, the following is shown:

The "outVar" was defined to be of data type "ComplexArrayHolderType". Hovering the
mouse over "iArrayOut" shows the expected data type:

Which again does seem to show that it is expecting a ComplexArrayHolderType. So, to
recap, in this environment it fails with the previous errors.

Now … here is where things get interesting. If I click the "autoMap" button for this variable, a
variable called "iArrayOut" is created:

The data type of this variable is:

Which in description form is "a list of ComplexDataType2".

When this variable and data type are used, the solution executes.

Page 512

Conclusion:

There is a mystery at play here.

Java Message Service – JMS
Java Message Service (JMS) is a messaging and queuing system available in the Java world. It
allows applications to asynchronously put messages to a queue and for other applications to
subsequently retrieve them.

JMS – Sending and receiving from queues

IBPM provides a Java Class as part of the integration.jar managed file called
teamworks.JMSMessage. This class has methods to put and get messages from a JMS queue.
To use this capability, create an Integration Service and insert a Java Integration step. For the
implementation of that step, select teamworks.JMSMessage from the integration.jar.
The methods available are:

• putMessage – Puts/sends a message to a queue

• getMessage – Get/retrieve a message from a queue

The putMessage parameters look like:

Page 513

The getMessage parameters look like:

Now we can start to expand on these parameters.

Parameter Description

initialContext This is the name of a Java class that provides the JNDI lookup context. This will be the string:
"com.ibm.websphere.naming.WsnInitialContextFactory"

providerUrl This is the URL to the JMS provider. For IBM's SIBus, this will be:
"iiop://<hostname>:<port>". The port number will be the bootstrap port of the WAS
server. This can be found in the WAS admin console under the server definition. The default
port value for a normal configuration is 2809.

Page 514

messageContent This is a text string that is sent as the body of the message. Note that only JMS TextMessages
can be sent using the putMessage() method. Specifically, the other types of JMS messages
such as Stream, Bytes, Map and Object are not available.

connectionFactory This is the JNDI name of the JMS queue connection factory.

queueName This is the JNDI name of the JMS queue to be accessed

Q Lookup This is a boolean value (true/false). If set to true, the queue named in the queueName
parameter is looked up in JNDI. If set to false, an attempt is made to create a queue with the
given name.

properties This is a IBPM Map data type that contains a set of name/value properties. These properties
will be added to the transmitted TextMessage.

filter

See also:

• DeveloperWorks - WebSphere Lombardi Edition V7.1: Integrating with the JMS queue, Part 1: JMS integration with the queue hosted on a
local Service Integration Bus – 2010-12-08

• DeveloperWorks - WebSphere Lombardi Edition V7.1: Integrating with the JMS queue, Part 2: JMS integration with the queue hosted on a
remote Service Integration Bus - 2010-12-09

JMS – Triggering a UCA

IBPM can listen on JMS queues that are owned by WAS. When a message arrives on this queue,
IBPM will trigger a UCA as a result. This provides an elegant way for a IBPM based solution to be
triggered by the arrival of an asynchronous message.

The primary queue that is being watched by IBPM for events is retrievable at the JNDI location
called:

jms/eventqueue

The format of the message that arrives on the queue is prescribed by IBPM architecture and must
look as follow:

<eventmsg>
<!-- The process app acronym and event name are required.

Page 515

http://www.ibm.com/developerworks/websphere/library/techarticles/1012_mamindla2/1012_mamindla2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1012_mamindla2/1012_mamindla2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1012_mamindla1/1012_mamindla1.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1012_mamindla1/1012_mamindla1.html

The snapshot and UCA name are optional -->
<event

processApp="acronym"
snapshot="[snapshot_name]"
ucaname="[UCA_name]">event_name</event>

<!--Optional: The name of the queue for the event to run in-->
<queue>[queue name]</queue>
<!--Any parameters the UCA may require-
<parameters>

<parameter>
<key>param1</key>
<value>![CDATA[value1]]</value>

</parameter>
</parameters>

</eventmsg>

The processApp attribute on the event element provides the name of the acronym or "short
name" of the Process Application. This is required as all artifacts are scoped by the Process App or
Toolkit in which they live. Since the message we are going to put in a queue is destined for a UCA
which is associated with a Process Application, we need to name the Process Application in which
it lives.

When we define a UCA, we give that UCA an attribute called the "Event Message".

This is a poor choice of name for this attribute. What this attribute does is correlate an external
event such as a message arriving on a JMS queue with the type of UCA to invoke. A Process
Application may have multiple UCAs associated with it yet IBPM listens on just one queue. This
means that when a message is deposited in the queue, there has to be data in the message to allow
IBPM to know which UCA to deliver the message to. The Event Message attribute is the key.
By default, IBPM assigns this a uniquely generated value but it is common to change this to a
human readable value that describes its nature with more meaning.

The "event_name" element in the JMS XML message contains the name of the Event Message that
is used for matching.

Page 516

Since an incoming event may have data associated with it and this data matches data with the UCA,
the Parameters section may have multiple parameter values that are mapped to the message.

See also:
• Undercover Agents (UCAs)

• Starting a UCA from REST

JMS Client Tools

Note: 2012-01-26 - Bizarrely, both of these tools are no longer available from the IBM
AlphaWorks web site. Checking with the IBM DeveloperWorks staff, it was found that the reason
they are no longer present is that the original IBM authors chose not to continue to
support/distribute these tools. Although the tools may have been “dated”, they worked beautifully.
It is lamentable that they are no longer present. This section will be left in case they should be
resurrected.

IBM has a sample JMS client application called the "IBM Client Application Tool for JMS" (what
else would it be called). This can be found here:

http://www.alphaworks.ibm.com/tech/jmstool

Another useful tool is called Service Integration Bus Explorer. It can be found here:

http://www.alphaworks.ibm.com/tech/sibexplorer

For sending messages, I prefer the JMSTool. Here is a quick-start to get it working with IBPM.

First download the tool in a file called JMS_Client.zip as well as the SWT libraries as
documented at the JMSTool download page. Ensure that the SWT libraries that you download
match the platform on which the tool is to be run. For example, download the 64bit libraries if you
are going to be running on a 64bit OS. Also make sure that there are no spaces in the paths for
either JMS Client, SWT or the WAS App Server.

Extract both the JMSTool.zip and the SWT libraries ZIP.

In the JMS_Client folder created, find the file called setenv.bat. Edit this file with a text
editor.

Change the variables for WAS_HOME and SWTJARS and JNDI_PROV_URL

An example resulting file looks like:

rem ##
rem #
rem # IBM Client Application for JMS environment script
rem # Copyright (C) IBM Corp. 2006
rem #
rem # This script is run automatically when starting the IBM Client Application
rem # for JMS using the 'JMSClient.bat'script. The environment variables in this
rem # script should be customized to your system before running the
rem # 'JMSClient.bat'script.
Rem #
rem ##

rem ##
rem # This value should be the location of your WebSphere installation

Page 517

http://www.alphaworks.ibm.com/tech/sibexplorer
http://www.alphaworks.ibm.com/tech/jmstool

rem # (E.g. C:\Program Files\IBM\WebSphere\AppServer)
rem ##
set WAS_HOME=C:\IBM\Lombardi7\AppServer
set WMQ_JAR_PATH=%WAS_HOME%\lib\WMQ\java\lib

rem ##
rem # If you are using the SWT GUI, you need to make sure that the SWT libraries
rem # are available on the classpath. The value of the following environment
rem # should be set to the location of the SWT libraries (I.e. the location of
rem # your 'swt.jar' file and SWT DLL's)
rem ##
set SWTJARS=C:\Projects\WLE\JMS\swt-3.6.1-win32-win32-x86_64

rem ##
rem # The JMS connection factory for the default messaging JMS provider has a
rem # dependency on JNDI, performing a lookup for certain WebSphere resources
rem # when attempting to connect to a messaging engine within a Service
rem # Integration Bus. For this reason, a value must be specified for the
rem # JNDI_PROV_URL environment variable that points at a valid Naming Service
rem # within the target WebSphere Application Server cell if you are attempting
rem # to connect to a Service Integration Bus.
Rem ##
set JNDI_PROV_URL=corbaloc:iiop:localhost:12812

To launch the tool, run:

JMSClient.bat -ui SWT

Click the Browse JNDI button to bring up a list of connection factories:

Page 518

Pick the entry called javax.jms.QueueConnectionFactory

Click Connect to to connect to the WAS Server. The main page of the tool is shown:

Click on the Message Producer tab to start the task of sending (producing) a message:

Page 519

Click the Browse JNDI button beside the Destination input. This will produce a list of known
queues as found by listing the JNDI registry. Pick eventqueue from the list:

Page 520

In the JMS payload section, enter the data that you wish to place on the queue. The content
should be XML as previously described. Finally press the Send Once button to send a single
instance of the message to the queue.

Page 521

Once the message has been sent, IBPM will retrieve the message and process it.

In addition to the above tools, another tool "SI Bus Performance Tool" can be found here:

https://www.ibm.com/developerworks/community/groups/service/html/communityview?
communityUuid=13a714e5-6379-4325-aeee-c0c88ec3d15b

This tool is especially useful for seeing if there are readers of SI Bus queues.

Page 522

https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=13a714e5-6379-4325-aeee-c0c88ec3d15b
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=13a714e5-6379-4325-aeee-c0c88ec3d15b

See also:
• IBM Service Integration Bus Destination Handler, Version 1.1

Hermes JMS

Hermes JMS is another good tool for working with JMS messages. It doesn't appear to have been
modified since 2009 but it still seems to work. Although not advertised as working with
WebSphere SI Bus, it does seem to work reasonably well.

Download the hermes-install-xxx.jar

Run java -jar hermes-install-xxx.jar

Once run, we see an initial welcome screen.

Page 523

http://www-01.ibm.com/support/docview.wss?uid=swg24021439

Next is a description of what HermesJMS is all about.

Now the license instructions.

Next the folder into which the tool will be deployed.

Page 524

Now a prompt about what is going to be installed.

Now a final confirmation.

Page 525

And a progress step.

In my experience running on Windows 7, this last window did not terminate and I was forced to
quit. However, the tool was installed and seemed to run correctly. It appeared that the problem was
caused by the tool trying to create a desktop icon which failed.

It is absolutely vital that Hermes run using the IBM JVM and not any other JVM. The easiest way
to do this is to edit the "hermes.bat" and insert:
set JAVA_HOME=C:\IBM\WebSphere\AppServer\java

Page 526

near the top of the file. Make sure that the path matches what you expect.

We also need to add the JAR files from WAS to allow connection. Open Options > Configuration
and switch to the Providers tab. Right click in the background and select "Add Group". Set the
"Classpath group name" to be "WAS85". Right click "Library" and select "Add JAR(s)". Add the
following JAR files from the "<WAS Root>/runtimes/" folder:

• com.ibm.ws.ejb.thinclient_8.5.0.jar

• com.ibm.ws.orb_8.5.0.jar

• com.ibm.ws.sib.client.thin.jms_8.5.0.jar

In the target WAS server, we need to change RMI/IIOP security settings. Open the WAS Admin
console and go to Security > Global Security

Open the "CSIv2 inbound communications":

Page 527

Change the "Transport" property to "SSL – supported"

Repeat the above for the "CSIv2 outbound communications" setting.

If you fail to do the above, an error similar to the following will be received
'javax.naming.NamingException: Error getting WsnNameService properties [Root exception is
org.omg.CORBA.TRANSIENT: initial and forwarded IOR inaccessible vmcid: IBM minor code: E07
completed: No]

http://www-01.ibm.com/support/docview.wss?uid=swg21614221

Next we need to create a new context. The parameters that need set are:

• loader – Set this to WAS85 to load the correct JARs

• providerURL – This will be set to iiop://<hostame>:<bootstrapPort>

• initialContextFactory – This will be set to
com.ibm.websphere.naming.WsnInitialContextFactory

Also had to fiddle with IIOB settings when I received:
'javax.naming.NamingException: Error getting WsnNameService properties [Root exception is
org.omg.CORBA.TRANSIENT: initial and forwarded IOR inaccessible vmcid: IBM minor code: E07
completed: No]

http://www-01.ibm.com/support/docview.wss?uid=swg21614221

Double clicking on the new context will show a list of JNDI entries. In the jms folder, we will find
connection factories, queues and topics.

Page 528

http://www-01.ibm.com/support/docview.wss?uid=swg21614221
http://www-01.ibm.com/support/docview.wss?uid=swg21614221

When the WAS server hosting SI Bus is configured, a port is defined for SI Bus client connections.
The WAS logical name for this is "SIB_ENDPOINT_ADDRESS". When we configure a WAS
queue connection factory, we must also define the endpoint providers property to allow the client to
connect to the correct provider. For example:

In the WAS Bus > Security settings, change the permitted transports to work over all types:

Page 529

Experience seems to be showing that after adding a QCF or CF we need to restart the server for it to
show up in JNDI.

In a QCF definition, we also need to provide a "prover endpoint"

localhost:7281:BootstrapBasicMessaging

WebSphere Default Messaging

The JMS implementation supplied by WAS is called Default Messaging or sometimes System
Integration Bus (SI Bus).

See also:
• Redbook - WebSphere Application Server V7 Messaging Administration Guide

Page 530

http://www.redbooks.ibm.com/abstracts/sg247770.html?Open

REST Integration
From IBPM 7.5 onwards, a REST interface has been formally provided for the product. REST is a
protocol where client requests can be transmitted over an HTTP connection to achieve queries and
work on the server. The detailed documentation for the REST APIs can be found in the IBM online
InfoCenter.

http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r0m1/topic/com.ibm.wbpm.ref.doc/rest/bpmrest/rest
_bpm_wle.htm

Although the majority of function can be achieved through the product supplied REST capabilities,
many appear to be missing that one would have assumed to be present. Read and study the
available method calls as carefully as you can.

When making a REST request, HTTP provides an option to supply the verb or command. These
are prescribed by the HTTP protocol and include:

• GET

• POST

• PUT

• DELETE

• others

Take care to use the correct REST HTTP command that is associated with the function that is to be
performed. Typically commands that retrieve data use the HTTP GET while commands that update
or create some BPM resource use POST or PUT.

Note that some requests, specifically PUT and DELETE may not be allowed to pass through
firewalls. A solution to this is to add an HTTP header to the REST request with:
x-method-override = {PUT|DELETE}

or
x-http-method-override = {PUT|DELETE}

And send the request over a POST request which will be allowed to pass. For BPD related REST
requests, a URI parameter can be added … eg.
http://....?&x-method-override=PUT

For some REST command, the command may simply be too long if passed as a URL. A solution to
this is to send the REST request as a POST, set the x-http-method-override HTTP header
to be the command and place the parameters of the REST request in the body of the POST HTTP
request. The HTTP Content-Type header should be set to "application/x-www-form-
urlencoded".

Yet another way of sending data to the server is to use POST and set the content to be
multipart/form-data

For example, setting the Content-Type to be:
multipart/form-data; boundary=-----------------------------4827543632391

then a body could be:
-----------------------------4827543632391
Content-Disposition: form-data; name="instanceId"

123
-----------------------------4827543632391

Page 531

http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r0m1/topic/com.ibm.wbpm.ref.doc/rest/bpmrest/rest_bpm_wle.htm
http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r0m1/topic/com.ibm.wbpm.ref.doc/rest/bpmrest/rest_bpm_wle.htm

Content-Disposition: form-data; name="name"
myname
-----------------------------4827543632391
Content-Disposition: form-data; name="docType"
file
-----------------------------4827543632391
Content-Disposition: form-data; name="data"; filename="MyDoc.txt"
Content-Type: text/plain
Hello
-----------------------------4827543632391--

To use this multipart/form-data style can be quite tricky. However, if called from Java, the Apache
HTTP Components may come to our aid.

A module in this offering is called MultipartEntity. An instance of this object can have
multiple "parts" added to it with the "addPart()" method. A part appears to be of data type
ContentBody which has two interesting concrete implementations for us:

• StringBody – A string value

• ByteArrayBody – An array of bytes

From this, it appears that we can build a MultipartEntity object and add to that a series of "parts".
Once done, we can then use that Multipart entity as the payload of a REST request. Each part has
an associated "name" which is supplied in the addPart() method.

See also:

• DeveloperWorks - Integrating a business process application in IBM Business Process Manager V7.5.1 with an external system using the
REST API - 2012-02-08

• DeveloperWorks - Using the REST APIs in IBM Business Process Manager V7.5 – 2011-08-31

• Making REST calls from GWT

• Apache HTTP Components

The REST Functions

The API exposed by the product includes a rich set of capabilities:

Process Model: get

Process Applications: get

Process Applications: post Create a new Process Application from a BPMN 2.0 archive

Toolkits: get

Toolkits: post

Process: start

Process: send message

Process Instance: get

Process Instance: suspend

Process Instance: resume

Process Instance: terminate

Process Instance: update process instance

Process Instance: update due date

Process Instance: start adhoc

Process Instance: delete document

Process Instance: add comment

Page 532

http://hc.apache.org/
http://www.ibm.com/developerworks/websphere/library/techarticles/1108_thaker/1108_thaker.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1202_olivieri/1202_olivieri.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1202_olivieri/1202_olivieri.html

Process Instance: fire timer

Process Instance: add document

Process Instance: update document

Process Instance: delete document

Process Instance: evaluate JavaScript Execute JavaScript within the context of a process

Process Instance Queries: get

Process Instance Query Attributes: get

Process Instance Query Entity List: get

Process Instance Query Entity List Count: get

Service Model: get

Service: start

Service: currently running

Service: get data

Service: stop

Service: resume

Service: set data

Service: evaluate JavaScript

Task Template: get

Task Template Client Settings: get

Task Template Queries: get

Task Template Query Attributes: get

Task Template Query Entity List: get

Task Template Query Entity List Count: get

External Activity Model: get

Task: bulk claim

Task: bulk cancel

Task: get next

Task Actions: get

Task Instance: get

Task Instance: start task

Task Instance: assign task

Task Instance: update

Task Instance: finish

Task Instance: claim

Task Instance: cancel

Task Instance Client Settings: get

Task Instance Queries: get

Task Instance Query Attributes: get

Task Instance Query Entity List: get

Task Instance Query Entity List Count: get

Exposed Items: get

Page 533

Search Metadata: get

Search: perform custom search

Performance Query: get

Performance Instance Query: get

Users: get

User: get

User: put

Groups: get

Group: get

Systems Metadata: get

Asset List: get

Branch Snapshot List: get

Project Named Snapshots List: get

Snapshot Change History: get

Compare History: get

Process Application Settings: get

Handling REST errors

Not all requests to IBM BPM will always succeed. Errors can be returned. The format of a an error
is as follows:
{

status: "error"
Data: {

errorMessage: "Text of message",
errorMessageParameters: [// array of parameters //],
errorNumber: "Error message number",
exceptionType: "Java exception name"
responses: // unknown //

}
}

The REST API Tester

Baked into IBPM is a fantastic tool for testing REST APIs. It is a web based application that can be
reached at:
http://<hostname>:<port>/bpmrest-ui

When launched from a browser, it shows a list of the categories of the different REST requests:

Page 534

Selecting an entry shows the details of that entry and allows values for the parameters to be
supplied. From there, an Execute Call button can be pressed which executes a live call to the server
and returns the data from the server for examination.

Page 535

The data can be selected to be returned as either JSON or XML.

Alternatives to the REST API Tester tool include the popular soapUI and the FireFox plug-in called
RESTClient.

After installing RESTClient, it can be opened in the FireFox environment and shows a window that
looks as follows:

Page 536

https://addons.mozilla.org/en-US/firefox/addon/restclient/

Working with REST Search Queries

One of the more interesting REST APIs is called "Search" and is generically available at:
/rest/bpm/wle/v1/search/query

This request is available through both PUT and POST HTTP REST commands but surprisingly not
through GET even though this seems like an ideal and logic candidate for a GET request.

The operation can take a number of parameters as query strings. These include:

Name Description

columns See description below. A comma separated list of column names.

condition See description below.

sort

secondSort

organization There appears to be two distinct query return type organizations. One returns task instances and the
other returns process instances. This parameter declares which type of search should be performed.
The choices are "byTask" or "byInstance".

saveAsName If this search is to be saved for later re-use then a name value may be supplied here.

run

shared

The columns is a comma separated list of column names of data that can be returned. The list of
columns that can be supplied is itself available from a REST request called:

/rest/bpm/wle/v1/search/meta/column

Page 537

As of IBPM version 8.5 the list looks as follows:

• assignedToUser

• assignedToRole

• instanceName

• instanceId

• bpdName

• instanceDueDate

• instanceCreateDate

• instanceModifyDate

• instanceStatus

• instanceSnapshot

• instanceProcessApp

• taskDueDate

• taskPriority

• taskSubject

• taskStatus

◦ Comment

◦ Received

◦ Closed

• taskReceivedDate

• taskClosedDate

• taskSentTime

• taskReadTime

• taskReceivedFrom

• taskClosedBy

• taskActivityName

In addition to the column names listed above, there are a set of additional columns that are
commonly returned. Note, do not include these columns in the search columns. These are:

Property Description

taskId The ID of the task

taskAssignedTo Who is the ?? assigned to. Can be null or not present.

assignedToUser Who is the ?? assigned to. Can be null or not present,

taskAttachedExtActivityRef

taskAttachedInfoPathFormRef

The format of a returned JSON structure looks as follows:
{

status: "200",
data:
{

data:
[

{
<columnName>: <columnValue>,
<columnName>: <columnValue>,
…
<columnName>: <columnValue>,

},
…
{

<columnName>: <columnValue>,
<columnName>: <columnValue>,
…,
<columnName>: <columnValue>,

Page 538

}
],
organization: {"byTask"|"byInstance"},
autoColumns:
[

"assignedToUser",
"instanceId",
"instanceStatus",
"taskAssignedTo",
"taskAttachedExtActivityRef",
"taskAttachedInfoPathFormRef",
"taskCreatedByBpdFlowObjectId",
"taskCreatedByBpdId",
"taskId"

]
}

}

As can be seen, the most interesting aspect of this is the data field which is an array of objects
where each object is a set of properties corresponding to the retrieved "columns". The
"autoColumns" are the names of additional columns returned beyond those explicitly requested.

The condition part of the REST request allows us to filter or constrain the records returned on a
query. A condition takes the form:

<columnName>|<operation>|<value>

The allowable operations are:

• Equals

• NotEquals

• Contains

• StartsWith

• LessThan

• GreaterThan

multiple conditions can be supplied and these logically "ANDed" together. There is no deeper
query mechanism than this (for example logical "ORs"). Not all column names are supported for
condition evaluation. A REST request of the form:
/rest/bpm/wle/v1/search/meta/constraintColumn

returns the list of column names that may be used in conditions. As of 8.5 these are:

• assignedToUser

• assignedToRole

• bpdName

• instanceCreateDate

• instanceDueDate

• instanceId

• instanceModifyDate

• instanceName

• instanceProcessApp

Page 539

• instanceStatus

• instanceSnapshot

• taskActivityName

• taskDueDate

• taskPriority

• taskStatus

• taskSubject

An example condition might be:

• instanceProcessApp|Equals|A110822 – True if the Process App is "A110822"

• bpdName|Equals|<Name> and taskActivityName|Equals|<Name> – True for
a specific task type within a given BPD type

Another REST exposed service that can be used in conjunction with searches is called Search Meta
Data and is exposed at:
GET /rest/bpm/wle/v1/search/meta/type

The type parameter defines what type of search data is desired. As of 7.5.1, the following types and
their content are defined:

• column - The names of the columns that can be included as columns to be returned

• constraintColumn - The names of columns that can be included in constraint
expressions

• taskStatus – The different status that a task may have. Currently these are:

◦ New_or_Received

◦ Actioned

◦ Alert

◦ Answered_Help_Request

◦ Closed

◦ Comment

◦ Deleted

◦ Followed

◦ Forwarded

◦ Help_Request

◦ Ignored_Help_Request

◦ New

◦ Received

◦ Replied

Page 540

◦ Sent

◦ Special

• businessData – The names of business data fields that can be returned as columns

• savedSearch – The names of saved searches

• instanceStatus – The name of statuses of process instances. Currently these are:

◦ Active

◦ Completed

◦ Did_not_Start

◦ Failed

◦ Suspended

◦ Terminated

• priority – The names of allowable priority settings. Currently these are:

◦ Highest

◦ High

◦ Normal

◦ Low

◦ Lowest

Working with REST Task Instance Queries

This is an area that the author is still researching but one which appears to be of high importance.
The concept appears to be that a query can be executed to retrieve task information but the
responses seem very different from simple searches. It appears that there is a wealth of possibilities
here. The general syntax is:
GET /rest/bpm/wle/v1/tasks/query/{queryName}?<parameters>

• selectedAttributes – string -

• interactionFilter – String – One of the following values:

◦ WORK_ON

◦ WORK_ON_ACTIVE

◦ ASSESS_AVAILABLE

◦ ASSESS_AND_WORK_ON

◦ CHECK_COMPLETED

◦ BROWSE_ALL

• queryFilter – string -

• searchFilter – string -

Page 541

• processAppName – string -

• sortAttributes – string -

• offset – integer -

• size – integer -

• filterByCurrentUser – boolean

Each search has attributes/items and each attribute is defined with:

• name

• displayName

• description

• isArray

• sourceAttribute

• content

• sourceQueryTableIdentifier

• isSortable

• isFilterable

An example of an IBM existing saved search is "IBM.DEFAULTALLTASKSLIST_75" which
contains:

Name Column

TAD_DISPLAY_NAME taskSubject

TAD_DESCRIPTION taskNarrative

DUE taskDueDate

ACTIVATED taskReceivedDate

PRIORITY priority

STATUS taskStatus

STATE taskStatus

ORIGINATOR taskReceivedFrom

COMPLETED taskClosedDate

OWNER assignedToUser

ASSIGNED_TO_ROLE_DISPLAY_NAME assignedToRoleDisplayName

NAME taskActivityName

TKIID taskId

AT_RISK_TIME taskAtRiskTime

IS_AT_RISK taskIsAtRisk

PI_PIID instanceId

CONTAINMENT_CTX_ID instanceId

PI_NAME instanceName

PI_DISPLAY_NAME instanceName

Page 542

PT_PTID bpdid

PROCESS_APP_ACRONYM instanceProcessApp

SNAPSHOT_NAME instanceSnapshot

SNAPSHOT_ID instanceSnapshotId

KIND

Working with REST Task Instances

There are a set of REST requests that will work with instances of tasks. These include the
following operations:

• Get the details of a task

• Start a new task

• Assign a task to a user or group

• Update the due date or priority of a task

• Complete/close a task

• Claim a task against a user

• Cancel a task

All of these commands start with the general prefix of:
/rest/bpm/wle/v1/task/{taskId}

The taskId value can potentially be retrieved from a preceding query/search call.

Getting Task and Instance details through REST

The method to get the details of task look as follows:
GET /rest/bpm/wle/v1/task/{taskId}[?parts={string}]

where parts can be one of "data", "all" or "none". The default is "all". An example response is
shown next:
{
 "status": "200",
 "data": {
 "activationTime": "2011-08-31T18:14:53Z",
 "clientTypes": ["IBM_WLE_Coach"],
 "completionTime": null,
 "containmentContextID": null,
 "description": null,
 "displayName": "Step: Call EA1",
 "dueTime": "2011-08-31T19:14:53Z",
 "kind": "KIND_ORIGINATING",
 "lastModificationTime": "2011-08-31T18:14:53Z",
 "name": "Call EA1",
 "originator": "tw_admin",
 "owner": null,
 "priority": 30,
 "startTime": "2011-08-31T18:14:53Z",
 "state": "STATE_RUNNING",
 "tkiid": "1223",
 "piid": null,
 "status": "Received",
 "priorityName": "Normal",
 "assignedTo": "All Users_T_da7e4d23-78cb-...b2262",
 "assignedToType": "group",
 "data":

Page 543

{
 "bpdToken":

{
 "bpdInstanceID": {"data": 1422},
 "tokenID": "2"

},
 "variables":

{
"in1":
{

 "f1": "f1Val",
 "f2": "f2Val",
 "f3": "f3Val",
 "f4":

{
"x": "hi",
"y": 0,
"z": false

}
}

}
},

 "externalActivityID": "60.0b902a52-8df2-44ed-85e2-04bbd980b01d",
"serviceID": "…",
"nextTaskId": "…",
"processInstanceName": "…",
"isAtRisk": "…",
"collaboration":

}
}

Some of the fields in this data structure need explanation:

Field Name Description

activationTime

atRiskTime

clientTypes

completionTime

containmentContextID

description

displayName

dueTime

isAtRisk A flag that indicates that this task is at risk.

kind • KIND_PARTICIPATING - ??

lastModificationTime

name

originator

owner

priority

startTime

state • STATE_READY – When a Task has been created but not yet claimed, it is in
this state.

• STATE_CLAIMED – When a Task has been claimed by an individual user, it
is in this state.

• STATE_FINISHED – When a task has been completed, it is in this state.

Page 544

tkiid The Task instance id

piid The Process instance id

processInstanceName

status • Received – Task has been received
• Closed – Task has been closed

priorityName

assignedTo

assignedToDisplayName

assignedToType • user – The task is assigned to a user
• group – The task is assigned to a group

data

processData

serviceID The serviceID field is extremely useful. This is the identifier for the service that created
the task. Through this, we can get service description and from this, the expected input
and output data types. See also:

• Getting a Service Model using REST

flowObjectID

nextTaskId

collaboration

One of the most important aspects of the Task data structure is that it contains the variables passed
in and/or returned from the task. Ignoring the rest of the structure, these variables can be found at:
{

data:
{

data:
{

variables:
{

varName:
{

fieldName: …
fieldName: …

}
}

}
}

}

The field values are pretty much what you would expect. They are strings for String, numbers for
numbers and nested JSON objects for deeper data types … however … arrays (lists) seem
somewhat different.

Consider a data type that looks as follows:

Page 545

This is a data type that contains a field which is an array of strings. If we have a task that has an
input variable of this type, what we find is that the Task data returned looks as follows:
{

data:
{

data:
{

variables:
{

in1:
{

f1:
{

items: "[\"a\",\"b\"]",
selected: "[]"

}
}

}
}

}
}

When a query is made to the run-time to retrieve the tasks/process instance, it is made as a specific
user. What this means is that only those tasks for that user are actually shown. This means that it is
not possible (using the REST APIs) to retrieve a list of tasks/processes for all users. The JavaScript
API called TWSearch allows for the query of all tasks/instances without regard to who owns or can
work on them.

See also:
• Searching for processes and tasks from JavaScript

• Error: Reference source not found

Getting a template for a task

There is a REST call that retrieves a template for a task. At a high level it looks as follows:

GET /rest/bpm/wle/v1/taskTemplate/{templateId}

Page 546

What is a templateId?

Finishing a Task

Another Task oriented REST request available to us performs the job of completion of a task. The
format of this command is one of:
PUT /rest/bpm/wle/v1/task/{taskId}?action=finish¶ms={json}
POST /rest/bpm/wle/v1/task/{taskId}?action=finish¶ms={json}

To set the values of the variables, what we want to do is get a list of all the expected output
variables of that task. Imagine, for example, a task that has an output variable called "out1" of
data type "BO1". The completion of an instance of this task would then be achieved by returning a
JSON object that contains a property called "out1" (which is the same name as the variable) where
this property contains a JSON child object representation of the data.

An example to complete this task would then be:
/rest/bpm/wle/v1/task/1260?action=finish¶ms={"out1":{"a":"a1", "b":"b1","c":"c1"}}

Note that the action=complete is a synonym for action=finish.

Experience seems to show that for data types of type List, the data coming back is of the format:
{

"selected":
[
],
"items":
{
}

}

Where selected is an array of integers of ordinal items selected and items is an array of items in the
array. When setting a response of a list, experience seems to be showing that items can be set but
not the selected entries. Attempting to set selected is resulting in errors.

If we have chained tasks, a property called "nextTaskId" contains an array of taskIds. Quite
why this is an array and not a single task is still a mystery. If there is no next taskid, the array
length is zero.

See also:
• External Implementation

Starting a Task

The Start Task REST request first struck me as an odd thing. It has a mandatory parameter … a
taskId. This confused me for the longest time. Why would we start a task if it already existed?
What does it mean to start a Task? After a lot of play testing and an awful lot of help from others,
something clicked. The idea of "Starting a Task" is synonymous with the idea of "Starting to work
on a task". This is opposed to the other interpretation which is “creating a task instance”. Starting
to work on a task comes into play when one thinks of measuring process metrics such as how long
did it take someone to work upon a task.

Consider two distinct tasks both of which complete 4 hours after the process created them. In one
task, a user started working on it as soon as it was created and it took him 4 hours to complete the
work associated with it. This resulted in a wall clock time of 4 hours from when the task was
created to when it was finished. For the second task, the user started working on it 3 hours and 30
minutes after the task was created and finished his task 30 minutes later. Again this resulted in a
wall clock time of 4 hours from when the task was created to when it was finished. Should we

Page 547

consider both tasks the same? The answer is no. The first task took a person 4 hours while the
second task took a person 30 minutes. This obviously means that the tasks were not of the same
nature. More, if one is looking to improve the process, one would want to focus on tasks that take
longer to complete and simple wall-clock time of how long it took for the activity to complete is not
always a good measure since we shouldn't assume that the task is worked on as soon as it is created.

The REST API to flag a Task as started is:
POST /rest/bpm/wle/v1/task/{taskId}?action=start

where the taskId is the identifier of an existing task.

An example return from this call looks as follows:
{

"data":
{

"return":
{

"serviceStatus": "coach",
"data": "{\"var1\":\"Hello\"}",
"coach": "<Form xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\">\r\n

<FormTitle>IBM BPM Coach<\/FormTitle>\r\n <Layout id=\"section\" styleClass=\"\">\ ...
<\/Layout>\r\n<\/Form>",

"step": "Untitled1",
"coachEvals":
{
},
"actions":
{

"str":
[

"ButtonGroup0_Button0",
"ButtonGroup0_Button1"

]
},
"key": "1456"

}
}

}

The return data from the Start request is very interesting. The first thing to note is that it returns the
XML representation of the Coach itself before being passed through the XSLT conversion to make
it HTML. In principle this could then be "parsed" by some GUI generation or interpretation tool to
build a new UI. In practice though, my opinion is that this would not be a good idea. The XML
representation of the Coach may change in future releases.

Another return is the current value of all the variables in the Service. This appears to be a single
String that is JSON encoded.

In the "actions" section is a list of the identities of the buttons which can cause the Coach to
complete. These can later be used to cause the Coach to complete through other REST API
commands.

Claiming a task

When a task is created, it may be associated with a Team. This is a set of potential owners. When
one of those potential owners looks at their task list, they will see the task available to them to work
upon. What we want to happen is that when a specific user works on a task, that task should no
longer be available to the other potential owners. Another way of saying this is that we want a task
to be "claimed" by a particular user. Once it has been claimed, it shouldn't be able to be claimed by
another user.

There is a REST API for claiming a task. It is:
POST /rest/bpm/wle/v1/task/{taskId}?action=claim

Page 548

Re-assigning a task

A task can be re-assigned to a different user or group of users. This is achieved with the following
REST command:
PUT (orPOST) /rest/bpm/wle/v1/task/{taskId}?action=assign[&toMe={boolean}][&back={boolean}]
[&toUser={string}][&toGroup={string}][&parts={string}]

The taskId is the identifier of the task to be re-assigned.

The parts parameter describes what data should be returned from this specific call.

The other parameters describe the new user or groups to which the task should be assigned.

• toMe=true – Assign this task to the user that is making the REST call

• back=true – Assign this task back to the original owner

• toUser=string – Assign this task to the named user

• toGroup=string – Assign this task to the named group

There appears to be mysterious rules governing who can perform an assignment of a given task and
to whom it can be assigned. Read the previous sentence again carefully as it takes some thought to
understand that there are actually two considerations at play there. Let us look at them both.

Given an arbitrary task X, the first question is "Can I actually perform an assignment upon it?".
The answer to that appears to be "yes, but only if you are either currently assigned to the task or you
belong to a group to which the task is assigned".

The next question is "To whom can I assign the task?". The answer to that appears to be "Another
user who is also in a group that you yourself are also a member of or to a group that you are a
member of".

Getting Task variable values

When a task is active, it has variables associated with it. There is a REST API that can be used to
retrieve the values of those variables. At a high level it is:

GET /rest/bpm/wle/v1/task/{taskId}?action=getData&fields=fieldName

An example instance of a result would be:
{
 "status": "200",
 "data": {
 "result": "{\"xyz\":\"Neil\"}",
 "resultMap": {"xyz": "Neil"}
 }
}

Getting the client details of a task

When a task is associated with a Coach, we can retrieve some client details for that task. This is
itself an additional REST call:

GET /rest/bpm/wle/v1/task/{taskId}/clientSettings/IBM_WLE_Coach

This returns the following data:
{

Page 549

status: "200",
data: {

url:"http://localhost:9080/teamworks/process.lsw?
zWorkflowState=1&zTaskId=1749&zResetContext=true"

}
}

The important property is called "url". This contains the URL that can be opened to show the
task.

Working with REST Processes

Through the REST APIs we have the ability to work with Processes and instance of processes.

Starting a process from REST

A Process Instance can be started with the Process Resource POST (start) method which generally
looks like this:
POST /rest/bpm/wle/v1/process?action=start&bpdId={string}{[&snapshotId={string}]|
[&processAppId={string}]}[params={string}]

Only one of snapshotId or processAppId should be supplied. It is mandatory that one of
them be supplied to identify which process should be started.

The parameters are GUIDs.

The values for the start REST command can be retrieved from the Exposed Items (with filter)
resource:
GET /rest/bpm/wle/v1/exposed/process

From the exposed details, the fields of interest are:

REST term parameter Exposed Value Example

bpdId itemID 25.xxx

snapshotId snapshotID 2064.xxx

processAppId processAppID 2066.xxx

There is also a property within the data returned on exposed processes which is called "startURL"
which can be used to directly start the process. For example:

"/rest/bpm/wle/v1/process?action=start&bpdId=25.acbeda41-aa7c-4748-adb0-
e3c031bca280&processAppId=2066.06402192-a621-49fc-a9b3-65976c821c3f"

An example response from the start request may look as follows:
{

status: "200",
data:
{

creationTime: "2012-01-07T02:49:09Z",
description: null,
executionState: "Completed",
lastModificationTime: "2012-01-07T02:49:09Z",
name: "BondProcess:231",
piid: "231",
processTemplateID: "25.895c6548-91ef-4862-916b-5cec3460e79d",
processTemplateName: "BondProcess",
processAppName: "Surity",
processAppAcronym: "A111229",
snapshotName: null,
snapshotID: "2064.b1e4c8b4-b742-4c0b-a1b6-74a2fb4cc35a",

Page 550

dueDate: "2012-01-21T02:49:09Z",
comments:
[
],
tasks:
[
],
documents:
[
],
actionDetails: null,
data: ""{}"",
variables:
{
},
executionTree:
{

executionStatus: "2",
root:
{

name: "BondProcess",
nodeId: "1",
children: null,
createdTaskIDs: null

}
},
diagram:
{
}

}
}

See also:
• Getting Exposed Processes

• REST encoded UUIDs/GUIDs

• TechNote - Error CWTBG0019E: Unexpected Exception occurs when starting the process using the REST interface with IBM Business
Process Manager – 2011-06-22

Getting details of a process instance using REST

The details of a process instance can be retrieved through a REST call if we know the process
instanceId. The syntax for the REST request is as follows:
GET /rest/bpm/wle/v1/process/{processInstanceId}

Within the REST API Tester, this function is known as:

WLE REST APIs > Process API > Current State
status: "200",
data:
{

creationTime: "2012-04-20T15:51:02Z",
description: null,
executionState: "Active",
lastModificationTime: "2012-04-20T15:51:27Z",
name: "BPD1:943",
piid: "943",
processTemplateID: "25.218bd752-b612-4c8b-9fc7-e1a69ac6e925",
processTemplateName: "BPD1",
processAppName: "Attachment Security",
processAppAcronym: "A120420",
snapshotName: null,
snapshotID: "2064.0a006243-cb2d-45fa-aa4b-cde8d8c05ecc",
dueDate: "2012-05-04T15:51:02Z",
comments:[],
tasks:[],
documents:[
{

name: "dddd",
type: "FILE",
date: "2012-04-20T15:51:22Z",
length: 6,

Page 551

https://www-304.ibm.com/support/docview.wss?uid=swg21503211
https://www-304.ibm.com/support/docview.wss?uid=swg21503211

ID: "103"
}],
actionDetails: null,
data: ""{}"",
variables:
{
},
executionTree:
{

executionStatus: "1",
root:
{

name: "BPD1",
nodeId: "1",
children: [
{

name: "Untitled1",
nodeId: "4",
children: null,
flowObjectId: "bpdid:56d35d2f221c8d0e:-2c8e90b7:136a1cc0df6:-7e2a",
tokenId: "4",
createdTaskIDs: ["884"]

}],
createdTaskIDs: null

}
},
diagram:
{
}

}

Let us look at the executionTree section. Examination holds the following to be the best
understood model of this data:
{

executionStatus: "1" // Unknown
root: {

name: "Process Model Name",
nodeId: Integer, // Unknown
children: {},
createdTaskIDs: // Unknown

}
}

The children items appear to have the following format
{

name:
nodeId:
children: {},
flowObjectId: // Step ID of the BPD step that token is upon
tokenId: String, // Id of the token
createdTaskIDs: Array of String // TaskIds created for this step

}

Boiling this down to the commonly asked for function. What if I want to know where within my
current process I currently am?

It seems that getting the Process Instance data and drilling down to:
executionTree.root.children[*]

will return the meat of what we are looking for.

Getting details of a process model from REST
GET /rest/bpm/wle/v1/processModel/{bpdId}?snapshotId={String}

This returns:

• Name of process

• Data model including inputs and outputs

Page 552

Starting a UCA from REST

A UCA can be fired through a REST request. The triggering of a UCA can be used to start a
process through a Start Message Event or unblock a process waiting on an Intermediate Message
Event.
POST /rest/bpm/wle/v1/process?action=sendMessage&message={string}

The format of the message is:
<eventmsg>
<!-- The process app acronym and event name are required: The snapshot and UCA name are optional -->

<event processApp="[acronym]" snapshot="[snapshot_name]"
ucaname="[UCA_name]">[event_name]</event>

<!--Optional: The name of the queue for the event to run in -->
<queue>[queue name]</queue>
<!--Any parameters the UCA may require -->

<parameters>
<parameter>

<key>param1</key>
<value>![CDATA[value_for_param1]]</value>

</parameter>
<parameter>

<key>param2</key>
<value>value_for_param2</value>

</parameter>
</parameters>

</eventmsg>

The response from the POST request indicates whether or not the request message was received:
{

"status": "200",
"data": {"messageSent": true}

}

An example of current usage of this REST request is to start a new instance of a BPD process with
data. Even though there is a Start Process REST request, in 7.5.0 this does not accept input data to
be passed into the process whereas the technique of having a process started with a Start Message
Event and a UCA works.

See also:

• Message Start Event

• Invoke UCA

• Undercover Agents (UCAs)

• Java Message Service – JMS

Moving a token within a process using REST

The concept of a token is the step within a BPD process instance that is the "current" step. The
REST API provides the capability to "move" tokens from one step to another.
POST /rest/bpm/wle/v1/process/{instanceId}?action=moveToken&tokenId={string}&target={string}

The tokenId is a simple numeric value (eg. 4) and is obtained from a process instance query. The
target is the IBM BPM id of the step in the process (eg. bpdid:56d35d2f221c8d0e:-
3cac44a9:13b35102749:-7de2). This can also be determined from a process instance
query.

See also:

• Token Management

Retrying a failed instance
GET /rest/bpm/wle/v1/process/{instanceId}?action=retry

Page 553

Listing and starting Ad-Hoc Events from REST

The API request called:
GET /rest/bpm/wle/v1/process/{instanceId}/actions

returns entries describing what can be performed against the identified process instance. This
includes whether or not an Ad-Hoc start event is possible. This is called
"ACTION_INJECT_TOKEN". A further API can be called which can be used to start such an Ad-
Hoc start event. This API is called:
POST /rest/bpm/wle/v1/process/{instanceId}?action=adhoc&step={stepName}

Working with REST Services

Amongst the primary concepts of IBPM is that of “Services”. Services are the parts of a process
that are usually linked together. As an entity, services have their own set of REST APIs available
for use.

Starting a service from REST

An API call is available to start a service. It is defined as:
POST /rest/bpm/wle/v1/service/{serviceModelId}?action=start...

The REST API expects an serviceModelId parameter which can be either the serviceModelId
parameter from the service model ID or it may be of the form
"<project-shortname>@<service-name>"

The only types of service that can be started are "AJAX" or "Human". The identity of the caller can
be found from the tw.system.user_loginName property.

The optional parameters to this REST call include:

• createTask (Boolean) – Should a task be created in which this service runs?

• parts (String) – Which response items should be returned. Values can be:

◦ data

◦ all

◦ none

• params (String) – A JSON expression describing the input parameters

• snapshotId (String) – The id of the snapshot to be used to start the service

• callerTaskId (String) – The id of the task that is associated with starting this service

An example response looks as follows:
{

"status":"200",
"data":{

"serviceStatus":"coach",
"key":"@42",
"step":"Collect MDN",
"data":{"allData":null},
"coach":"<Form>...</Form>",
"coachEvals":{},
"actions":["ButtonGroup0_Button0"],

Page 554

"actionsMap":{"ButtonGroup0_Button0":"Submit"}
}

}

The values of serviceStatus seems to describe what the next step will be. Values seen include:

• coach – We have reached a coach

• end – The service has ended

Getting data from a Service

An API call is available to retrieve variable values from the running Service. The format of the call
is:

GET /rest/bpm/wle/v1/service/{instanceId}?action=getData&field={variableName}

The variable name should be the full name as in tw.local.{varName}. Simply supplying the
name of the variable by itself is not sufficient.

An example response looks as follows:

{
status: "200",
data:
{

result: "{"xyz":"XYZVal"}",
resultMap:
{

xyz: "XYZVal"
}

}
}

Note:

The following was written pre 7.5.1 and appears to no longer be true. It is being left here for just
now pending more detailed analysis. Experiment and review what works and doesn't work to be
sure what is and is not currently applicable …. Author.

Experience seems to also show that a call to Start a task is required before this API may be used.
This is not adequately explained or understood (yet).

Experience also seems to show that the ability to execute JavaScript from a REST call is required.
To set this up, edit the 99Local.xml configuration file and change the following:

…
<enable-javascript-execution>true</enable-javascript-execution>

</common>

Again it is not yet known why this has to be changed and there may be security implications.

Setting data into a Service

Data variable values can be changed inside the content of a running service. This will most likely
be a Human Service step.

GET /rest/bpm/wle/v1/service/{instanceId}?action=setData&field={variableName}

Page 555

Getting a Service Model using REST

An API is available the returns the model of a Service. This is the declaration of what the interface
of the service looks like. The API looks as follows:

GET /rest/bpm/wle/v1/serviceModel/{serviceId}

The serviceId parameter defines the ID of the service to be queried. This can be either the UUID of
the service or the service identifier supplied in the format of
“<ProcessAppShortName>@<ServiceName>”. The UUID of a service can be obtained
from the field serviceID in the details of a returned task. This can then be used to associate a
task to a service that created it.

Field Description

header Header information

diagram A diagram of the model

dataModel Abstract meta data description of the data expected as input and returned from the service

Here is an example of returned data:

{
status: "200",
data:
{

header:
{

name: "HS1",
UUID: "guid:56d35d2f221c8d0e:-5a405e30:134fcb20625:-7f8d"

},
diagram:
{

step:
[

{
name: "End",
x: 700,
y: 100,
type: "ExitPoint",
ID: "ProcessItem.548c1796-57aa-4b5c-a287-3a8a31eb5df4"

}
]

},

dataModel:
{

properties:
{

v1:
{

isList: false,
type: "BO1"

},
v2:
{

isList: false,
type: "String"

}
},

Page 556

inputs:
{

v1:
{

type: "BO1",
isList: false

}
},
outputs:
{

v2:
{

type: "String",
isList: false

}
},
validation:
{

String:
{

type: "string",
description: "String Type"

},
BO1:
{

properties:
{

a:
{

isList: false,
type: "String"

},
b:
{

isList: false,
type: "String"

},
c:
{

isList: false,
type: "String"

}
},
type: "object"

}
}

}
}

}

Let us now look at the description of the data model. The data model is not instance data. It is not
associated with a specific instance of a service. Instead, the data model is the model of what is
expected as inputs and outputs from the service. The data model needs some interpretation so let us
slow down and try and define some terms.

First, let us define something called a field. A field has three attributes:

• name – the name of the field

• type – the data type of the field

• isList – a boolean indicator that describes if this is a list (array)

Page 557

A data model starts with three named containers called “properties”, “inputs” and “outputs”. Each
of these are a set of fields.

So, effectively what we have is:

{
properties:
{

fieldA, fieldB
}
inputs:
{

fieldA
}
outputs:
{

fieldB
}

}

There is a fourth container within the the data model that is called “validation”. This container
contains a set of data types. A data type consists of the following properties:

• data type name – The name of the data type

• type – The type of the data type. This appears to be one of the following:

◦ string – A String data type

◦ object – A Business Object

• properties – If the type of the data type is “object”, then the properties container will be
present. This is a set of fields describing the content of the object.

{
validation:
{

String:
{

type: "string",
description: "String Type"

},
BO1:
{

properties:
{

a:
{

isList: false,
type: "String"

},
b:
{

isList: false,
type: "String"

},
c:
{

isList: false,
type: "String"

}
},
type: "object"

Page 558

}
}

}

Working with Exposed Items

Getting Exposed Processes

The list of exposed processes can be retrieved with:
GET /rest/bpm/wle/v1/exposed/process

An example returned would be:
{

status: "200",
data:
{

exposedItemsList:
[

{
ID: "2015.202"
branchID: "2063.3321e2c8-3f9b-4240-84cd-918a120e00ee"
branchName: "Main"
display: "BPD2"
itemID: "25.c23430e6-62fe-4794-9f02-4f840a19b2d7"
itemReference: "/25.c23430e6-62fe-4794-9f02-4f840a19b2d7"
processAppID: "2066.69fd9a5f-7e91-4d7f-a386-fcdd64f65209"
snapshotCreatedOn: "2013-02-07T17:32:31Z"
snapshotID: "2064.c6cf862c-9d56-4420-ab5b-478ebaed10e8"
snapshotName: "2013-02-07-1"
startURL: "/rest/bpm/wle/v1/process?action=start&bpdId=25.c23430e6-62fe-4794-9f02-

4f840a19b2d7&processAppId=2066.69fd9a5f-7e91-4d7f-a386-fcdd64f65209"
tip: true
type: "process"

},
…
]

}
}

Within these records, the following need further explanation:

• itemID – This is the GUID for the BPD model

• processAppID – This is the GUID for the Process App that contains the exposed process.

• snapshotID – This is the Snapshot ID within the Process App for the exposed process.

• ID

Given the information returned from an exposed process, on occasion we wish to know which
Process App the exposed process is contained within. We see that we get its GUID code
(2066.xxx) but that doesn't tell us the name of the Process App. Using the API to retrieve a list of
all Process Apps, we can then match for this processAppID GUID and find the details for that
application.

See also:
• Starting a process from REST

Working with REST Users and Groups

Users and groups known to IBM BPM can be queried through REST APIs.

The first API we will look at returns a list of all users:

GET /rest/bpm/wle/v1/users[?filter={string}][&parts={string}]

Page 559

The filter parameter provides a suffix matching capability. For example, if the filter were "abc"
then the returned users would only include those that start with "abc" (if any). The parts parameter
allows us to control how much data is returned. Options are:

• all

• memberships

• none

{
"status": "200",
"data":
{

"users":
[

{
"userID": 9,
"userName": "admin",
"fullName": "Administrator",
"isDisabled": false,
"primaryGroup": null,
"emailAddress": null,
"userPreferences":
{

"Locale": "en",
"Alert On Assign And Run": "true"

},
"memberships":
[

"Debug",
"tw_admins",
"tw_authors",
…

]
}
…

]
}

}

A second REST API allows us to obtain the details of a specific named user:

GET /rest/bpm/wle/v1/user/{userNameOrID}[?parts={string}]

The userNameOrID parameter identifies the user to be returned. To retrieve details on the
current user, supply "current" as the name of the user.

The parts parameter may be one of:

• all

• none

• memberships

The response for the retrieval of information for a single user is the same as for a list of users but, of
course, only one user is returned.

Page 560

Working with Process Apps

A list of available Process Apps can be retrieved with the following command:
GET /rest/bpm/wle/v1/processApps

From withing the REST API Tester, this command can be found in
Other > Retrieve Process Applications

A typical response looks like:
{

status: "200",
data:
{
processAppsList:
[
{

shortName: "TWP",
name: "Process Portal",
description: "",
lastModifiedBy: "Internal TW Admin user",
defaultVersion: "Main",
installedSnapshots:
[
{

name: "7.5.1",
acronym: "7.5.1",
active: false,
ID: "2064.a7b6c684-65c4-420e-b7be-0a504bba24c5"

}
],
ID: "2066.23d3ecec-6fdb-4033-9c57-e931aa13761f",
lastModified_on: "2011-11-21T15:15:04Z"

}
…
]

}

Of high importance is the “ID” field. The ID field is a UUID for the Process App. In some APIs,
this is called the projectId.

Working with REST and heritage process document attachments

A heritage capability exists in which documents can be attached or associated with process
instances. The REST interface provides capabilities to add a new document, update an existing
document or delete a document. Notice that there is no API to retrieve a document. To retrieve a
document, a separate URL/REST request is available. The list of documents (if any) associated
with a process instance can be retrieved by examining the details of a process instance. From this,
the document id can be determined which is used as a key in other requests.

Documents as managed by IBPM can be of two types known as "file" and "url". For a "url" type
attachment, what is saved is a URL where the data for the attachment can be found. For a "file"
type attachment, the data itself is saved by IBPM with the process instance. The name "file" is
probably a bad name as it is really "data".

A common use of document attachments is to have the end user select a file from their local file
system and have that attached to the process instance against which they are working. This is
typically performed through a browser with a file upload button. When using IBM's Portal and
Coaches, this is a straight forward task as the Coach provides a file upload ability. When writing a
custom UI component, things become a bit more problematic. Because of obvious browser security
rules, a browser client application (one running the browser) is not allowed to see the content of a
file. Instead, when a file upload is requested, it is sent to a Web Server using an HTTP FORM
(POST) mechanism. If we were to desire our own File upload mechanism to attach a document to a
process instance, to what would we then send the HTTP FORM request? The answer is that we

Page 561

ourselves would have to write such a function.

Heritage - Adding a document to a process instance using REST

A command is provided that looks as follows:
POST /rest/bpm/wle/v1/process/{processId}?action=addDocument&name={name}&docType={file|
url}&{data=data|docUrl=url}

In this command, the following attributes are needed:

Parameter Description

processId The id of the process instance to which the document it to be attached.

docType A value of "file" or "url" indicating which of the the two possible types of attachment are to be used.

data If the docType is "file", then this defines the data to be supplied and used in the request.

docUrl If the docType is "url", then this defines the URL to be associated with the attached document.

name Name associated with the document

It is likely that this API will be used in the mode of sending a POST request with the parameters
supplied in the body of the request.

See also:

• Error: Reference source not found

Heritage – Getting a list of attached documents

Asking a process for its details returns a list of documents attached to it. The documents are
attached in an array called "documents" which has the following structure:
{

name: "dddd",
type: "FILE",
date: "2012-04-20T15:51:22Z",
length: 6,
ID: "103"

}

Working with REST Asset Lists

This request retrieves a list of the assets in a Process Application that can be used to generate
documentation. Examples of this API having been seen to be used include deriving the list of BPDs
within a Process App.

GET /rest/bpm/wle/v1/assets?[&branchId=???][&snapshotId=???]

Categories:

• Human Service – List of human services

• Participant

• Variable Type – List of variable type definitions

• BPD – List of BPDs

• Project Defaults
{

status: "200",

Page 562

data:
{

"Human Service":
[

{
poId:
poVersioId:
tags: [],
name:
last_modified_by_userId:
last_modified_by_userName:
last_modified:

}
...

],
"Participant": …
"Variable Type":
"BPD":
"Project Defaults":

}
}

Each entry in the categories is termed a “Persistence Object” and is composed of the following
fields:

• poId

• poVersionId

• tags

• name

• last_modified_by_userId

• last_modified

For example:
{

poId: "25.02ee9f21-5231-4f36-b6b5-8fbd108bcdd3",
poVersionId: "043c21c4-751b-4287-bb9e-aafd6ed25ea6",
tags: [],
name: "BPD1",
last_modified_by_userId: 9,
last_modified_by_userName: "Administrator",
last_modified: 2147483647

}

Getting Project branchIds and Snapshots

There is an API called “Get Project Named Snapshots List Resource”. This is a mouthful. It takes
as input the “ID” value of a Process App or Toolkit (what the REST API calls a Project ID).
Process App Ids start with code "2066.xxx".

This API looks as follows:
GET /rest/bpm/wle/v1/project/{projectId}/snapshots

The projectId appears to be the ID field of a query of a Process App

What it returns looks like follows:
{

status: "200",
data:
{

branches:
[

{
branchId: "2063.38158f45-7dc9-4293-bf55-e3176a4659ba",

Page 563

name: "Main",
snapshots:
[

{
snapshotId: "2064.190135b9-9a63-4f1a-8cdb-94998b41916d",
name: "Post Josh",
desc: "",
createdBy_userId: 9,
createdBy_userName: "Administrator",
created_on: 2147483647

},
{

snapshotId: "2064.473163b7-f626-42b4-bb87-aa965d53efae",
name: "v2.0",
desc: "",
createdBy_userId: 9,
createdBy_userName: "Administrator",
created_on: 2147483647

}
]

}
]

}
}

Notice that the response data contains the branchId entry. This is used extensively in other
REST requests.

A question that may occur to you is “Where do I get the projectId from?”. The answer to this is that
we can execute a command to retrieve a list of Process Apps. This is described Working with
Process Apps. Process App Ids start with “2066.xxx”.

See also:

• REST encoded UUIDs/GUIDs

• Working with Process Apps

Getting Business Object definitions

The meta data description of a specific Business Object definition can be retrieved.
GET /rest/bpm/wle/v1/businessobject/{poId}?[branchId=...][snapshotId=...]

To obtain this detailed description , we need the “Persistence Object ID” of the Business Object that
we wish to query. To obtain this we need to query the Asset List of a Process App or Toolkit.
Remember, the Business Object is defined within that. In order to examine the Asset List of a
Process App, we need the branchId of the Process App. That is itself a different REST call. When
using that call we need to know the ID value of the Process App.

An example of a response looks like:
{

"status":"200",
"data":
{

"isComplex": true,
"type": "BO1",
"isShared": false,
"properties": [
{

"typeClass": "String",
"typeClassSnapshotId": null,
"typeClassBranchId": null,
"isArray": false,
"name": "a"

},
{

"typeClass": "BO2",
"typeClassRef": "12.4ad5f41f-27c8-4c20-ad82-bd08c78ef529",
"typeClassSnapshotId": "2064.0df8478f-e6aa-488d-9842-459ff6e1610f",
"typeClassBranchId": null,

Page 564

"isArray": false,
"name": "b"

},
{

"typeClass": "String",
"typeClassSnapshotId": null,
"typeClassBranchId": null,
"isArray": false,
"name": "c"

}],
"name": "BO1"

}
}

See Also:

• Getting Project branchIds and Snapshots

Working with REST retrieved diagrams

A number of the REST requests retrieve descriptions of diagrams back from the run-time. These
can be used to visualize various parts of the solutions.

Process Visual Model

GET /rest/bpm/wle/v1/visual/processModel/<bpdId>?snapshotId or branchId

GET /rest/bpm/wle/v1/visual/processModel/instances?
instanceIds=[<>]&bpdId=<>&snapshotId=<>

Return data

{
status: "200",
data:
{

name: {String} // Name of the BPD
poId: {String} // BPD Id
poVersionId: {String}
identifier: {String} // Name of property that is unique
id: {String} // A unique ID for this BPD element/step
width: {Number} // Width of the diagram
height: {Number} // Height of the diagram
label: {String} // The label of the image
items: [],
links: [],
properties: [],
textPositions: [],
activeTasks: [], // May be present
tokens: // May be present

}
}

Now let us look at items. Items appear to be the visual “things” on the screen. The most
important of these is the “items” array. Properties seen in them include:

{
lane: {String} // Swimlane that item lives in
snapshotId:
branchId:
successors: [],
preAssignment: {Boolean}
postAssignment: {Boolean}
conditional: {Boolean}
eventActionType: {Number}

Page 565

interrupting: {Boolean}
active: {Boolean}
id: {String} // Unique id for this item
label: // Text label
x: {Number} // Left position
y: {Number} // Top position
type: {String} // Type of item
category: {String}
colorIcon:
bpmn2TaskType:
poType:
poId:
attachedEvents:
loopType:
isSystem:
color:
width:
height:
children:

}

The core discriminator appears to be the “type” property.

Type = start or end

{
lane:
snapshotId:
branchId:
succesors:
attachedEvents:
preAssignment:
postAssignment:
conditional:
eventActionType:
interrupting:
active:
id:
label:
x:
y:
type:
category:

}

Type = activity

{
colorIcon:
lane:
bpmn2TaskType:
poType:
serviceType:
poId:
snapshotId:
branchId:
succesors:
attachedEvents:
loopType:
preAssignment:
postAssignment:
conditional:
eventActionType:

Page 566

interrupting:
active:
id:
label:
x:
y:
type:
category:

}

Type = swimlane

{
isSystem:
color:
width:
height:
children:
id:
label:
x:
y:
type:

}

For visualization of these, the important fields are:

• id – This is a unique key to the item on the screen.

• x, y – This is the X and Y coordinates of the item on the screen but relative to the swim
lane.

• label – This is the label contained in the item. Experience seems to show that the label is
already split using newline characters into logical lines. For example, if a line would be too
wide for a visual item, it is split into newline parts.

• type – This is the type of item on the screen. Types seen include:

◦ start

◦ end

◦ activity

◦ msgStartEventInterrupting

◦ adhocStartEvent

◦ messageEndEvent

◦ errorEndEvent

◦ terminate

◦ intermedCatchMsgEventNonBoundary

◦ intermediateThrowMsgEvent

◦ intermedCatchTimerEventNonBoundary

◦ intermedCatchTackingEventNonBoundary

◦ gateway

Page 567

◦ gatewayAnd

◦ gatewayOr

◦ gatewayEvent

◦ group

◦ intermedCatchErrorEventBoundary

◦ intermedCatchMsgEventBoundaryInterrupting

◦ intermedCatchTimerEventBoundaryInterrupting

• category – This is the category of the item

◦ StartEvent

◦ Activity

◦ EndEvent

For type of "activity"

• ServiceType – The type of activity

◦ "Human Service"

◦ "General System Service"

• bpmn2TaskType – The type of activity

◦ "ScriptTask"

◦ "UserTask"

◦ "DecisionTask"

◦ "ServiceTask"

◦ "SubProcess"

◦ "CalledProcess"

◦ "None"

Let us look for a moment at the (x,y) position of an item. Each item seems to have an (x,y) pair of
attributes that describes where that item should be positioned on the screen. Unfortunately, it is not
quite as easy as that. The (x,y) coordinates are relative to the swim-lane in which the item lives.
There is a class of item of type “swim-lane”. These items also have an (x,y) pair. For an arbitrary
item that is to be displayed, we first need to find the swim-lane in which it lives and then add the
(x,y) pair of the swim-lane to the (x,y) pair of the item to find the screen (x,y) pair.

Another key area within this data is the “links” array. This is an array of “links” which are the
wires connecting one item to another. This data structure contains:
{

needDefaultMarker: {boolean} // If true a marker is needed on the line to show that this is the
default path.

needDiamondMarker:
id:
name:

Page 568

start: {id} // The id of the start item
startPosition:
end: {id} // The id of the end item
endPosition:
showName:
showEndState:
linkLabelPosition:
gfx: {String} // This appears to be a String of a JSON object that is an array of intermediate

points
inCriticalPath:

}

For visualization of these, the important fields are:

• startPosition, endPosition – Where on the item does the line start or end. Entries
here include:

◦ rightCenter

◦ leftCenter

◦ leftTop

◦ leftBottom

◦ bottomLeft

◦ bottomCenter

◦ bottomRight

◦ rightBottom

◦ rightTop

◦ topRight

◦ topCenter

◦ topLeft

• start, end – Ids for the Items representing the start and end objects

• gfx – A string representation of a JSON object that is an array of points. The general
format appears to be:

{
intermediatePoints:
[

{
x: {Integer},
y: {Integer}

}
]

}

But remember … the gfx field appears to be a String and not an expanded JSON object. It has
also been found that if the start and ends of the links are in different swim lanes then an offset of 24
pixels must be added to the "x" coordinate of the intermediatePoints. It appears that this is most
likely a bug but is now unlikely to be corrected because of the potential negative side effects to
existing technologies. It also seems that if the start and end items are in different swimlanes then
the intermediatePoints are in absolute coordinates but if the start and end items are in the SAME
swimlanes then we need to add the "y" offset of the swimlane.

Page 569

The core model for links is that each link identifies the item from which the link should start and the
item to which the link should end. These items are identified in the link data by the fields “start”
and “end”. These are uuids that correspond to the “id” field in the items.

So … what then is the algorithm for drawing a link from one item to another?

First, we look at the link.start value. This will reference the id of an item. Getting to that
item, we then know the item.x and item.y position. Similarly, looking at the link.end
value, we get to a second item and learn its item.x and item.y position.

A directory can be found on the server which contains icons for all the different aspects of the
product as shown in Process Designer. The directory is:

<Profile>\installedApps\<Cell>\IBM_BPM_Teamworks_<Node_Server>.ear\webviewer.war
\widgets\com\ibm\bpm\wpd\images\BPD

Type Size

activity 95x70

start 24x24

A closer look at tokens

If the "tokens" property is present, it has the following structure:

"tokens":
{

"bpdid:56d35d2f221c8d0e:-1ff5e133:13895e09ee1:-7fe6":
[
{

"instanceId": "456",
"createTime":"2012-07-19T04:28:15Z",
"createTimeLong":1342672095246,
"active":true,
"tokenId":"2"

}
]

}

Basically tokens is a list of items in the diagram keyed by bpdid.

Executing JavaScript in the context of a process from a REST request

An unusual REST API is exposed that allows an arbitrary fragment of JavaScript to execute within
the context of a process. The API is defined as

POTS /rest/bpm/wle/v1/process/{instanceId}?action="js"&script=script

In order to be able to execute this command, the enable-javascript-execution flag must
be set to true. If it is not set to true, the REST request returns "CWTBG0529E:Authorization Error,
Javascript Expression execution is disabled". This flag can be found in 99Local.

Page 570

An example use of this call would be to set the value of a process variable.

It was mentioned that this is an unusual API request as it allows for arbitrary code execution within
the context of a process. It is not yet known what security implications this exposes. For example,
who is allowed to execute such a request? Is it based upon an administrative permission or is it a
function of participant groups associated with the process instance?

In general, I would recommend staying away from this API. The opportunity for breaking a
process is high, there is no obvious auditing or tracking on this command and reviewing a BPMN
diagram to understand what the process should do is "deviated" by using this API. If arbitrary code
can be executed in the context of a process, working back in the path of such a process from the
diagram won't show you how a result was reached.

Calling REST from Java

Although typically REST APIs are called from browser environments running JavaScript, there is
absolutely nothing to prevent a Java client application from invoking REST directly. Here is an
example application that makes a REST request. The core of the sample uses the Java supplied
class HttpURLConnection. This class owns the ability to build and transmit correctly
formatted HTTP requests. The sample also adds basic HTTP authentication data to ensure that the
IBPM runtime knows the identity of the caller.

The response data is retrieved as a String. To use that data we will have to parse it as either a JSON
data structure or an XML data structure depending upon the return type. It is strongly
recommended to "play" with an individual REST call for a while before attempting to code up a
solution. This will prepare you for understanding the data expected to be received by the runtime as
well as the response sent back.

The HTTP security mechanism expects the userid and password to be Base64 encoded. Oddly, the
Java 6 libraries don't appear to have a Base64 encoder supplied with them however the Apache
Commons "Codec" package which is available for free download provides just what is needed.

package com.kolban.wle;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;

public class Main {

public static void main(String args[]) {
try {

URL url = new URL("http://localhost:9080/rest/bpm/wle/v1/systems");
HttpURLConnection httpUrlConnection = (HttpURLConnection)

url.openConnection();
String wasUserName = "admin";
String wasPassword = "admin";
String authorization = "Basic " + new

String(org.apache.commons.codec.binary.Base64.encodeBase64(new
String(wasUserName + ":" + wasPassword).getBytes()));

httpUrlConnection.setRequestProperty("Authorization", authorization);
httpUrlConnection.setRequestMethod("GET");

//httpUrlConnection.setDoOutput(true);
//httpUrlConnection.setRequestProperty("content-type", "text/xml");

/*

Page 571

http://commons.apache.org/codec/
http://commons.apache.org/codec/

 * String data = "<data to write>"; OutputStreamWriter wr = new
 * OutputStreamWriter(httpUrlConnection.getOutputStream());
 * wr.write(data); wr.flush();
 */

System.out.println("Response: " + httpUrlConnection.getResponseCode() +
": " + httpUrlConnection.getResponseMessage());

InputStreamReader inReader = new
InputStreamReader(httpUrlConnection.getInputStream());

BufferedReader br = new BufferedReader(inReader);
String line = br.readLine();
while (line != null) {

System.out.println("Line is: " + line);
line = br.readLine();

}
} catch (Exception e) {

e.printStackTrace();
}

}
}

To take advantage of passing the context data from an authenticated application, the following Java
code fragment can be added:

If the caller is running in an authenticated context, then an LTPA token can be passed. Adding the
following before connecting to the server will achieve this:

Set s = WSSubject.getCallerSubject().getPublicCredentials(WSCredential.class);
WSCredential creds = (WSCredential) s.iterator().next();
byte token[] = creds.getCredentialToken();
httpUrlConnection.setRequestProperty("cookie", "LtpaToken=" +
Base64.encode(token));

When using JSON from a Java environment, there are basically two options. One can install the
IBM freely distributed Feature Pack for Web 2.0 into the WAS server which will provide the
com.ibm.json.java package or alternatively you can utilize the free open source package found at
www.json.org.

REST encoded UUIDs/GUIDs

Within the REST APIs, we appear to have a lot of “ids”. These appear to be long UUIDs.
However, they seem to have encoding at their beginning that gives us an indication of their purpose.
Here are some of the ones found so far:

Code Description

2015 Process Template ID

2063 Branch ID

2064 Snapshot ID

2066 Process App ID

2072 Process Instance ID

2078 Task ID

1 Service Persistence Object

Page 572

http://www.json.org/java/index.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.json.help/javadoc/com/ibm/json/java/package-summary.html

12 Variable Type Persistence Object

25 BPD Persistence Object

63 Project Defaults Persistence Object

We can convert a string that is encoded to one that is not encoded using:
value.replace(/^2072\./, "")

REST input and output data types

Processes and services can have input and output data. We can execute a query on a service or a
process for the description of the data expected as input or returned as output. From this
description, we can dynamically build an input structure. The format of the response of what input
data looks like is interesting. Generically, it looks as follows:

dataModel:
{

properties: {object},
inputs: {object},
outputs: {object},
validation: {object}

}

The inputs object has a property for each of the inputs of the service. Each one of those
properties is itself an JSON object that looks as follows:

{
isList: boolean,
type: string

}

The name of the property corresponds to the name of the parameter of the service. Let us now
focus a little more on the type field. The type field describes the data type of the parameter.
This is where the validation property comes into play. The validation property is again an
Object. Each of its properties corresponds to a type in the inputs and outputs objects. These objects
have the following form:

{
type: string,
description: string,
properties: {object}

}

REST Security

When a request is made to the BPM server using REST, the caller must be authenticated to permit
the appropriate action. Since the REST request is arriving over HTTP, WAS based HTTP security
applies. There are a number of ways that authentication may be achieved. The first is the use of the
technique called basic HTTP authentication. This means sending a userid/password pair with each
request. Although this works, it is not the best nor most secure mechanism. With basic HTTP
authentication, the password is passed in a simple Base 64 encoding which means that it is trivially
de-codable. If basic authentication is chosen, then it is recommended to send the HTTP requests
using SSL transport security to ensure that the content can not be examined. Instead of using basic
authentication, LTPA tokens can be utilized. The concept here is that a user authenticates with the
WAS server once and a token (a large string of characters) is returned. That token is then passed

Page 573

back from the browser with each subsequent REST request. Since the token was generated by
WAS and is known only to the browser that performed the initial login, this token is trusted by
WAS and allows WAS to know the caller's identity based on the previous successful login that
generated the token. The token is passed back implicitly to the WAS server through a browser held
cookie.

To perform a login to WAS, the following simple web page can be used. This page is called
"login.html".

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Login</title>
</head>
<body>

<h2>Form Login</h2>
<FORM METHOD=POST ACTION="j_security_check">

<p>
 Enter user ID and password:

 User ID <input type="text" size="20"

name="j_username"> Password <input
type="password" size="20" name="j_password">

 And then click this button:

 <input type="submit" name="login" value="Login">

</p>
</form>

</body>
</html>

When displayed, it looks as follows:

If the user fails to authenticate, a second page is needed to show an error. This file is called
"error.html":

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Insert title here</title>
</head>
<body>

<H1>A Form login authentication failure occurred</H1>
<P>Authentication may fail for one of many reasons. Some

possibilities include:

The user-id or password may be entered incorrectly; either
misspelled or the wrong case was used.

The user-id or password does not exist, has expired, or has
been disabled.

</body>
</html>

Page 574

The final step is to update the Java EE WAR deployment descriptor to state that "FORM" based
security is to be used to authenticate the user:
<login-config>

<auth-method>FORM</auth-method>
<realm-name>MYREALM</realm-name>
<form-login-config>

<form-login-page>/login.html</form-login-page>
<form-error-page>/error.html</form-error-page>

</form-login-config>
</login-config>

See also:
• Basic Authentication

Page 575

http://en.wikipedia.org/wiki/Basic_access_authentication

Database Integration
A commonly needed ability is the integration of data held in databases with a process. A database
may hold prices, stock availability or other important information that may be desired to be used by
a process. IBPM provides "connectors" to allow access to the database content held in tables.

Integration with supplied DB connectors

The functions to access databases are found in the System Data toolkit as implementation services.
These services are themselves implemented in Java presumably using the Java JDBC bindings.

The overall story looks as follows:

A BPD that wishes to work with data from a Database will invoke a user written Service through an
activity. This is business as usual. The called Service will wish to access the database. In order to
do this it will leverage one of the IBM supplied pre-implemented Services found in the System Data
Toolkit. When that is invoked, that supplied service calls native Java code supplied in a JAR
packaged with the System Data Toolkit. That Java code utilizes JDBC to interact with the target
database.

The list of available functions includes:

Name of Service Description

SQL Blob to File Read a Blob from the database and write the data to a file.

SQL Blob to File (SQL Statement)

SQL Call Multiple Stored Procedures Execute multiple store procedures.

SQL Call Multiple Stored Procedures
(SQL Statement)

SQL Call Stored Procedure Call a single stored procedure

SQL Call Stored Procedure (SQL
Statement)

SQL CLOB to File Read a CLOB from the database and write the data to a file.

SQL CLOB to File (SQL Statement)

SQL Execute Multiple Statements Execute multiple SQL statements.

Page 576

SQL Execute Multiple Statements (SQL
Result)

SQL Execute Script (SQL Result)

SQL Execute Statement

SQL Execute Statement (SQL Result)

SQL File to BLOB Read binary data from a file and write it to the database.

SQL File to BLOB (SQL Statement)

SQL File to CLOB Read character data from a file and write it to the database.

SQL File to CLOB (SQL Statement)

SQL Get Database Type Determine the type of database.

The parameters of these service calls supplied in the System Data Toolkit are typically the
following:

Parameter Name Description

sql This is a String representation of the SQL statement/query to be executed against the database.

parameters These are a list of parameters to be replaced in the SQL expression. Each element of the list
should be of type SQLParameter. These parameters are replaced in the SQL statement
where '?' is found.

maxRows This is the maximum number of rows to be returned.

returnType This is a String representation of the return type. Typically this will be "XMLElement" but a
complex data type can also be used.

dataSourceName This is the WAS defined JDBC name as a String.

If the returnType is defined as XMLElement then a typical return from a query will be an
XMLElement object with the following structure:
<resultSet recordCount="2" columnCount="3">

<record>
<column name="C1">A</column>
<column name="C2">B</column>
<column name="C3">C</column>

</record>
<record>

<column name="C1">D</column>
<column name="C2">E</column>
<column name="C3">F</column>

</record>
</resultSet>

Using JavaScript, we can then access the fields of the retrieved data as follows:
tw.local.result.record[0].column[0].getText() == "A"

If we wish, we can convert this XMLElement into a JavaScript object as follows:
var result = new Array();
var childRecord = tw.local.results.firstChild;
while(childRecord != null){
 var column = childRecord.firstChild;
 var row = new Object();
 while(column != null)
 {
 var name = column.getAttribute("name");
 var myText = column.getText();
 row[name] = myText;
 column = column.nextSibling;

Page 577

 }
 result.push(row);
 childRecord = childRecord.nextSibling;
}

As an alternative to asking for the result to be an XMLElement, a Business Object data type name
can be supplied. When the SQL is executed, a List object is returned where each element in the list
is an instance of the Business Object data type. The columns in the returned data are matched to the
names of the fields in the complex data type. Where there is a match, the returned column value is
used as the value of the corresponding field.

A third solution, an currently my own favorite is to define the response type for the results to be
"Record" and supply a "List of Record" as the receiver variable. This has all the
advantages of defining a custom BO but does not need the overhead of a BO definition simply to
exist to hold the SQL data returned.

See also:
• Data Type – Record

The SQLParameter structure used in some of these calls has the following attributes:

Name Description

value The value associated with the SQL parameter.

type The type of the parameter. This is a DB data type such as VARCHAR,
DECIMAL, DATE.

mode The mode of the parameter such as 'IN or 'OUT''.

It is recommended not to index a list of SQLParameter structures by ordinal value. Rather,
create a variable and index by the variable. It is just better in the long run.

When working with Database integration, a recommended practice for building this is the following
pattern:

1. Validate that the target database can be accessed with JDBC

2. Build SQL queries outside of WLE and validate that these queries work well. Consider using a
tool such as SQuirreL SQL to build these commands.

3. Define JDBC connections in the Process Server WAS environment and test that the
connections work.

4. Build out Integration Services that make use of the SQL Services in the System Data toolkit
using the JDBC connection and the previously built and tested SQL queries.

See also:
• Operational Databases

Using LiveConnect and JDBC

JavaScript executing within a service runs on the Process Server and can use embedded Java in the
form of LiveConnect. This means that JDBC programming can be explicitly included in the story:
try
{

var context = new Packages.javax.naming.InitialContext();
var datasource = context.lookup("jdbc/TEST");

}
catch(myExp)

Page 578

http://squirrel-sql.sourceforge.net/

{
log.error("Exp: " + myExp.message);

}

Example – Selecting rows from a table

In this example we will select and retrieve rows from a table. We will assume a table called
EMPLOYEE that looks as follows:

We create a nested service activity and bind it to SQL Execute Statement. The data
mapping for this activity looks like:

The SQL statement is:
"SELECT LASTNAME,FIRSTNAME FROM KOLBAN.EMPLOYEE WHERE EMPLOYEEID=?"

Note that there is a parameter for the EMPLOYEEID column in the WHERE clause. This is taken
from a variable called parm1 which is defined as a list of SQLParameters.

The one and only element of that list variable is coded to be:
value = '123456'
type = 'VARCHAR'
mode = 'IN'

The result type is an XMLElement and a variable of that type called result is declared to hold the
results. After execution, the LASTNAME and FIRSTNAME can be extracted through:
// LASTNAME
tw.local.result.record[0].column[0].getText();
// FIRSTNAME
tw.local.result.record[0].column[1].getText();

The order of the columns is as defined by the order of the returned items defined in the SELECT
statement.

Security with Database Interaction

IBPM interacts with the database using the credentials defined in the security attributes defined in
the WAS DataSource definition. It is vital that the tables being accessed have sufficient
permissions granted for this userid. If not, an odd error message will be presented:

DSRA9110E: Statement is closed.

JDBC definitions needed to access databases

In order for a process or service to access a database, a JDBC definition must be made in the
underlying WAS server that describes how to access the database. This is fully described at:

Page 579

• Defining custom databases

Service to Insert a row

Following the recommendation of building wrapping services to perform function, here is an
example of a service to insert a row into a DB. Imagine that the DB is called TESTDB and has a
table called TAB1 which has columns A, B and C. We have a BO called BO1 that has fields A, B
and C. The input to this service is an instance of BO1:

The setup variables step populates a String variable called sql which will contain the SQL code to
execute and also it will populate the parms variable which is a list of SQL parameters.
tw.local.parms = new tw.object.listOf.SQLParameter();
tw.local.parms[0] = new tw.object.SQLParameter();
tw.local.parms[0].value = tw.local.bo1.A;
tw.local.parms[0].type = "VARCHAR";
tw.local.parms[0].mode = "IN";

tw.local.parms[1] = new tw.object.SQLParameter();
tw.local.parms[1].value = tw.local.bo1.B;
tw.local.parms[1].type = "VARCHAR";
tw.local.parms[1].mode = "IN";

tw.local.parms[2] = new tw.object.SQLParameter();
tw.local.parms[2].value = tw.local.bo1.C;
tw.local.parms[2].type = "VARCHAR";
tw.local.parms[2].mode = "IN";

tw.local.sql = "INSERT INTO KOLBAN.TAB1 (A, B, C) VALUES (?, ?, ?)";

The Execute SQL parameters look as follows:

Service to Delete a row

Again with the notion that we want to create re-usable services to perform work, here is one to
delete a row. Imagine that the DB is called TESTDB and has a table called TAB1 which has
columns A, B and C. We have a BO called BO1 that has fields A, B and C. The input to this
service is an instance of BO1 and we want to delete the row where the row matches field A.

Page 580

The setup variables looks as follows:
tw.local.parms = new tw.object.listOf.SQLParameter();
tw.local.parms[0] = new tw.object.SQLParameter();
tw.local.parms[0].value = tw.local.bo1.A;
tw.local.parms[0].type = "VARCHAR";
tw.local.parms[0].mode = "IN";

tw.local.sql = "DELETE FROM KOLBAN.TAB1 WHERE A=?";

The Execute SQL parameters look as follows:

Service to Update a row

Similar to the previous examples, this example illustrates a service to update a row in a table:

tw.local.parms = new tw.object.listOf.SQLParameter();

tw.local.parms[0] = new tw.object.SQLParameter();
tw.local.parms[0].value = tw.local.bo1.B;
tw.local.parms[0].type = "VARCHAR";
tw.local.parms[0].mode = "IN";

tw.local.parms[1] = new tw.object.SQLParameter();
tw.local.parms[1].value = tw.local.bo1.C;
tw.local.parms[1].type = "VARCHAR";
tw.local.parms[1].mode = "IN";

tw.local.parms[2] = new tw.object.SQLParameter();
tw.local.parms[2].value = tw.local.bo1.A;
tw.local.parms[2].type = "VARCHAR";
tw.local.parms[2].mode = "IN";

tw.local.sql = "UPDATE KOLBAN.TAB1 SET B=?, C=? WHERE A=?";

Calling stored procedures

Let us first think about an initial sample stored procedure. Imagine a table that looks as follows:

OURTABLE

Page 581

COL_A COL_B

… …

This is a simple table with two columns. Imagine that we have written a stored procedure that
inserts a new row into the table. Duplicates are allowed. When a row is inserted, the number of
COL_A rows that have the same COL_A value as the inserted row are returned.

A procedure signature for this might be:
ourProcedure(in colAValue varchar(10), in colBValue varchar(10), out numDuplicates integer)

The code for this might be:
CREATE PROCEDURE OURPROCEDURE (

IN COLAVALUE VARCHAR(10),
IN COLBVALUE VARCHAR(10),
OUT NUMDUPLICATES INTEGER

)
P1: BEGIN

INSERT INTO NULLID.OURTABLE VALUES (COLAVALUE, COLBVALUE);
SELECT COUNT(*) INTO NUMDUPLICATES FROM NULLID.OURTABLE WHERE COL_A = COLAVALUE;

END P1

In IBPM, we can then invoke the System Data toolkit provided Integration Service called "SQL
Call Stored Procedure".

The passed in SQL was:
tw.local.sql = "CALL DB2ADMIN.OURPROCEDURE(?, ?, ?)";

and the parameters that were built were:
tw.local.sqlParms = new tw.object.listOf.SQLParameter();
tw.local.sqlParms[0] = new tw.object.SQLParameter();
tw.local.sqlParms[0].type="VARCHAR";
tw.local.sqlParms[0].mode="IN";
tw.local.sqlParms[0].value="ABC";

tw.local.sqlParms[1] = new tw.object.SQLParameter();
tw.local.sqlParms[1].type="VARCHAR";
tw.local.sqlParms[1].mode="IN";
tw.local.sqlParms[1].value="ABC";

tw.local.sqlParms[2] = new tw.object.SQLParameter();
tw.local.sqlParms[2].type="NUMERIC";
tw.local.sqlParms[2].mode="OUT";

For MS SQL Server, it appears that the SQL syntax may have to be:
{ call schema.procname(?) }

(Notice the addition of the curly braces.

See also:
• Cleaning/removing completed processes

Mapping IBM BPM Data types to DB data types

Database data types sometimes need to be mapped to/from IBM BPM data types. This section
provides some notes on performing those tasks.

Page 582

Dates/times

Consider a table which has a column of type TIMESTAMP. We may wish to perform a SQL select
comparing against such a value. In IBM BPM we have the Date/TWDate entry. What if we wanted
to compare against this?

For example:
SELECT * FROM MYTABLE WHERE ORDERDATE == tw.local.myDate

How can we achieve that?

SQL provides some conversion functions

• TIMESTAMP – example TIMESTAMP('20131120190600')

• DATE – example DATE('2013-08-25')

• TIME

These functions can take string parameters and convert the string to a comparable SQL query.
myDate.format("yyyy-MM-dd")

eg.
"SELECT * FROM MYTABLE WHERE ORDERDATE == DATE('" + tw.local.myDate.format("yyyy-MM-dd") + "')"

For a SQL TIMESTAMP, we can use:
sql = "…" + tw.local.myDate.format("yyyyMMddHHmmss") + "…";

See also:
• developerWorks – DB2 Basics: Fun with Dates and Times – 2003-08-23

Java Integration
Java integration is the idea that we can invoke the services of custom written Java classes as part of
the execution or a process. By dropping into Java, we have a powerful environment at our disposal.
This is achieved with the Java Service implementation. This component can be found in an
Integration Service.

When added into the diagram, a Java service implementation looks as follows:

Note that this looks visually indistinguishable from a Web Service implementation. The Java
Service is added from the palette from the component with the icon that looks like:

Once added, the properties sheet provides the options. The following image shows a properties
page already completed.

Page 583

http://www.ibm.com/developerworks/data/library/techarticle/0211yip/0211yip3.html

The Select button allows the user to select the Java Class file that is to be called. This class must
be part of a JAR file that has been defined as an "external file" to the Process Application (see:
Adding managed files). Once the class has been chosen, methods in the class that may be called
can be selected from the Method pull-down.

The Translate JavaBeans check box is used to describe how data being returned from the
method call is to be handled. If checked, the data is serialized into an XML document and an
XMLElement object is returned. This is useful if the returned Java Object is a JavaBean.

If the Translate JavaBeans box is not checked, the return data type MUST be one of the following
types:

• java.lang.String

• java.lang.Long

• java.lang.Integer

• java.lang.Short

• java.lang.Byte

• java.lang.Double

• java.lang.Boolean

• java.lang.Character

• java.util.Calendar

• java.util.ArrayList

• java.util.HashMap

• org.jdom.Document

• org.jdom.Element

• com.lombardisoftware.core.XMLNodeList

• com.lombardisoftware.core.TWObject

In addition to calling Java classes natively, JavaScript "LiveConnect" technologies could be used to
call Java from within the context of a JavaScript environment however the use of LiveConnect is
discouraged for performance reasons.

If a business object is passed, it appears to receive an instance of a class that implements the
interface called teamworks.TWObject.

The TWObject class can be found in the pscInt.jar file found in the
<Install>/BPM/Lombardi/lib folder.

The interface for TWObject looks as follows:

public abstract interface TWObject
{
 public abstract String getTWClassName()
 throws TeamWorksException;

Page 584

 public abstract Set<String> getPropertyNames();

 public abstract Object getPropertyValue(String paramString);

 public abstract void setPropertyValue(String paramString, Object paramObject);

 public abstract void setPropertyValue(Map<String, Object> paramMap);

 public abstract void removeProperty(String paramString);
}

Think of the TWObject class as a wrapper/holder for a Business Object. The names of all the
properties contained in the object can be retrieved with the getPropertyNames() method. The
value of one of these properties can then be obtained via the getPropertyValue() method.

If a list object is passed in as a parameter, the object is an instance of teamworks.TWList. The
definition of this is:
public abstract interface TWList
{
 public abstract String getTWClassName()
 throws TeamWorksException;

 public abstract int getArraySize();

 public abstract void addArrayData(Object paramObject);

 public abstract void addArrayData(int paramInt, Object paramObject);

 public abstract Object getArrayData(int paramInt);

 public abstract void removeIndex(int paramInt);

 public abstract boolean isEmptyArray();

 public abstract List getUnmodifiableArray();
}

An interesting item to note is that IBPM has an internal class type called
com.lombardisoftware.core.TWObject. This class implements both the TWList and
TWObject interfaces. When a Java class is called, it is often this object type that is passed in both
when a list and a complex object are used as actual parameters. The implication of this is that if one
is dynamically processing input, we can't use the java "instanceof TWList" or
"instanceof TWObject" to determine whether we have a list or a complex data type as both
of these interfaces are implemented by a common class. Looking closer at the IBPM
implementation, there is a getType() method which returns either
com.lombardisoftware.core.TYPE_ARRAY or
com.lombardisoftware.core.TYPE_PROPERTIES.

Any writing to System.out.println() will appear in the SystemOut.log file. This can
be used for debugging and other tasks.

When a Java Class wishes to return a Business Object, it must create an instance of one. The
teamworks.TWObjectFactory class can be used. It has a static method called
createObject() which returns an instance of a TWObject. This method takes a parameter
which is the type name of the Business Object. The type name is the BO's simple name. There is
also a corresponding method to create a TWList object that will return a list of Business Objects.
Again, the type of the Business Objects contained within the list must be specified.

When a Java class is exposed as an IBPM callable service, Process Designer knows only a little
about it. Calling a Java method will simply show the following in the tooling:

Page 585

This doesn't say anything about the parameters. What we would ideally like the result to be is:

A class called a "BeanInfo" class can be created which provides the meta data that can be used by
PD to provide more info. The BeanInfo class must be created in the same package as the primary
class and have the same name as the primary class appended with "BeanInfo". For example, if the
primary class to be called by IBPM is "com.kolban.MyClass" then the BeanInfo class should
be called "com.kolban.MyClassBeanInfo".

Next we will describe the creation of a suitable BeanInfo class.

First we create a new class that extends java.beans.SimpleBeanInfo. Next we override
the function called getMethodDescriptors. This method returns an array of
MethodDescriptor objects. The array will contain an object for each exposed method.

Imagine that we had a method in our class called "transform" that took as input a HashMap and a
String. The following would present these as parameters we choose to call "Map" and "Template":
package com.kolban.bpm.velocity;

import java.beans.MethodDescriptor;
import java.beans.ParameterDescriptor;
import java.beans.SimpleBeanInfo;
import java.lang.reflect.Method;
import java.util.HashMap;

public class WLEVelocityBeanInfo extends SimpleBeanInfo {

@SuppressWarnings("rawtypes")
private Class beanClass = WLEVelocity.class;
@SuppressWarnings("unchecked")
@Override
public MethodDescriptor[] getMethodDescriptors() {

System.out.println("getMethodDescripors called");
try
{

Method method = beanClass.getMethod("transform", HashMap.class,
String.class);

if (method == null)
{

System.out.println("Unable to find method.");

Page 586

return null;
}
ParameterDescriptor parm1 = new ParameterDescriptor();
parm1.setShortDescription("Map");
parm1.setDisplayName("Map");

ParameterDescriptor parm2 = new ParameterDescriptor();
parm2.setShortDescription("Template");
parm2.setDisplayName("Template");

MethodDescriptor methodDescriptor = new MethodDescriptor(method, new ParameterDescriptor[]
{parm1, parm2});

return new MethodDescriptor[]{methodDescriptor};
}
catch(Exception e)
{

e.printStackTrace();
}

return super.getMethodDescriptors();
}

}

Experimentation seems to show that adding or changing a BeanInfo class may require a restart of
Process Designer before the changes become apparent.

When working with Java Integration, I have found it useful to de-compile the classes provided by
the product to examine how some of the supplied classes operate. Personally, I use the "Java De-
compiler" called JD found here:

http://java.decompiler.free.fr/

The tool has both a stand-alone GUI as well as excellent integration with the Eclipse platform.
Truly a top-notch effort here.

See also:
• Java source level Debugging

• Integration Service

• Data Type – TWObject

• Data Type – XMLElement

• Vimeo - Video on Java Integration

• Vimeo – Video on Java debugging

• Java De-compiler package

• DeveloperWorks - Implementing Java integration components for IBM Business Process Manager V7.5.1 - 2012-06-13

Java source level Debugging

When running Java code as part of the Process Application, we may wish to perform source level
debugging against it. Fortunately, this is pretty simple to do. The WAS server hosting IBPM can
have debugging enabled for it. Open a WAS Admin Console and navigate to Servers >
Server Types > WebSphere application servers > <serverName> >
Debugging Service.

Page 587

http://www.ibm.com/developerworks/bpm/bpmjournal/1206_olivieri/1206_olivieri.html
http://java.decompiler.free.fr/
http://vimeo.com/30870590
http://vimeo.com/28207177
http://java.decompiler.free.fr/
http://java.decompiler.free.fr/
http://java.decompiler.free.fr/
http://java.decompiler.free.fr/

Within that area, there will be a check-box (initially unchecked) called "Enable service at server
startup". Check that check box and restart the server. Take note of the "JVM debug port" value
which defaults to 7777.

Restart the server for the change to take effect. Once the server has been bounced, it will start
listening on port 7777 for incoming debugger attachment requests.

I am assuming that Eclipse is used for Java development. After saving a project which contains the
source of the Java code, we can create a Debug Profile in Eclipse. From the debug menu, select
"Debug Configurations...."

Page 588

This will open the debug configurations menu. Select/create a new entry under Remote Java
Application.

Next click the Debug button. Switch to the Eclipse Debug perspective and set a breakpoint in your
source code of your project.

Page 589

Now when an integration service is execute which invokes the code, a breakpoint will be reached
and you can step through the code:

Page 590

See also:

• Video: Java Source Level Debugging

eMail
IBPM has the ability to integrate with an external eMail provider. This can be used to originate an
email during the execution of a process or receive an email for processing.

Sending an email

The System Data toolkit provides an integration service called "Send E-mail via SMTP".
This can be invoked in a service through a Nested Service activity. The parameters to this service
look as follows:

Page 591

http://vimeo.com/groups/ibmbpm/videos/30870590

Parameter Description

smtpHost The hostname of the machine hosting the EMail server to which this new email should
be delivered.

to The account name of the user hosted by the email server to which the email should be
delivered.

from The identity of the person sending the email.

subject A Subject message that will appear as the subject of the email in the receivers in-box.

messageText The body of the email message.

contentType This field describes how the content of the email is to be handled. Choices are
"text/plain" (the default) which says that the body of the email is simple text.
Another useful setting for this is "text/html" which says that the body of the email
is to be treated as an HTML document and formatted by the email client appropriately.

replyTo The address to which a reply to message should be sent.

cc Additional recipients of the email (carbon copy).

bcc Additional recipients of the email that are hidden from other recipients (blind carbon
copy)

importance

attachmentFileNames

The service is implemented as the Java class called teamworks.Mail. This is contained within
the "integration.jar" file. Examining the code for teamworks.Mail, it seems that:

• No support for alternate port numbers are available

• No support for authentication is available

Receiving an email

Similar to sending an email, the System Data Toolkit provides a supplied service called "Read E-
mail via POP" and a second service called "Read E-mail via IMAP". These services
retrieve one or more emails from an email in-box and return them for processing. If there are no
emails to be retrieved then the call returns immediately with no results. One common way of using
this feature is to create a service which is scheduled to start every period of time. When the service
is started, it polls the email in-box and if no emails are present, it ends and awaits its next start. If

Page 592

an email is found, then a UCA is used to start a BPD instance to process the email. The start of the
BPD is asynchronous and the email service can end before the BPDs have been processed.

The parameters for the service looks as follow:

Their description is:

Parameter Description

server The host-name of the email server against which we should attempt to read the email.

username The account name of the user's email we wish to read. Take care with the use of "@"
symbols. Consider coding "%40".

password The password for the email account.

returnAttachment ??

scanForVariables ??

deleteAfterReading After retrieving the email, should the email be deleted. The default is 'false'. If the
email is left on the server, then the next read will re-read it.

The returned data is an XML data structure. When an email is retrieved, the format of the XML is
as follows:
<resultSet recordCount="7" columnCount="-1">

<record>
<column name="MSG_SUBJECT">test</column>
<column name="MSG_TO">kolban@test.com</column>
<column name="MSG_FROM">kolban@test.com</column>
<column name="MSG_DATE">Mon Oct 25 10:50:22 CDT 2010</column>
<column name="MSG_CC" />
<column name="MSG_REPLY">kolban@test.com</column>
<column name="MSG_NARRATIVE">Hello</column>
<column name="MSG_ATTACHMENTS" />

</record>
…

To handle the result, here are some example XML processing fragments.

• To get the count of emails returned, use var.getAttribute("recordCount")

Here is an example of getting data from the emails:
var countOfEmails = Number(tw.local.results.getAttribute("recordCount"));
log.info(tw.local.results);
for (var i=0; i<countOfEmails; i++) {
 var subject = tw.local.results.xpath("/resultSet/record[" + (i+1) +
"]/column[@name='MSG_SUBJECT']").item(0).getText();
 var from = tw.local.results.xpath("/resultSet/record[" + (i+1) +
"]/column[@name='MSG_FROM']").item(0).getText();
 var body = tw.local.results.xpath("/resultSet/record[" + (i+1) +
"]/column[@name='MSG_NARRATIVE']").item(0).getText();

 log.info(subject);
 log.info(from);
 log.info(body);
}

Page 593

See also:
• Data Type – XMLElement

Send an email and receive a response

On occasion, a process solution may wish to send an email and then wait for a response to be
received before carrying on. This would typically be seen when a process needs to interact with an
external party who has no access to the task lists being maintained by BPM. For example, if a
process is handling a request from a customer and needs some additional information or
confirmation before continuing, email may be the most appropriate way to achieve that.

We have already seen that we can send an email very easily but how then do we block waiting for a
response email to arrive?

The solution to this puzzle from a BPM perspective is to utilize a Message Intermediate Event
which will block the process until an event is published. That event will be the arrival of a response
email. What we will do is set up a scheduler which runs every period of time (say 15 minutes).
When it runs, a service is invoked which polls the eMail system and retrieves each of the emails in a
particular inbox. For each email received, the subject, sender and content may be examined. From
this data, a correlation value will need to be found. An event will then be published using that
correlation value.

When the original email is sent, imagine that a unique "id" is added to the subject line. It may look
like:
Subject: [yT1hP] – Request for information

It could alternatively be added into the body.

This "tag" should also be found in a response email. By matching the request tag to the response
tag, we will have our correlation value.

Here is an example of a service which examines incoming emails and publishes events:

First the set of all the emails is retrieved. These emails are returned in an XML document which
isn't that convenient to work with. We first convert each email into a Business Object instance
defined as:

At the time of initial parsing, the sender, subject and body portions are populated.

Next we start looping through each of the emails returned. We examine each email looking for a
correlation value (in this example called "requestId"). In this example, the following code was
used:
// Get the Request ID from the subject it will be found in '... [xxxx] …'

Page 594

// Build a pattern which is:
// o Any number of characters followed by a '[' followed by any number of characters terminated by a
']' followed by any number of characters

tw.local.currentEmailResponse = tw.local.responses[tw.local.responseIndex];
tw.local.currentEmailResponse.success = false;
tw.local.readyForPublish = false;

var pattern = /.*\[(.*)\].*/;
var reqId = pattern.exec(tw.local.currentEmailResponse.subject);
if (reqId == null) {
 log.info("No match!");
} else {
 tw.local.currentEmailResponse.requestId = reqId[1];
 if (tw.local.currentEmailResponse.subject.match(/success/i) != null) {
 tw.local.currentEmailResponse.success = true;
 }
 tw.local.readyForPublish = true;
}
log.info("[Examine Emails]: RequestId: " + tw.local.currentEmailResponse.requestId + ", success = "
+ tw.local.currentEmailResponse.success);

// End of file

The core code in this is the use of a JavaScript regular expression to look for the tag in the Subject
line.

This piece of wonderful JavaScript achieves that task:
var pattern = /.*\[(.*)\].*/;
var reqId = pattern.exec(tw.local.currentEmailResponse.subject);

It says "Match any string of characters up till a '[' and then find any string of characters up till a
corresponding ']' and remember the result". Now search the Subject line using that pattern and
retrieve the matched data between the '[' and ']' characters and call that the requested Id.

How we ask the email responder to reply is also a choice that we can make. We can ask them to
simply reply to the email and add comments to the Subject or simply pass the body back with the
event publish so that it can be examined by the blocked process when it wakes up.

See also:

• Message Intermediate Event

• Undercover Agents (UCAs)

Installing hMailServer as a test EMail provider

When working with emails, it is useful to have a sandbox email server against which to test sending
emails. A good and free email server package for this purpose is called hMailServer which is
available for download:

http://www.hmailserver.com/

Installation of the package is very simple as shown in the following walk through.

When the installer is first launched, we get the standard installer welcome message.

Page 595

http://www.hmailserver.com/

Next, read and review the license agreement and if you concur, accept and continue.

The EMail server will be installed on your local Windows file system. Here you get the
opportunity to select the location where the product will be installed.

Page 596

The EMail server has two components. One being the EMail server and the other being its basic
Administration tools. Both should be installed.

Even though we plan to use the EMail server for unit testing, the EMail server wants to know where
to save its emails. Select the in-built Microsoft SQL database engine to minimize further
configuration. The footprint is small and no explicit configuration is required.

Page 597

Finally, we are asked what we would like the EMail server to be known as in our start menu.

We are shown the final summary screen and then installation progresses.

Page 598

Page 599

Once installed, the hMailServer administration console can be launched.

Page 600

Page 601

When testing with hMailServer, it is a good idea to switch off the auto-ban feature. Auto-ban will
disable a host from being able to make mail connections because too many failed attempts have
been recorded. To switch off auto-ban, uncheck the enabled check box in the Auto-ban settings:

Page 602

If a ban has already happened, you will be able to undo the ban from the IP Ranges menu entry
where an entry will be found from the host making the connection requests.

javax.mail can be debugged by adding the "mail.debug=true" flag in the System
Properties, or so it is claimed on the web however I have not been able to find a recipe to switch this
on.

The hMailServer and various other mail servers want to give userids the format "xxx@yyy" for
login and access. Unfortunately, this seems to break the parsing of a userid. A work-around is to
code as "xxx%40yyy". The "%40" is the hex escape code for the "@" symbol.

WPS and SCA
Prior to the release of IBPM 7.5, IBM had two separate BPM products. One of those was called
WebSphere Process Server (WPS). WPS was a heavy utilizer of the SCA technologies. There may
be occasions where an IBPM 7.5 environment may wish to interact with a legacy WPS
environment.

See also:
• DeveloperWorks - Integrating WebSphere Process Server V7 and Lombardi Teamworks – 2010-06-30

Asynchronous Invocation of an SCA Module

Consider a IBPM process that wishes to invoke an instance of an old WPS or WESB hosted
module. That module might take some time to respond. Conceivably, it could take days if a

Page 603

http://www.ibm.com/developerworks/websphere/library/techarticles/1006_fasbinder/1006_fasbinder.html
mailto:xxx@yyy

Human Task in WPS is utilized. As such, we can't afford to keep a connection from IBPM to SCA
open for that length of time. One possible solution to our problem is leverage two one-way
invocations. One from IBPM to SCA to start the module and later, when the SCA module has
completed its work, one further invocation back from SCA to IBPM to allow the waiting IBPM
hosted process to continue.

In this story, we will assume that the SCA Module exposes an interface called SCA_I1 which is a
one-way interface that has an input variable called in1 of data type BO1 (a Business Object).

The interface looks like:

Once the module has been deployed, we now find that we have an exposed Web Service that when
invoked, will start an instance of that module. Looking at the binding of the SCA Export, we find
that we have the WSDL URL. However, WPS is pulling a trick on us here. If we added a "?
wsdl" to that URL an HTTP redirect would occur which would break IBPM. So what we do is
manually add a "?wsdl" to the URL in a browser and get the real URL to the WSDL.

Page 604

becomes (when adding a "?wsdl" on the end)

After running through the IBPM Web Service integration steps and importing the data types, we
end up with a new data type called BO1 which has the properties we desire:

and we also find that if we can see the settings/operation in the Implementation Web Service tab:

Page 605

If we now wire a test service as follows:

and invoke it, we find that the SCA module has indeed been called:

Where the implementation of LogCall looks like:

public void op1(DataObject in1) {
System.out.println("Op1 called: " + in1);

}

We find the following in the output log:

[3/7/11 16:57:13:326 CST] 0000007c SystemOut O Op1 called: BusinessObject:
BO1@41c441c4 (f1=f1 val, f2=f2 val, f3=f3 val)

Hooray. This is half the challenge. We have now called SCA from IBPM. Now we need to wait
for a response and have SCA call us back. Here we will assume that IBPM exposes a Web Service
interface. This one will be invoked by the SCA module when the response is ready to be sent.
Exposing a IBPM service is described elsewhere.

Once we have configured IBPM to expose a Web Service, we can import that Web Service
definition into the SCA module. In the IBPM Web Service definition, we find the WSDL URI for
the exposed service. We need to copy that URI into the copy buffer.

Page 606

In WID, select the Imports and from there navigate to Business Integration > WSDL and XSD

Select the source of the WSDL to be imported as a remote artifact existing on the net.

Page 607

Paste the URL that was selected from the IBPM Web Services component. At this point you can
select Finish and the artifacts will be created.

At the culmination, a new Web Services interface definition will be found in your project. Any data
types associated with that interface will also be created.

An SCA Import component can then be used to call the IBPM web service.

Remember that correlation must be utilized in this solution. There must be some data in the
returned response that allows IBPM to know which instance of the BPD being blocked by an
Intermediate Message Event to wake up. A suitable BPD looks as follows:

Page 608

The Intermediate Message Event is triggered by a UCA which is itself invoked by the SCA
originated Web Service call. The Intermediate Message Event's configuration names a UCA
supplied parameter that must match a correlation value in the originating BPD.

Page 609

Process Scheduling with Job Scheduler
On occasion it may be required to start an IBPM process at configurable times of the day or week.
To automate this task, a scheduler must be employed. Scheduling is the ability to set up recurring
dates and times and have work kicked off at those times. An item of work that is to be executed is
termed a job.

IBPM has an in-built ability to schedule work (see: Schedule initiated UCAs). In this section we
will look at some alternatives that may add additional function.

Although WebSphere Application Server (WAS) has a built in scheduler, it is designed primarily
for programmers to code against and does not easily lend itself to a generic business level job
scheduling mechanism.

Examining the Open Source offerings, an Open Source product called Job Scheduler is available
that provides a powerful and rich framework for job scheduling. This includes a rich user interface
to perform administration of the majority of scheduling tasks at a very high level. Job Scheduler
can be combined with IBM’s IBPM solutions to provide a variety of techniques to allow IBPM
based jobs to be scheduled and initiated.

Job Scheduler can be download from:

http://jobscheduler.sourceforge.net/

Job Scheduler is particularly flexible in the kinds of application types it can start. Using the product
you can configure a Job and then when the start time is reached, that Job is initiated. The choices of
application types that can be started include Java classes, native commands, scripts and much more.

The goal of this section is not to document Job Scheduler; the documentation available at the
product web site seems more than sufficient for that task. Instead, this paper focuses on using Job
Scheduler to initiate IBPM based activities.

The nature of a IBPM Job
When we look at IBPM and ask “what is it that we wish to periodically start?” the answer is a
IBPM General Service. If this interface is exposed through a Web Service, then the nature of the
Job that is to be started from the Job Scheduler will be the invocation of that interface through a
SOAP/HTTP request call.

Other bindings between Job Scheduler and IBPM can also be employed including REST, JMS, MQ
and others.

The Job Scheduler Java API
Job Scheduler exposes a set of Java classes that can be used to build a custom Java program that is
tailored to call IBPM. Key amongst these classes is one called sos.spooler.Job_impl. This
class can be extended by a custom user written class. In the custom class, one can then implement a
method called spooler_process(). When Job Scheduler wishes to invoke a Java based Job,
the result will be a call to this method. In the body of this method, one can then code arbitrary Java
calls to achieve the function that the Job is to perform. In our case, this will result in the invocation
of a IBPM process through a Web Service binding.

An illustrative solution
To demonstrate how these tasks can be achieved, we will work through a simple scenario. We will
assume that you have downloaded and installed the latest version of Job Scheduler. This can be
found at the Job Scheduler web site:

Page 610

http://jobscheduler.sourceforge.net/

http://jobscheduler.sourceforge.net/

We start by creating a General Service in PD that exposes the input to the process that we may
want. The General Service looks like:

with variables defined as:

This service does nothing more than log it was called but in reality could invoke a UCA to start a
BPD instance.

Next we define a Web Service resource to expose starting the General Service as a Web Service.
This also defines the operation associated with the service. In our example, the operation is called
"startProcess".

So far, we have done nothing special relating to Job Scheduler. Everything described up to this
point has been basic IBPM oriented activities but what we have achieved is to set the stage by

Page 611

http://jobscheduler.sourceforge.net/

building and describing a simple test environment. Our goal now is to invoke the Generic Service
called "Start Process" at scheduled intervals through the Job Scheduler environment.

The overall schematic is shown in the following image.

Job Scheduler will be configured with Job definitions that say what needs to happen and when.
When a Job that is to be executed on IBPM is ready to be executed, custom Java code will be called
in the context of Job Scheduler which will make a Web Services call to IBPM which will in turn
execute the process when the request is received.

The next step in our solution is to build the Java Job code. We will start by building a simple Java
Project in WID (we could also use RAD). We called our project SampleJavaJob.

Page 612

Since this code needs to make a Web Service call to IBPM, it is now time to build the Web Service
client caller function. WID has the ability to take a WSDL file and generate all the Java code
needed to invoke the service described by this WSDL. This makes calling a Web Service from Java
a very easy proposition. The generated code will eventually be invoked by the Job Scheduler.

Right click the new project and select New > Other.

Within the Web Services folder, select Web Service Client:

Page 613

In the next page of the Wizard, enter the URL show in the Web Services definition in IBPM PD.

On the next page, set the Target package to be a meaningful name (for example, wle.webservice).

Page 614

All the other settings can remain with their default settings. At the conclusion of this wizard
activity, Java code will have been generated that will invoke the process as a Web Service. It is this
code that we wish to invoke from within the Job Scheduler. Our next steps will be the creation of
the Job Scheduler wrapper class.

Modify the build path of the Java profile within WID to include the com.sos.spooler-
<version>.jar that is supplied with Job Scheduler and found in the <Scheduler>/lib
folder. This Jar contains classes that we will need in our custom code. It provides the contract
between Job Scheduler and the custom Job we are writing.

Page 615

Create a new Java class that extends sos.spooler.Job_impl. We named this class
SampleJavaJob. By extending the Job Scheduler supplied class, we inherit the necessary
contracts and framework for Job Scheduler to invoke our own custom code.

Page 616

The implementation of the class must implement/override a method called
spooler_process() . This method is called to invoke an instance of the job. In our
implementation we wish this to invoke a Web Service which in turn will invoke the BPD process.
The following code shows our implementation.

package scheduler.test;
import sos.spooler.Job_impl;
import wle.webservice.WS1;
import wle.webservice.WS1PortType;

public class SampleJavaJob extends Job_impl {
@Override
public boolean spooler_process() throws Exception {

spooler_log.info("Web Service Job Starting");

// Called when the scheduler wishes this job to run
WS1 ws1 = new WS1();
WS1PortType ws1PT = ws1.getWS1Soap();
ws1PT.startProcess("Hello World");

spooler_log.info("Web Service Job Ending");
return false;

}
}

Page 617

The code for the Java class is very simple. It creates an instance of the Service and then asks for the
interface from that Service. Once in possession of the Interface, we are able to invoke the operation
described within. We have hard-coded the parameter for the interface but this could also be
dynamically supplied if required.

With the coding complete for the Job, what remains is to make Job Scheduler aware of the new
class so that we can define a scheduled Job to invoke it. First we export the SampleJavaJob project
as a JAR file. This will include the code we just created.

Job Scheduler has a configuration file called factory.ini that is located in
<scheduler>/config directory. This file can be edited with notepad or a similar text editor.
Within the file is a section called [java]. This contains an entry called class_path. We must
now modify this entry.

First we must add the JAR file we just exported.

Next we must add a second jar file which is the IBM supplied set of libraries for making Web
Services calls for JAX-WS. This jar is called com.ibm.jaxws.thinclient_7.0.0.jar
and is provided with a WAS 6.1 server. Within WID, this can be found in the
<WLE>/AppServer/runtimes directory.

An example entry for factory.ini may look like:

Page 618

[java]
class_path =
C:\IBM\Lombardi7\AppServer\runtimes\com.ibm.jaxws.thinclient_7.0.0.jar;C:\Projec
ts\WLE\Scheduler\MyJob.jar;C:\Program Files\scheduler\lib*.jar

With these changes made, we are now ready to start Job Scheduler. If Job Scheduler is already
started, shut it down first

From a DOS window and located in the <scheduler>/bin directory, we run the command:

jobscheduler.cmd start

The program runs and holds the DOS Window open. In production, it would be started from the
Windows Services.

We are now ready to define the Job to the scheduler. Launch the Job Scheduler editor by running
the command jobeditor.cmd.

Create a new job from the menu

File ► New ► Hot Folder Element ► Job

Give the new Job a meaningful name, for example “IBPM Process”.

Page 619

Next within the Execute section define how the Job will run. Define the job to be a script and
written in Java. In the Classname field, enter the full name of the Java Job class including its
package name. Remember that in a previous set of steps we exported the implementation of this
class as a Jar file and then added the Jar into the class path of Job Scheduler.

Save the result in the <scheduler>/config/live folder.

Launch the Web based dashboard for Job Scheduler. This can be achieved by opening a browser to
http://localhost:4444/.

In the Jobs page, we can see the Job we have just defined.

Page 620

Make sure that the IBPM Process Application we are about to call is installed and running in the
IBPM server. In the next step we are about to execute it. Clicking on the Job definition shows us
details of that Job. In the Job menu, we find and select an entry called “Start task immediately".
This will cause Job Scheduler to run an instance of the job immediately. This will prove to us that
Job Scheduler is able to invoke the process.

Page 621

After completion and clicking on the Last Activities button, the result will be:

Page 622

If we examine the history in the console log of IBPM, we will have found that the process will have
executed. What remains is to schedule the work to be executed at configured times in the future, for
our testing purposes; we will have the process run every 15 seconds.

From the Job menu, select “Set run time”.

Page 623

Click on the “run time editor” button to launch the assistance window for creating run time
specifications.

In the assistance window, enter a value of 15 seconds in the “Repeat Time” field.

Complete the changes and then watch the results. After a short period of time we will find that the
General Service has executed every 15 seconds.

Page 624

Obviously Job Scheduler has a lot of features and we have barely scratched the surface on how to
use it but what this section has shown is how to expose a Business Process as a Web Service, how
to write a Java Job wrapper to call that Web Service, how to define the Java Job to Job Scheduler
and finally how to run a simple test to ensure that Job Scheduler can correctly call the process.

Page 625

Debugging
When building solutions, unfortunately they don't always work first time.

Debugging with Inspector
One of the core components of IBPM PD is the Inspector. By using the Inspector you can
demonstrate playbacks of the solution in real-time. It is Inspector that provides a lot of the iterative
nature of IBPM value. Inspector allows the process developer to run instance of the process on the
Process Center Server.

There are a number of ways to start a process for testing. On the BPD diagram, there is a run button
at the top right:

This will start a run of the process and prompt you to switch perspectives to that of the Inspector
tool:

Within the Inspector perspective of IBPM PD, there are many parts.

Page 626

In the top left we have the list of process instances. These can be filtered by instance name or by
process status. The instance name is a dynamic filter and can be extremely useful if there are many
entries in the list. Entering a prefix or part of the name can dramatically reduce the number of items
to be seen.

The columns in this area are:

Column Name Description

Instance Name The human readable name of the instance of the process

Snapshot The snap shot associated with the process

Process The name of the BPD

Status The status of the process. Options are:
• Active
• Completed
• Failed
• Terminated
• Did not start
• Suspended

Due Date The date/time at which the process is due

Instance Id The IBPM unique instance ID for this instance of the process

Page 627

The area to the right of the process instances changes depending on which process instance is
selected.

It describes the tasks/steps within the process. The columns in this area are:

Column Name Description

Status The current status of the task. States are:
• Received

Owner The owner of the task.

Subject The name of the task within the process.

Priority The priority of the task. Choices are:
• Normal

Due Date When this task is due.

Task Id The unique ID of this task.

Not all BPD activities list/show up in this area. The ones that don't include:

• Activities implemented as inline JavaScript

At the top right of the Inspector are a series of control buttons:

The meaning of the buttons change depending on what is selected.

Suspends the process. The status of the process changes to suspended.

Resumes the process. If the process has previously been suspended, this button resumes
the process.

Terminates the process. The process is terminated. The status of the processes changes to
Terminated.

Deletes the data associated with the process.

Refreshes inspector with the updated knowledge of the environment from the runtime.

Runs the selected task.

Debugs the selected task.

If the Task includes a Coach, a browser window will appear in which the details of the coach will
be shown and the user will be allowed to interact with the process. When the coach is completed,
the process will continue to the next task.

If there is a task waiting for attention, it will show with a yellowed background:

Page 628

We can set breakpoints in activities in the Inspector view. By right-clicking on an Activity, we
bring up the context menu and in that menu, there is a Breakpoint entry. Switching on the
Breakpoint results in a breakpoint icon (a bug icon) appearing in the lower left of the activity.

Here we see an inspector view and a breakpoint about to be added.

After having added the Breakpoint, the Activity shows the debug icon:

When a process is executed under the inspector and allowed to run freely, execution will stop at the
next breakpoint encountered. We also have the ability to dynamically control whether or not a
breakpoint is honored (causes the interruption of the process). Again from the context menu, we
can select Breakpoint Condition after a Breakpoint has been enabled. Selecting this entry produces
a dialog window into which a JavaScript expression can be entered. The expression must result in a
true or false outcome. When the breakpoint is encountered during execution, the expression is
evaluated. The breakpoint is ignored if the expression evaluates to false.

The Inspector can also show us where the tokens are within our process.

Page 629

In the diagram view, the tokens are shown are red colored markers with a number beside them. In
the Execution State area, we again see these markers along with the name of the step/activity
against which the token is blocked or waiting.

In addition, we can see the values of any currently set variables.

By clicking on a variable name, its current string representation/value is shown in the lower portion
of the variables window.

A JavaScript execution evaluator is also provided that allows the user to enter a JavaScript

Page 630

expression that is executed within the Process Server runtime. This can be used to print values of
variables or execute small snippets of JavaScript during testing. After entering (or copy/pasting)
the JavaScript to execute, the run button can be pressed and the JavaScript will execute.

When launching a task from the lists of tasks, we are prompted with a selection of users eligible to
work upon that task. PD has the ability to remember the password for users to save us from having
to enter it. If we miss-type the password or the password changes, we must tell PD to forget about
its remembrance of the password. This can be achieved through the Preferences window:

Page 631

Debugging the environment
The environment in which IBPM executes causes logs to be written. Knowing where these logs
exist and what their contents are is vital if lower level debugging is required. The logs for the
server are written to the standard WAS consoles. These will exist in <profile>/logs.
Specifically, the following relative files are useful:

• server1/SystemOut

• server1/SystemErr

• ffdc/*

Browser tabs and Process Inspector
When using Process Inspector to examine coaches, it has been found that if the browser is FireFox,
then a new tab is opened for each coach displayed. This is not necessarily a good thing as the result
is a set of old browser tabs that simply remain around after use that add nothing but clutter to the
overall view of the browser.

Fortunately, there is an elegant solution. The FireFox browser supports "plugins" and one-such
plugin is called "Tab Mix Plus". The web site for this plugin is:

http://tmp.garyr.net/help/

while the FireFox plugin itself can be found at:

https://addons.mozilla.org/en-US/firefox/addon/1122/

Once installed, a new menu is available in the browser Tools pull-down. This menu is called "Tab
Mix Plus Options..."

Refresh

Page 632

https://addons.mozilla.org/en-US/firefox/addon/1122/
http://tmp.garyr.net/help/

From the tab window that appears, in the Links tab, an option called "Open links from other
applications in:" can be set. Settings this to "Current tab" results in the browser tab being reused by
Process Inspector for each coach shown which is more what we want to happen.

Logging
IBPM makes heavy use of JavaScript to describe logic that should be executed at runtime.
Unfortunately, there is currently no source level debugger for this language available in IBPM.
Because of this, it can be difficult to diagnose certain kinds of problems. One solution to this is to
insert instrumentation code into the JavaScript. When reached, this code can log information
externally to IBPM to allow the developer to see what is going on.

In the IBPM environment, a JavaScript variable called log is always in scope. This variable is an
instance of a class which includes methods called:

• info

• warn

• error

• debug (note that log.debug does not appear to work in 7.5 and above)

Each of these functions take a string parameter. When reached, the string is appended into a log file
called SystemOut in the directory <profile>/server1/logs.

For example, coding the following in JavaScript
log.error("Hello World");

results in the following being appended to the log file:
[6/18/11 20:14:36:398 CDT] 00000079 wle_javascrip E Hello World

Page 633

A tail tool such as the popular BareTail or LogExpert can be used to follow log files.

One interesting technique for debugging processes is to place log statements in the pre or post
assignments. This can be achieved by defining a junk variable (I called mine debug1) and then
placing a pre or post assignment as follows:

What we are saying here is that we are assigning the junk variable the outcome of the log()
function. The log function logs information and we ignore any result it may have returned.

Log files can grow pretty quickly. If a problem is re-creatable, it is suggested that the old logs files
be deleted or copied away before re-running a test. The log files that can be cleaned include:

• <profile>/logs/server1/*

• <profiles>logs/ffdc/*

Tracing Web Service SOAP traffic
Web Services requests are SOAP over HTTP. On occasion, one may want to examine the SOAP
data traveling over the network. A useful tool to achieve this is TCPMon from Apache:

http://ws.apache.org/commons/tcpmon/index.html

Page 634

http://ws.apache.org/commons/tcpmon/index.html
http://www.log-expert.de/
http://www.baremetalsoft.com/baretail/index.php

A possible alternative to TCPMon is the tool called Fiddler. (see: http://www.fiddler2.com).

Working with IBM Defect Support
If a suspected defect is found within the product, IBM wants to hear about this so it can fix it. The
way this is done is to raise a PMR (a defect report). When raising a defect, it is best to provide as
much detailed information as possible. Some suggested practices for capturing the information
needed to resolve the issue include:

• Providing a clean startup log

Shutdown the servers and delete all the log files in the <profile>/logs/server1 and
<profile>/logs/ffdc directories. Recreate the problem and then ZIP up all the data
contained within these two folders.

Raising defects with IBM
If a problem is believed to be a defect with IBPM itself, a PMR (and IBM problem report) should
be raised. IBM defect support has a "must gather" set of logs that they require when submitting a

Page 635

http://www.fiddler2.com/

report. The details and instructions for these can be found here:

http://www.ibm.com/support/docview.wss?uid=swg21440086

Development
The actual tasks of building out a IBPM process includes constructing BPDs, services, reports,
Coachs and other related artifacts. Generically, this is called development. This section touches on
some of the areas associated with the act of developing a IBPM based solution.

Sharing projects with others
It is not uncommon to want to share projects with others. In the IBPM environment, this is
normally achieved without any work as all the artifacts are saved in the Process Center so that all
users attached to the same Process Center can see the same views of the data. If multiple Process
Centers are being used then it may, on rare occasion, be desirable to export a project from one
Process Center and import it into another. This can be easily achieved with the export capability.
First a snapshot must be created. On the Process Center page, selecting an application will show its
snapshots. From here, an export operation can be performed.

This will prompt for a destination for a file that will contain the exported resources. The file suffix
for exported files is ".twx".

To import a process, on the main page for the Process Apps in the Process Center, an Import
Process App link can be found.

Selecting this produces a wizard for importing the project.

Naming conventions and recommendations
IBPM is pleasantly un-restrictive on names that may be given to artifacts. In fact, we can give
multiple different types of artifacts the same name if desired. The type of artifact acts as the
discriminator.

Page 636

http://www-01.ibm.com/support/docview.wss?uid=swg21440086

When an artifact is exposed for starting such as a BPD or a service, the name of that artifact is what
shows up in the menu. As such, it is a good idea to give the artifact a name that you wish to
publicly expose. For example, in the following diagram we have exposed three BPDs. The first
two have poor names but the third gives an indication of what it does.

The instance name of a process is also exposed. The value of the Process Instance is set in the BPD
overview and shows up on Process Portal tables.

Process App name recommendations

When a new Process App is created, an acronym value is supplied. This can be up to seven
characters in length. My recommendation for a naming convention on these is:

[A-Z]YYMMDD

where A-Z is a single character and YYMMDD is the current year/month/day. For example, if I
needed a new Process App, I might give it the name:

A110807

By using this technique, we have a good chance that we won't have a collision.

Documentation
When a BPD or a service is written it is still fresh in the writers mind and is believed to be able to
be remembered in the future. That is never the case and the original writer may no longer be around
in the future. Documenting the solution as it is built is vital. It may seem like wasted effort and, in
many cases, the documentation is indeed never read again … however … if it is read and
understood just once in the future, it can have paid for itself over and over again. Most of the
artifacts associated with IBPM have a documentation section associated with them. This is a text
input area where information can be entered that does not affect the operation of the solution.
When a IBPM PD user subsequently visits the artifacts, the documentation previously entered can
be re-read.

Page 637

At this time there is no known way to produce a report from the documentation but that normally
acceptable. I'm not sure what it would mean to generate a report of parallel branches of a process
flow and have them read serially in a PDF document.

Page 638

Operations
After installing IBPM and building solutions to be deployed upon it, there will come a time when
the environment must be managed for operations.

Configuration Files
IBPM uses some configuration files that are read during the Process Server and Process Center
startup. These files contain XML content and are designed to be readable and editable in a text or
XML editor. Only an educated runtime administrator should consider editing these files.

The files are located in the folder called:

<Install>/profiles/<profileName>/config/cells/<cellName>/nodes/<nodeName>/server
/<serverName>/[process-center|process-server]/config/system

The names of the files are:

00Static.xml

50AppServer.xml

60Database.xml

80EventManager.xml

98Database.xml

99Local.xml

99Sharepoint.xml

The idea behind these files is that they contain settings for the operation of the server. All the files
are read in numeric order based on the numerics at the start of the file name. It is allowable for one
file to override the settings made in a previous file. Think of it as all the files being merged
together in the numeric order and the result being a single XML document with replacements for
previous entries.

These files are not designed to be edited by the deployment administrator. They can be examined to
see what values are to be in effect. If changes are desired, it is strongly recommended to place
those changes in the file called:

<Install>/<...path...>/100Custom.xml

This is assured to be the last file read. Changes in this file will override any of the settings in the
other files.

Any changes made to files are not reflected until the servers are restarted.

When changes are made, it is extremely good practice to watch the logs of a server startup. If any
problems are found in the parameter settings, that is where they will show up and should be
corrected before continuing.

Unfortunately, despite the wealth of over-ridable entries in these files, very little published
documentation exists on them so unless explicitly directed to make changes by IBM staff, these are
probably best left alone. If changes are made, make sure that logs of what was changed, when, why
and most importantly, any source emails or documentation from IBM on those changes should be
recorded.

See also:
• TechNote - Teamworks Config File Overview and Explanation - 2010-08-09

Page 639

http://www-01.ibm.com/support/docview.wss?uid=swg21439614

Networking
The Process Center and Process Server products run on top of WAS. When running the products
on a laptop, it is not uncommon to change networking characteristics. It has been found that if the
network IP addresses change from under the server, bad things can happen. A solution to this is to
create a localhost entry in the hosts file. On windows, this can be found in
C:\Windows\System32\drivers\etc. It is also a good idea to determine your own
machine's hostname through the hostname command and create an alias for that to be 127.0.0.1.

WAS Server
When IBPM is installed, a WAS profile is created that installs at <Install>/AppServer.
This AppServer can be registered as a Windows service. This shows up as an entry called:

IBM WebSphere Application Server V8.0 – ProcessCenter01

Stopping the server

A WAS server can be stopped by running the command stopServer <serverName>. When
run, a dialog appears prompting for the userid/password to be used to allow shut down. For
convenience during development, this pair of parameters can be scripted with the "-user
<userName> -password <password>" options. When a server is defined on Windows, a
stop entry is added to the menu of available commands.

From 8.5 onwards with the arrival of the mandatory network deployment model, we can stop and
start the servers through the nodeagent.

Windows Services

WAS can be configured as a Windows Service to allow it to start at machine boot time. The service
can be registered by the WAS supplied command called "WASService".

Port Numbers

TCP/IP port numbers are the endpoints for TCP/IP communications. When combined with
hostname or IP address, the port number provides the unique endpoint for a browser or service
request. The port numbers for the servers:

• SOAP – Look in the console for a line which reads:

JMXSoapAdapte A ADMC0013I: The SOAP connector is available at port nnnn

The port number for SOAP is listed on that line.

See also:
• TechNote - WebSphere Lombardi Edition 7.1 Port information - 2010-09-29

WAS Admin Console

WAS has an administrative console known as the "Integrated Solutions Console" or ISC. It can be

Page 640

http://www-01.ibm.com/support/docview.wss?uid=swg21448251

accessed from:

https://localhost:9044/ibm/console/logon.jsp

The default administrative userid is admin/admin.

JDBC Resources

A set of predefined JDBC resources are created when IBPM is installed.

JNDI name Description

jdbc/TeamWorksDB Used by the Process Center to access the repository of artifacts for the common
shared model.

jdbc/PerformanceDB Used by the Performance Data Warehouse to hold performance information.

jdbc/ProcessDB Used by Process Servers to store runtime information used during the execution of
processes.

jdbc/TwqlDB <TBD>

WAS Security

Here is an un-tested recipe for programmatically creating WAS based users:

com.ibm.websphere.wim.Service service =
new com.ibm.websphere.wim.client.LocalServiceProvider(null);
commonj.sdo.DataObject root =
com.ibm.websphere.wim.util.SDOHelper.createRootDataObject();
commonj.sdo.DataObject entity =
com.ibm.websphere.wim.util.SDOHelper.createEntityDataObject(root,
null,DO_PERSON_ACCOUNT);
entity.set("uid", "kolban");
entity.set("password", "mypassword");
commonj.sdo.DataObject result = service.create(root);

The wsadmin command

WAS provides a command called "wsadmin" that is the primary tool for changing WAS
configuration settings. It can be invoked from the command line interactively or by being passed a
file of command to execute. It supports a variety of scripting languages including JACL and Jython
but Jython is the one that is recommended.

See also:

• Redbook - WebSphere Application Server v8.5 Administration and Configuration Guide for the Full Profile – SG24-8056-01

• developerWorks - IBM WebSphere Developer Technical Journal: Administrative Command Framework Programming Guide for
WebSphere Application Server - 2006-10-25

Java programming for admin commands

There are times when we might wish to perform WAS admin commands from within a Java
environment. WAS provides a framework to achieve this.

First there is the object known as the CommandMgr. From the CommandMgr, we create an
instance of an AdminCommand.

If we want to know what commands are available, the cmdMgr.listAllCommands() will return a
collection.

Page 641

http://www.ibm.com/developerworks/websphere/techjournal/0610_chang/0610_chang.html
http://www.ibm.com/developerworks/websphere/techjournal/0610_chang/0610_chang.html
http://www.redbooks.ibm.com/abstracts/SG248056.html?Open
https://localhost:9044/ibm/console/logon.jsp

Once we know which command we want to execute, we can create an AdminCommand instance
with:
AdminCommand adminCommand = cmdMgr.createCommand("CommandName");

From an adminCommand, we can ask what the parameters are for it. We can get these through:
List parameters = adminCommand.listParameterName();

We can then set a parameter with:
adminCommand.setParameter("Name", value);

Next we can execute the command with:
adminCommand.execute();

And finally retrieve the results with:
Collection results = adminCommand.getResult();

Changing Passwords
• Changing the database password for a WebSphere Lombardi Edition Version 7.1 or 7.2 full installation – 2011-07-14

• How to change the database password on WebSphere Lombardi Edition (WLE) 7.1 Simple Install – 2011-02-04

• How do you change the tw_admin password in Teamworks 7.0.x? - 2010-06-01

File Structures
By default, IBPM installs itself at C:\IBM\Lombardi7.

On a Windows 7 or Vista environment, IBPM requires to be started with Administrative
permissions. Starting the Server can be achieved through the script provided at:

C:\IBM\Lombardi7\process-center\bin\startProcessCenter.cmd

The console log file for the WAS server can be found in the directory called:

C:\IBM\Lombardi7\process-center\logs\twprocsvr

Operational Databases
IBPM makes use of a number of databases that host data for its own operation. Because IBPM is
an IBM product, it is recommended to use DB2 as the database management system. More IBMers
are going to be familiar with DB2 than alternative database systems. An instance of DB2 is
provided with IBPM to provide the necessary Database environment. These databases used for
IBPM operations should not be used for hosting application data. It is strongly recommended to
separate operational data from application oriented data.

If we attach a table browser to the database we will see a lot of tables. Here is a list of some of the
more interesting ones:

Table name Description

LSW_BPD Information about a BPD. Seems to have a new row written per save.

LSW_USR Users defined to the system.

LSW_BPD_INSTANCE_VARIABLES This table contains a row per variable per BPD instance that is exposed as
searchable. A column in the table called BPD_INSTANCE_ID can be
used to retrieve the BPD ID after finding a variable that has a value of
interest.

LSW_TASK Information about each task in the system.

Page 642

http://www-01.ibm.com/support/docview.wss?uid=swg21440235
http://www-01.ibm.com/support/docview.wss?uid=swg21447788
http://www-01.ibm.com/support/docview.wss?uid=swg21501938

Process Server Database

The Process Server Database is used to manage the state of in-flight processes and tasks. Although
there is no documentation on the tables contained within this database nor should any assumptions
be made about its content, it can be instructive to examine the content. It is strongly advised never
to change the content of tables in this database unless explicitly instructed to do so by IBM.

Performance Data Warehouse Database

The Performance Data Warehouse database tracks information relating to the performance of the
processes run by the Process Server. This includes historical data kept over time about the
outcomes of completed processes.

Defining custom databases

Within an IBPM solution, there are times when we will want to access data contained in application
databases. These can be accessed through SQL statements within the solution. Before we can use
these databases, they must first be defined to the IBPM environment as WAS JDBC definitions.
The instructions for achieving this are well documented in the WAS documentation and there are
additional TechNotes and DeveloperWorks articles available for reference. A summary is
reproduced here.

JDBC resources are defined in the WAS runtime. The WAS Admin Console can be used to
manually define such definitions. In addition, scripting can be used to create the same definitions if
desired.

To launch the WAS Admin Console, open a browser to:

https://localhost:9044/ibm/console/logon.jsp

Login as admin/admin or another WAS administrative userid.

First we must create a JDBC provider entry that points to our new Database server.

Navigate to the JDBC providers section found at Resources → JDBC → JDBC providers

Click the New button to begin a new definition.

Page 643

https://localhost:9044/ibm/console/logon.jsp

Select the definitions appropriate to the database type being defined. The following shows those for
DB2.

Paths to the local driver files for the database server may need to be entered:

Now that a JDBC provider has been defined, we can now create a JDBC Data source definition
which names a Database hosted by that kind of server.

Page 644

Navigate to the JDBC Data sources section found at Resources → JDBC → Data sources

Click the New button to begin a new resource definition.

Page 645

Page 646

See also:
• Database Integration

• TechNote - 1444016 - WebSphere Lombardi Edition v7.1 – Configuring a Data Source

• DeveloperWorks - Configuring a data source in WebSphere Lombardi Edition V7.1 - 2010-10-13

SI Bus Resources
With WAS being an implementation of Java EE, it must provide an implementation of Java
Messaging Service (JMS). WAS implements JMS through a native messaging and queuing
provider called System Integration Bus (SI Bus). IBPM creates two instances of SI Buses. These
are:

• PROCSVR.<Cell Name>.Bus

Name Type

EventMgrControlTopicDestination Topic

TWClientTopicDestination Topic

cacheTopicDestination Topic

eventerrorqueueDestination Queue

eventmgrOpTopicDestination Topic

eventqueueDestination Queue

• PERFDW.<Cell Name>.Bus

JMS Resources are also created

Page 647

http://www.ibm.com/developerworks/websphere/tutorials/1010_iyengar/
http://www-01.ibm.com/support/docview.wss?uid=swg21444016
http://www-01.ibm.com/support/docview.wss?uid=swg21444016

jms/eventqueue

jms/eventerrorqueue

jms/ViewManagerQueue

jms/RepresentationManagerQueue

jms/PostLoadCalculcationManagerQueue

jms/DataDefLoaderQueue

jms/DataDefLoaderErrorQueue

See also:
• RedBook - WebSphere Application Server V7 Messaging Administration Guide – 2009-07-07

Cleaning/removing completed processes
When a BPD instance has completed, the record of that BPD instance is not deleted from the
databases. As such, over time, the databases will become full of historical information.

A wsadmin command called BPMProcessInstanceCleanup is provided that will
clean/remove data associated with previously ended process instances. The syntax for this
command is:

• -containerAcronym <acronym> - The acronym for the Process App containing the
process instances to be removed.

• -containerSnapshotAcronym <acronym> – The acronym of the snapshot
containing the process instance details to be removed.

• -instanceStatus <Status> - A filter describing the state of process instances to be
deleted. This can be one of:

◦ COMPLETED

◦ FAILED

◦ CANCELLED

◦ ALL

• -instanceID <instanceIds> - A list of one or more instanceIds that are to be
deleted.

• -endAfterLocal … - A date/time that says which instances to delete after a date

• -endBeforeLocal … - A date/time that say which instances to delete before a date

• -outputFile <outputFileName> - The name of a file which will be used to record
the outcome of the deletions including which instances were deleted.

The wsadmin command called BPMShowProcessApplication can be used to list the details of a
Process Application as known to IBM BPM. This command takes a parameter which is the
acronym id of the Process Application to be shown.

eg.
print AdminTask.BPMShowProcessApplication('[-containerAcronym MyApp]')

An example output of this command is:

Page 648

http://www.redbooks.ibm.com/abstracts/sg247770.html?Open

Name: 801Tests
Acronym: T801
Description:
Toolkit: false
Tracks:

 Track Name: Main
 Track Acronym: Main
 Default: true

 Tip:
 Created On: 2012-11-22 12:12:53.8
 Created By: User.9
 State: State[Inactive]
 Capability: Capability[Standard]
 No of running instances: 0

 List of Snapshots:
 Name: SN1
 Acronym: SN1
 Created On: 2012-11-22 12:12:53.8
 Created By: User.9
 Is Default: false
 State: State[Inactive]
 Capability: Capability[Standard]
 No of running instances: 0

In addition to the previous recipe, IBPM provides a stored procedure called
LSW_BPD_INSTANCE_DELETE that clears historic data.

The signature of this procedure looks as follows:
CREATE PROCEDURE LSW_BPD_INSTANCE_DELETE(IN bpdInstanceId DECIMAL(12,0))

Here is a Java application that will delete such instances:
package com.kolban.wle;

import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;

public class CleanBPD {
public static void main(String[] args) {

CleanBPD cleanBPD = new CleanBPD();
cleanBPD.run();

}

private void run() {
System.out.println("Running");
try {

Class.forName("com.ibm.db2.jcc.DB2Driver").newInstance();
String url = "jdbc:db2://localhost:50000/PROCDB";
String userid = "db2admin";
String password = "db2admin";
Connection con = DriverManager.getConnection(url, userid, password);
PreparedStatement queryStmt = con.prepareStatement("SELECT BPD_INSTANCE_ID FROM

LSW_BPD_INSTANCE WHERE EXECUTION_STATUS = 2");
CallableStatement deleteStmt = con.prepareCall("{CALL LSW_BPD_INSTANCE_DELETE(?)}");
ResultSet rs = queryStmt.executeQuery();
while(rs.next())
{

int bpdId = rs.getInt("BPD_INSTANCE_ID");
System.out.println("Deleting BPD: ID = " + bpdId);
deleteStmt.setInt(1, bpdId);
deleteStmt.execute();

}
} catch (Exception e) {

e.printStackTrace();
}

}
}

Page 649

See also:
• Calling stored procedures

Adding and removing Process Servers from Process Center
Process Center is the hub of knowledge about process applications while Process Servers act as the
run-time environments for executing work. When a new Process Server is created, it initially
knows nothing about any available Process Servers. In order for a Process Center to know about
the Process Server, the Process Server's configuration needs to be changed to refer to the target
Process Center. The configuration file called 99Local.xml contains this information. An
example of the relevant section is as follows:
<repository-server-url>/ProcessCenter</repository-server-url>
<repository-server-user-auth-alias></repository-server-user-auth-alias>
<repository-server-designated-user-auth-alias>BPMAuthor_Auth_Alias</repository-server-designated-
user-auth-alias>
<repository-server-interval>-1</repository-server-interval>

The highlighted lines are the ones that need changed.

The repository-server-url should be changed to the URL of the ProcessCenter while the
repository-server-interval should have a value of 10 (just not -1).

For example:
<repository-server-url>http://localhost:9080/ProcessCenter</repository-server-url>
<repository-server-user-auth-alias>myAlias</repository-server-user-auth-alias>
<repository-server-designated-user-auth-alias>BPMAuthor_Auth_Alias</repository-server-designated-
user-auth-alias>
<repository-server-interval>10</repository-server-interval>

The name of the server as shown in Process Center can also be found in the 99Local.xml file
under the <server-name> section:
<server-name>envName1</server-name>
<server-description>A running process server</server-description>
<server-host>localhost</server-host>
<server-port>9081</server-port>
<environment-type>Test</environment-type>

Deployment of applications to servers
Process Applications can be deployed to multiple Process Server instances. In order to deploy an
application, a snapshot of the application must first be taken. It is the content of the snapshot that is
deployed. Changes made to the application after the snapshot will not be reflected in the deployed
application until after a new snapshot is taken and that instance of the snapshot deployed.

See also:

• Migration of in-flight BPMN process instances

Offline Application Deployment

During development, the applications are built and tested in the Process Center environment with its
local/unit test run-time. However, when it comes time to deploy to production, many customers
wish to perform manual install of such solutions directly into their Process Servers as opposed to a
dynamic push out from a Process Center. There are many reasons for this but a primary one is that
an exact copy of the application is desired so that the system can be recreated as needed from
artifacts stored on the file system. Another common reason for manual deployment is that it can be
scripted and supplied to operations staff for production installation and management. The script

Page 650

and associated artifacts can then be logged as the system of record for the production system.

In order to perform a manual deployment of a solution, we must first export the package that
represents the solution. This can be done from the Process Center console. Before we can do this,
we need to define our target environment as an "offline server".

In Process Center, switch to the Servers tab and click the "Add a New Offline Server"
button:

A dialog will appear prompting for details of the new (offline) server:

Once completed, it will appear in the list:

Page 651

In the Process Apps tab for the snapshot of the application that is to be deployed, click the
Install button:

Next select the offline server and then the "Create installation package" button:

Page 652

After a few moments, the details of the Snapshots for the Process App will change to show that a
deployment package is available:

At this point, Process Center has built the package for deployment. Now we have to retrieve the
package from the Process Center. This is achieved from the Windows DOS command prompt.
Open a DOS window and change directory to:

The Wsadmin command called BPMExtractOfflinePackage can be used to create an
installation package. It has the following options:

• containerAcronym – The acronym of the application to be extracted

• containerSnapshotAcronym – The name of the snapshot to be extracted

Page 653

• containerTrackAcronym – The name of the track within the snapshot to be extracted.
This parameter is also mandatory. The default value for the default track is "Main".

• serverName – The name of the offline Process Server instance

• outputFile – The name of the file to be used to hold the extracted installation package

Note: Another useful command is called BPMShowProcessApplication which will list the details
of a named Process App.

print AdminTask.BPMShowProcessApplication('[-containerAcronym APP01]')
Name: App01
Acronym: APP01
Description:
Toolkit: false
Tracks:

 Track Name: Main
 Track Acronym: Main
 Default: true

 Tip:
 Created On: 2012-11-12 11:49:49.159
 Created By: User.9
 State: State[Inactive]

 List of Snapshots:
 Name: SN1
 Acronym: SN1
 Created On: 2012-11-12 11:49:49.159
 Created By: User.9
 State: State[Inactive]

For example, the following command will extract an installation package:
AdminTask.BPMExtractOfflinePackage('[-containerAcronym APP01 -containerSnapshotAcronym SN1
-containerTrackAcronym Main -serverName PS1-offline -outputFile C:/temp/APP01.zip]')

The result of running this command will be a new file that contains the package for the application.
This should be copied to the machine hosting the Process Server on which it is to be installed. To
deploy the application to the server, use another command. This command is called
BPMInstallOfflinePackage. This takes as input the package file name and will deploy it
for execution.

For example:
AdminTask.BPMInstallOfflinePackage('[-inputFile C:/temp/APP01.zip]')

See also:
• DeveloperWorks - Deploying IBM Business Process Manager packages to offline process servers - 2013-03-27

Un-Deployment of applications from servers

There may come a time when a previously deployed application is not desired to be run again. At
this point you may wish to remove the application from the Process Server. To achieve that task,
first de-activate the Process App from the Process Admin Console:

Page 654

http://www.ibm.com/developerworks/bpm/library/techarticles/1303_venn/1303_venn.html

Once the snapshot has been de-activated, it can be deleted using the wsadmin command:

AdminTask.BPMDeleteSnapshot('[-containerAcronym DEPLOY1
-containerSnapshotAcronyms [SN1]]')

This will remove the Snapshot from the server.

Modification of Process Instance data
Consider the notion that when a process instance exists, it maintains its own state over the lifetime
of that process. That state information may be initially supplied data or it may be data gathered
during the further operation of the process. In either case, it is the process instance that owns that
data.

From an operational perspective, there may be times where we would want to come in and change
the state of the data of currently in-flight processes. Another way of saying this is that if we look at
the following sample process:

Imagine that it has a private variable called "myData". How would we go about changing the
value of "myData" within the process?

Our first attempt may be to look for a system API that given the process instance ID (PIID) we
could get and set process variables. Sadly, such an API does not exist at the process level. So,
what options do we have?

The first option is to use an "event sub-process" which is triggered by an incoming message.
Imagine we created a UCA called "Process Command" that had input data that looked like:

We could use the "piid" as the correlation value using the Process Instance ID as the key. The
command could be "set" (for example) and the "name" and "value" parameters could define the
name of the variable to change and the new value it should have. Example code for this might be:
if (tw.local.processCommand.command == "set") {
 tw.local[tw.local.processCommand.name] = tw.local.processCommand.value;
}

See also:

• Modeling Event Sub-processes

Page 655

Performance
As the product operates, we can ask ourselves about its performance. Performance has a number of
qualities including throughput and latency.

See also:

• RedBook - IBM Business Process Manager (BPM) 7.5 Performance Tuning and Best Practices – REDP-4784-00 - 2012-01-27

• TechNote: How to tune your WebSphere Lombardi Edition Servers for performance - 1446648 - 2011-04-08

• TechNote: Slow performance might result with WebSphere Lombardi Edition and DB2 - 1472705 - 2011-03-21

• TechNote: TeamWorks Performance Tuning Tips - 1439610 – 2011-02-04

• Webcast replay: WebSphere Lombardi Edition - Developing for Performance and Scalability – 2011-05-24

• TechNote: Understanding and Tuning the Event Manager - 2011-01-29

The Event Manager - Tuning attributes

A key component inside the internals of IBM BPM is the Event Manager. The Event Manager is
used to schedule the execution of parts of a Process Application. This includes:

• Handling UCA invocations

• Handling BPD notifications

• Executing BPD system lane activities

• Executing BPD timer events

• maybe more …

The Event Manager manages the queues of work to be performed. Logically, there are two types of
queues. These are the Synchronous queues (can be multiple) or the Asynchronous queue (a single
queue). Work placed on the Asynchronous queue is ready for immediate execution while work
placed on a Synchronous queue can only be executed once any previous work from that same queue
has completed.

The XML configuration files have a number of properties in them related to performance. These
can be found in the 80EventManager.xml file. These include:

• enabled – This is a boolean valued property and is hence either true or false. It controls
whether or not the Event Manager is "active" in this Process Server instance. The default is
true. If set to false, then no event processing is performed. It is not clear when/why this
would ever be used.

• heartbeat-period

• heartbeat-expiration

• loader-long-period

• loader-short-period

• loader-advance-window

• sync-queue-capacity

• async-queue-capacity

• bpd-queue-capacity

Page 656

http://www-01.ibm.com/support/docview.wss?uid=swg21439613
http://www-01.ibm.com/support/docview.wss?uid=swg27021681
http://www-01.ibm.com/support/docview.wss?uid=swg21439610
http://www-01.ibm.com/support/docview.wss?uid=swg21472705
http://www-01.ibm.com/support/docview.wss?uid=swg21446648
http://www.redbooks.ibm.com/redpieces/abstracts/redp4784.html?Open

• system-queue-capacity

• min-thread-pool-size

• max-thread-pool-size

• re-execute-limit

• kick-on-schedule

See also:

• Process Admin - Event Manager

• TechNote - Understanding and Tuning the Event Manager – 2011-01-29

• RedBook - IBM Business Process Manager V7.5 Performance Tuning and Best Practices – 2012-04-11

• TechNote - Webcast replay: WebSphere Lombardi Edition - Developing for Performance and Scalability - 2011-05-24

Monitoring using the Process Admin Console

The Process Admin Console has a section in it titled Monitoring:

As Process Server executes, it is constantly collecting operational statistics about the execution of
the server as a whole. This information can then be examined to determine where time and
resources are being spent during execution. There are two subsections contained within Monitoring
and these will be discussed individually.

Process Admin Console – Monitoring > Instrumentation

The Monitoring > Instrumentation area shows information about the internals of the IBM BPM
product's operation. The Refresh button will update the screen with new information captured since
the last refresh. The Reset button will allow us to reset the statistics to zero. The Start Logging
button will start recording the logged information to a file on the file system. Unfortunately, it is
not known how to use/analyze this file data.

Page 657

http://www-01.ibm.com/support/docview.wss?uid=swg27021681
http://www.redbooks.ibm.com/abstracts/redp4784.html?Open
http://www-01.ibm.com/support/docview.wss?uid=swg21439613

Process Admin Console – Monitoring > Process Monitor

The Monitoring > Process Monitor section allows us to examine statistics on processes and
services. It is composed of three major sections. The first is a Summary page where we can see the
top users of the system in terms of resources.

Page 658

In this view, the Service Name entry is click-able which will open up a services view against that
service.

Clicking on the services button at the top will show us a list of services executed.

Page 659

Clicking on a service name in the Service Name column will show us details of the Service
executed:

From here we can see the name of the step, the date/time it was last executed and the total duration
that the step took to execute. The Total Instances column shows how many times that step was
executed in this instance of the service.

DB2 Database Performance

If DB2 is the database provider used to operate IBPM, there are various ways in which the
performance of the DB can be monitored and tuned.

Monitoring DB2

As DB2 operates it can generate events when interesting things happen. These events can then be
recorded and an examination of what is happening over time within the database can be found.

DB2 monitoring has the concept of "switches" for various aspects of event recording. If a switch is
off, then that aspect of recording does not generate events. If switched on, then event recording
occurs.

The switches available are:

Switch name Description

BUFFERPOOL

LOCK

SORT

STATEMENT Information about SQL statements that have executed

TABLE

TIMESTAMP

UOW

The DB2 command to control the switches has the following syntax:

update monitor switches using switchName {on|off} [switchName {on|off}]

For example:

update monitor switches using statement on

Page 660

The setting of the switches affects the generation of events and now we need to look at the location
to which this event information is written. This is controlled by the creation of event monitors.

create event monitor monitorName
for event eventToMonitor
write to { table | pipe | file } details
[{ manualstart | autostart }]
[additional event conditions]
[addition table options]
[additional file options]
[additional workload manager options]

If an event monitor is not started, it can be started with:

set event monitor monitorName state=1

and switched off with

set event monitor monitorName state=0

For example, to record data to a file for statements

create event monitor mymonitor for statements write to file 'C:\DB2\PerfData'
update monitor switches using statement on
set event monitor mymonitor state=1

The monitor data that is collected can then be examined by running the db2evmon command.

db2evmon -db PDWDB -evm mymonitor > file.txt

These commands are good for executing the event monitoring from the command line, we also have
the ability to execute these commands from the Control Center through a nice GUI interface.

Page 661

From here we can create new monitors and then view the results. We can also enable/disable the
monitors here.

Useful scripts and tools
When working with IBPM, there are times when it is useful to have tools that can be used in
administration. This section is a list of such tools and scripts.

Viewing database table contents

IBPM comes with DB2 Express as the database but it appears that this is not a full DB2 installation.
Specifically, the DB2 control center seems to be missing in Express. As such, there are times when
one wants to see the content of tables but we are missing a tool to achieve this task. One solution to
this problem is to use a free database utility downloaded from the Internet.

One such tool is called SQuirreL SQL.

To set this up for DB2, in the Driver Configuration for this tool, add the DB2 Jars and change the
name of the driver class.

Page 662

http://squirrel-sql.sourceforge.net/

Another tool available on the Internet is called DB Visualizer. While SQuirreL SQL appears to be
an open source project, DB Visualizer appears to be a for-fee product with a free personal use
variation. Excluding the nature that it is unlikely that a IBPM user will be utilizing related software
for personal use, the free version of DB Visualizer appears to be more limited in function that
SQuirreL SQL. Conversely, the for-fee version appears more polished and more robust than the
open-source product.

Page 663

http://www.dbvis.com/

Recovery options
In the event of system failures, the environment will need to recover. There are a number of papers
written on this subject which are referenced in the "See Also" section. From a high level, it appears
that we do not wish to attempt to create an "Active/Active" configuration across data centers.

See also:

• DeveloperWorks - Comment lines: Tom Alcott: Everything you always wanted to know about WebSphere Application Server but were
afraid to ask -- Part 3 - 2012-11-21

• Disaster Recovery in an IBM BPM v7.5 Production Environment – 2011-05-31

• DeveloperWorks - The WebSphere Contrarian: High availability (again) versus continuous availability – 2010-04-14

• DeveloperWorks - The WebSphere Contrarian: Run time management high availability options, redux – 2010-01-27

• DeveloperWorks - Asynchronous replication of WebSphere Process Server and WebSphere Enterprise Service Bus for disaster recovery
environments - 2008-11-24

• DeveloperWorks - Comment lines: Tom Alcott: Everything you always wanted to know about WebSphere Application Server but were
afraid to ask, Part 5 - 2007-07-18

• DeveloperWorks - Comment lines: Tom Alcott: Everything you always wanted to know about WebSphere Application Server but were
afraid to ask -- Part 2 - 2005-12-07

• DeveloperWorks - IBM WebSphere Developer Technical Journal: Maintain continuous availability while updating WebSphere
Application Server enterprise applications – 2004-12-01

• DeveloperWorks - IBM WebSphere Developer Technical Journal: Maintain continuous availability while updating WebSphere
Application Server enterprise applications - 2004-12-01

Page 664

http://www.ibm.com/developerworks/websphere/techjournal/0412_vansickel/0412_vansickel.html
http://www.ibm.com/developerworks/websphere/techjournal/0412_vansickel/0412_vansickel.html
http://www.ibm.com/developerworks/websphere/techjournal/0412_vansickel/0412_vansickel.html
http://www.ibm.com/developerworks/websphere/techjournal/0412_vansickel/0412_vansickel.html
http://www.ibm.com/developerworks/websphere/techjournal/0512_col_alcott/0512_col_alcott.html
http://www.ibm.com/developerworks/websphere/techjournal/0512_col_alcott/0512_col_alcott.html
http://www.ibm.com/developerworks/websphere/techjournal/0707_col_alcott/0707_col_alcott.html
http://www.ibm.com/developerworks/websphere/techjournal/0707_col_alcott/0707_col_alcott.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0809_redlin/0809_redlin.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0809_redlin/0809_redlin.html
http://www.ibm.com/developerworks/websphere/techjournal/1001_webcon/1001_webcon.html
http://www.ibm.com/developerworks/websphere/techjournal/1004_webcon/1004_webcon.html
http://www-01.ibm.com/support/docview.wss?uid=swg21496167
http://www.ibm.com/developerworks/websphere/techjournal/0606_col_alcott/0606_col_alcott.html
http://www.ibm.com/developerworks/websphere/techjournal/0606_col_alcott/0606_col_alcott.html

JavaScript in IBPM
The JavaScript programming language is used extensively in IBPM solutions. JavaScript can be
seen to be used in service definitions and also in expression evaluations. Understand that the
JavaScript being executed here is executed at the server side and not within a browser. A common
mistake I have seen is working in JavaScript on the server side and then working in JavaScript in
the browser and mistakenly thinking that in both cases, code runs in the same environment.

In addition, JavaScript can be defined as the direct implementation type for a BPD activity. This
might be useful for testing or quick hacks but is unlikely to be a good long term practice. There is
no reuse available for code implemented in this fashion.

It is believed that a knowledge of JavaScript will be essential to long term construction of IBPM
solutions. Although simple assignments can be performed without detailed JavaScript skills, more
subtle activities such as defining variables, loops and other language constructs will require skills.
Fortunately, JavaScript is not a complex language to learn and can be picked up quickly especially
if you already know the Java programming language.

See:
• w3schools.com - JavaScript and HTML DOM Reference

• JavaScriptKit.com - JavaScript Reference

• DojoToolkit – Documentation

Editing JavaScript
The editing of the JavaScript code should be done within IBPM PD. Each of the JavaScript editor
areas provided in PD has content assist and syntax checking. Unfortunately, the content assist
doesn't address all the possible content and the syntax checking assistance sometimes indicates
perfectly valid and correct JavaScript as containing warnings or errors (on occasion) so although
both these functions are useful, don't rely on them 100% of the time. The fact that the assistance
features are present is probably better than them not being present but don't panic if a variable you
think should be in scope doesn't show up in the content assist or a statement is flagged as in error
when no amount of review shows a problem … simply ignore and move on as though the assistance
tools were not present.

When the JavaScript entry assistance does let us down, we can get into quite a mess. JavaScript is a
loosely typed language. As such, declaration of variables with types can't be easily checked at
editing time (by PD). Making a typo in JavaScript code is very common as is calling a function by
the wrong name. Debugging and correcting such errors can be frustrating. For example, to find a
Process Instance by its ID, we call the following function:

tw.system.findProcessInstanceByID()

There are many opportunities here to make an error that won't be caught. I had mistakenly coded:

tw.system.findProcessInstanceById()

and it took me far too long to find that mistake.

IBPM JavaScript name spaces
IBPM exposes a number of JavaScript name spaces which contain various data items.

tw.local.* Variables within the current process/service.

Page 665

http://www.dojotoolkit.org/documentation
http://www.javascriptkit.com/jsref/
http://www.w3schools.com/jsref/default.asp

The JavaScript language doesn't have the notion of namespaces so this concept is provided by
properties of objects. For example, the notion of "tw" is actually a JavaScript object which has a
property called "local". This property is itself an object.

Reusing JavaScript
Commonly used JavaScript functions can be added to a Java Script source file (a file ending in
".js"). This file can then be added as a managed file in a Process Application. The Managed File
has to be of type "Server". Once added, any JavaScript found within becomes part of the
environment when running other JavaScript routines. This becomes especially useful if the
JavaScript source file contains function declarations. These can then be used in other Java Script
code fragments within the solution without any further work being needed. Although not
investigated yet, it is believed that the re-use of the JavaScript code by adding it as server managed
files needs to be carefully managed to prevent name collisions since the scope of Server Managed
files appears quite large. It is currently seen that the Java Script editor flags the use of such
functions as a warning as they are said to be unknown functions. However, they can be run just
fine.

BPD Data Types
The IBPM environment utilizes and provides some pre-existing data types. Understanding these
data types is useful in advanced situations. Many of these data types have a method on them called
getTypeName() which when called will return a String representation of the data type being
examined.

ConditionalActivity

Map

NameValuePair

TWAdhocStartingPoint

TWChart

TWProcessInstance

TWDocument

TWManagedFile

Date

TWUser

Record

TWChart

TWDate

XMLElement

TWObject

TWReport

TWSearchColumn

TWSearchColumnMetaData

TWSearchCondition

TWSearchResults

Page 666

TWSearchResultsRow

TWTask

TWStep

SQLResult

Data Type – ConditionalActivity

A ConditionalActivity object represents an Activity in the BPD that is defined as
conditional.

• id – An internal GUID tied to the Activity on the BPD

• name – The name of the Activity in the BPD

• isConditional – Whether or not the activity is flagged as conditional

An array of these objects for the currently executing process can be found in the variable:
tw.system.currentProcess.conditionalActivities

One can use the toXMLString() method on variables of this type to dump an XML
representation.

See also:
• Conditional Activities

Data Type – Map

The Map data type holds an unordered collection of key/value pairs. You can think of this very
much like the Java HashMap class. A value is added to the map using the put() method with the
key as the first parameter and the value as the second. A value can subsequently be retrieved from
the map using the get() method.

The array of all keys can be retrieved with the keyArray() method. Similarly, an array of all
values an be obtained with valueArray() method. For both these methods, the order of returned
entries is undefined as there is no ordering in maps.

The number of items contained within the map can be obtained with the size() method.

An entry can be removed from the map using the remove() method.

If we simply want to know if a map contains a value for a specific key, we can use the
containsKey() method.

Page 667

An instance of this object can be created through:
tw.local.myMap = new tw.object.Map();

If passed to a Java class, the data type passed is java.util.HashMap.

Data Type – NameValuePair

A Business Object data structure that is pre-defined by IBPM that contains two fields:

• name – String

• value – String

Data Type – ProcessSummary

(As of 8.5)
This structure contains:

• processAppId

• processAppName

• processId

• name

• description

• countActive

• countOverdue

• countAtRisk

• countOnTrack

This data type can be returned from tw.system.retrieveProcessSummaries(),
tw.system.retrieve.ProcessSummary(), TWProcessPerformanceMetric.retrieveProcessSummary()

See also:

• Data Type – TWProcessPerformanceMetric

• Process Summary Control

Data Type – Record

The Record data type appears to be a dynamic set of properties associated with the an instance of
the object. It looks like one can assign to and retrieve values from this object as though they were
properties. Quite why it shows that it has the properties of a list object is unknown and may be an
error in the PD tool.

Page 668

For example, if we define a variable called "myRecord" of type Record then in one activity I can
assign a value to a property within it such as:
tw.local.myRecord = new tw.object.Record();
tw.local.myRecord.myProp = "Hello";

and then in a different activity we can code:
log.info(tw.local.myRecord.myProp);

The Record object appears to behave as a cross between a standard JavaScript object and a BPM
Business Object. We can assign values to its properties and they are persisted across activities
however they do not need to be predefined.

The propertyNames attribute returns a string which is a comma separated list of the explicitly
added properties to the record. This allows us to enumerate the properties contained within it.

See also:
• Integration with supplied DB connectors

Data Type – SQLResult

This data type is defined in the System Data toolkit. It appears to have been designed to hold
results from executing DB queries through the SQL query services supplied in the System Data
Toolkit.

• type – The type of data. Usually "RESULT_SET"

• columns – Unknown

• columnIndexes – Unknown

• rows – List of IndexedMap

• updateCount – Unknown

Page 669

• outValues – Unknown

Imagine a SQL Query executed using the System Data Toolkit function called
SQLExecuteStatement that returns a SQLResult[] array. It is strange that this returns an
array as SQLResult[0] seems to hold everything we need. Specifically SQLResult[0] holds
an array object called rows. Each element of the rows array has a property named after the
retrieved data column.

For example, if the data returned from a query in a SQLResult were:

A B

"A1" "B1"

"A2" "B2"

"A3" "B3"

Then myVar[0].rows[1].B would be "B2".

To see how many rows are returned, use SQLResult[0].rows.listLength.

Data Type – String

The String data type represents a piece of text within the process.

The search() method will return 0 if found and -1 if not found.

The replace() method seems to work with formats such as /<pattern>/g.

Data Type – TaskListData

This data type appears to be used as the return type from tw.system.retrieveTaskList().
It contains details of the tasks that are eligible to be performed by a user. It is primarily used to
populate the Task List Coach View.

• tasks – a list of TaskListItem objects containing the specific details of each task

• total – The total number of tasks available. This looks like it will be useful to allow us to

Page 670

page through the tasks. Since the retrieveTaskList() method has both a start point
and length pair of parameters, we can determine where in the list to start retrieval and how
many to retrieve.

• riskStateSummary – This is a JavaScript Map which is keyed by "risk state" and has
values of how many tasks there are in that particular state.

• assignedUsers – A list of UserInfo objects, one for each user that is associated with a
task in the returned list.

• taskIndexLastIndexStartTime – The time when the list of tasks was internally
refreshed

• taskIndexUpdateInterval – How often the list of tasks is internally updated

See also:

• Data Type – TaskListItem

• Method: retrieveTaskList()

Data Type – TaskListItem

This data type describes the details of a single task. A list of such items can be found in the
TaskListData object.

• id – The unique identifier of this task

• subject – The subject property of the task

• priority – The priority of the task (integer value)

• isAtRisk – A boolean which flags this task as at risk (or not)

• riskState – One of

◦ Overdue

◦ ...

• dueDate – When the task is due

• closedDate – When the task was closed

• assignedToUserId – The userid that owns the task. Off the format "2048.xxxx".

• assignedToUserFullName – The text full name of the user that owns the task.

• assignedToTeamId – The id of the team to which this task is assigned.

Page 671

• assignedToTeamName – The human readable name of the team to which this task is
assigned.

• processInstanceId – The unique identifier of the process which created this task

• processInstanceName – The instance description of the process instance

See also:

• Data Type – TaskListData

Data Type – TaskListInteactionFilter

A string defined as one of the following:

• ASSESS_AND_WORK_ON – Either tasks which are not claimed or you have claimed but not
yet completed

• ASSESS_AVAILABLE – Tasks which are not claimed

• WORK_ON – Tasks which you have claimed but not yet completed

• CHECK_COMPLETED – Tasks which have been completed

See also:

• Data Type – TaskListProperties

• Method: retrieveTaskList()

Data Type – TaskListProperties

This data type is passed as a parameter to tw.system.retrieveTaskList(). It controls which tasks are
returned.

• teamId

• userId

• interactionFilter – One of

◦ ASSESS_AND_WORK_ON

◦ ASSESS_AVAILABLE

◦ WORK_ON

Page 672

◦ CHECK_COMPLETED – Tasks which have been completed

• includeAssignedUsers

• includeRiskStateSummary

• dueSlice

• searchFilter

• collapsedRiskStates

See also:

• Data Type – TaskListInteactionFilter

• Method: retrieveTaskList()

Data Type – Team

This data type defines a dynamic Team.

The name property is the name of the Team. Apparently this is ignored. The members property is a
list of members of the team. The managerTeam property is the name of another Team that holds
the managers of this Team.

See also:

• Teams

• Data Type – TWTeam

Data Type – TeamDashboardSupport

(as of 8.5)

See also:

• Data Type – TWTeam

Data Type – TWAdhocStartingPoint

This JavaScript data structure represents an "ad-hoc" starting point within an already running IBPM
process instance.

Properties:

Name/Type Description

id:String The id value of this ad-hoc starting point

name:String The name value of this ad-hoc starting point

processInstance:TWProcessInstance The process instance associated with this ad-hoc starting point

Methods:

Page 673

Name Description

startNew Starts an ad-hoc activity

A field in the TWProcessInstance data type called adhocStartingPoints contains a list
of TWAdhocStartingPoints associated with that instance of the process. The
TWProcessInstance also has convenience methods called
findAdhocStartingPointByID() and findAdhocStartingPointByName() to walk
this list looking for specific entries.

Data Type – TWDate

The TWDate object represents a date/time. An instance of this object can be created with:

new tw.object.Date()

The format fields in some of the methods allow for custom date/time parsing or construction. An
example of such a function is format(). A date can also be constructed using the parse()
function. The format is a String that is encoded as follows:

Code Description Example

G Era designator AD ("GG")

y Year 2011 ("yyyy"); 11 ("yy")

M Month in year July; Jul; 07

w Week in year 26

W Week in month 3

D Day in year 203

d Day in month 11

F Day of week in month 3

E Day in week Tuesday ("EEEE") ; Tue ("EEE")

a AM/PM indicator PM ("GG")

H Hour in the day (0-23) 0

k Hour in the day (1-24) 24

K Hour in am/pm (0-11) 0

h Hour in am/pm (1-12) 12

m Minute in hour 45

s Second in minute 33

S Millisecond 934

z Time zone Central Standard Time; CST; GMT-06:00

Z Time zone -800

Examples:

Pattern Example

MM/dd/yyyy 11/08/2012

yyyy-MM-dd HH:mm:ss

yyyy-MM-dd HH:mm:ss.SSS zzz

Page 674

(As of 8.5)

Notice the getTime() and setTime() methods. These return and set times as seconds from an
epoch.

Unfortunately this object has no explicit date/time arithmetic available to it so adding or subtracting
time can be a challenge. However, if we look to Java, we find a powerful class called
java.util.Calendar. The Calendar class has all kinds of mechanisms to perform
arithmetic and other functions. The task then is to create an instance of a Java Calendar from the
TWDate object, perform the arithmetic on the Calendar and then create a new TWDate from the
update Calendar object. The following will subtract one day from the original date:

Page 675

tw.local.dueDate1.setFullYear(2010);
tw.local.dueDate1.setMonth(2);
tw.local.dueDate1.setDate(1);
tw.local.dueDate1.setHours(15);
tw.local.dueDate1.setMinutes(18);
tw.local.dueDate1.setSeconds(00);
tw.local.dueDate1.setMilliseconds(0);

log.info("Original Date is: " + tw.local.dueDate1.format("yyyy-MM-dd HH:mm:ss.SSS zzz"));

var cal1 = new java.util.GregorianCalendar(
tw.local.dueDate1.getFullYear(),
tw.local.dueDate1.getMonth(),
tw.local.dueDate1.getDate(),
tw.local.dueDate1.getHours(),
tw.local.dueDate1.getMinutes()
tw.local.dueDate1.getSeconds());

cal1.add(java.util.Calendar.DATE, -1);

tw.local.secondDate = new tw.object.Date();
tw.local.secondDate.setMilliseconds(0);
tw.local.secondDate.setFullYear(cal1.get(java.util.Calendar.YEAR));
tw.local.secondDate.setMonth(cal1.get(java.util.Calendar.MONTH));
tw.local.secondDate.setDate(cal1.get(java.util.Calendar.DAY_OF_MONTH));
tw.local.secondDate.setHours(cal1.get(java.util.Calendar.HOUR));
tw.local.secondDate.setMinutes(cal1.get(java.util.Calendar.MINUTE));
tw.local.secondDate.setSeconds(cal1.get(java.util.Calendar.SECOND));

log.info("New Date is: " + tw.local.secondDate.format("yyyy-MM-dd HH:mm:ss.SSS zzz"));

There is a general function in the Kolban JavaScript toolkit that can be used to add/subtract dates
(see: Kolban JavaScript Toolkit)

Data Type – TWDocument

The TWDocument object represents a document uploaded through a Coach and stored/managed by
IBPM.

Properties:

Property Description

id:String The internal id of the document. Will be unique for every
document.

name:String The name of the document.

version:Integer The version number of the document.

type:String URL or File

uri:String The URI of the document if its type is URL.

contentType:String The HTTP MIME type of the document.

allVersions:TWDocument[] An array of all the versions of this document.

processInstance:TWProcessInstance The Process Instance that this document belongs to.

hideInPortal:Boolean True of the document should be hidden in Process Portal.

modifiedBy:TWUser The user who last modified/added the document.

modificationDate:Date The date when the document was added.

Methods:

deleteAllVersions

getTypeName

Page 676

writeDataToFile Write the content of the document to a file on the local file system where Process Server
is executing.

The TWProcessInstance object has an addDocument() method to create a new document.

There does not appear to be a way to get "simple" access to the content of the document however it
appears that we can write it to a file and then load the file content. As to why there is no way to
access the content, there are a couple of thoughts (unverified) as to why IBM's designers chose not
to provide this. One thought is that working with binary data in the context of a Business Process is
simply not a desirable trait. By not providing any getters for the data, the designer of a solution is
forced to immediately look into Java alternatives from the start. A second possible reason is that
the JavaScript language has no binary data handlers.

A possible solution to this is to encode the data into a String representation. We appear to have two
choices for this. The first is hexBinary which takes a single byte of data and represents it by two
characters. The two characters are the hexadecimal notation for the byte value. A class is supplied
as part of the Axis2 package to perform hexBinary encoding. The class is called "HexBinary". The
second technique is to encode as base64. Base64 encoding is a little more complex but basically
encodes 3 bytes of data into 4 characters. Base64 encoding can be used from the Apache
commons.codec package.

See also:
• Working with document attachments in JavaScript

• Error: Reference source not found

• Error: Reference source not found

• Error: Reference source not found

• Data Type – TWProcessInstance

Data Type – TWHolidaySchedule

This data type describes a holiday schedule. A holiday schedule is a list of dates that are considered
holidays. This comes into play when we are calculating a due date for a process or activity. If the
date on which a task would otherwise complete is a holiday, then we need to accommodate for that
by moving the due date to the right to the first non-holiday date.

The variable called tw.system.holidaySchedules contains a list of all the different holiday schedules
available.

We can add/define a new holiday schedule with

Page 677

http://commons.apache.org/codec/api-release/org/apache/commons/codec/binary/Base64.html
http://axis.apache.org/axis2/java/core/api/org/apache/axis2/databinding/types/HexBinary.html

tw.system.addHolidaySchedule(TWHolidaySchedule holidaySchedule).

We can find a holiday schedule by name with

tw.system.findHolidayScheduleByName(String name).

We can remove a holiday schedule with

tw.system.removeHolidaySchedule(String id).

We can update a holiday schedule with

tw.system.updateHolidaySchedule(TWHolidaySchedule holidaySchedule).

See also:

• Data Type – TWTimeSchedule

Data Type – TWLink

This item defines the referenced links in the documentation.

Instances of this type can be found from instances of TWProcessInstance and TWStep.

See also:

• Data Type – TWProcessInstance

• Data Type – TWStep

Data Type – TWManagedFile

The managed file type represents a file that can be found as part of a toolkit or Process Application.

Data Type – TWModelNamespace

An instance of this object can be retrieved at the BPD level using:
tw.system.model

Page 678

See also:

• Data Type – TWProcessApp

• Data Type – TWProcess

• Data Type – TWService

• Data Type – TWParticipantGroup

• Data Type – TWManagedFile

Data Type – TWObject

TWObject appears to be the implementation of lists, arrays and Business Object types within
IBPM. It supports direct assignment through square bracket notation including the idea of sparse
arrays (i.e. assigning to an array element past the end of the array).

If we want to add a new entry at the very end of the list, use the following pattern:
tw.local.myListVariable[tw.local.myListVariable.listLength] = value;

One of the more interesting default properties of this object is propertyNames which is an array
of names of the properties in the Business Object which have values associated them. This can be
used for introspection of an arbitrary Business Object to determine its internal structure. Take
careful note that the propertyNames is only fields that have values. For example, if a BO is defined
as having fields "a", "b" and "c" but only "b" is populated, then propertyNames will be the list ["b"]
and will not show the potential fields of "a" or "c". If a variable is an array, all we get is the first
element.

Page 679

Data Type – TWParticipantGroup

It is believed that this data type has now been deprecated in favor of TWTeam.

The property called users lists the explicit users added to the group

The property called roles lists the explicit groups added to the group

The property called allUsers lists all the users in the group that were added explicitly and also
those users resolved from expanding the groups in this group.

Here is an example script to retrieve all users for a participant group:
var myPG1 = tw.system.org.findParticipantGroupByName("myPG1");
var allUsers = myPG1.allUsers;
for (var i=0; i<allUsers.length; i++) {
 log.info(allUsers[i].name);
}

The addUsers function doesn't appear to do anything on Process Center. It is believed that
addUsers will work when deployed to a Process Server.

See also:
• Data Type – TWProcessApp

• Data Type – TWRole

• Data Type – TWUser

• Data Type – TWTeam

• Teams

Data Type – TWProcess

(The following as of 8.5)

Page 680

See also:

• Starting a new process

• Data Type – TWProcessApp

• Data Type – TWProcessInstance

• Data Type – TWProcessPerformanceMetric

• Data Type – TWProcessAppSnapshot

Data Type – TWProcessApp

(The following as of 8.5)

See also:

• Data Type – TWProcessInstance

• Data Type – TWParticipantGroup

• Data Type – TWProcess

• tw.system.model.processApp

• tw.system.model.getAllProcessApps()

Data Type – TWProcessAppSnapshot

The following (as of 8.5):

Page 681

• Data Type – TWProcess

• Data Type – TWProcessApp

• Data Type – TWProcessInstance

• Data Type – TWManagedFile

• Data Type – TWService

• Data Type – TWParticipantGroup

Data Type – TWProcessInstance

This data type reflects an instance of a process.

The "id" property contains the process instance ID of the process. This is encoded in the format:
2072.<PIID>

where the 2072 prefix is the marker that says that this is a process instance.

Page 682

The addDocument method can add a document by file or by URI.

To find a process instance, we can use the JavaScript method:
tw.system.findProcessInstanceByID()

This has the syntax:
tw.system.findProcessInstanceByID(Number processInstanceID);
tw.system.findProcessInstanceByID(String processInstanceID);

This returns an instance of a TWProcessInstance.

The current process (the one executing) can be found at the variable:
tw.system.currentProcessInstance

This variable is an instance of TWProcessInstance.

Note that there is a property called "businessData" which is a Map object containing all the
variables in the process instance. It is believed that these are read-only and any attempt to change
them will not result in changes to the variables in the process. Of deeper interest is the notion of a
variable which is a Business Object. If a variable called "bo1" is of type BO1 which has properties
"a" and "b", one would have imagined that we could retrieve an object called "bo1" from the map.
Strangely, this isn't the case. Instead, the key to the map is the full path to each of the fields … i.e.
"bo1.a" and "bo1.b".

In addition there are some constants defined:
TWProcessInstance.Statuses

See also:
• Data Type – TWAdhocStartingPoint

• Data Type – TWProcess

• Cleaning/removing completed processes

Data Type – TWProcessPerformanceMetric

(The following as of 8.5)

This is a rich collection of methods. Some of these methods take rich data structures as parameters.
As of 8.5, I haven't been able to find these adequately documented so here are notes on what I have
found so far:

ProcessHistoricalStatisticsProperties

• includeAverageInstanceDuration (Boolean)

• includeGanttTaskStatistics (Boolean)

• searchFilter (String)

Page 683

See also:

• Data Type – TWProcess

• Data Type – ProcessSummary

Data Type – TWReport

A TWReport represents or models a IBPM Report.

Static methods:

A number of methods in this Object return HTML for inclusion in a page or Coach. These include:

createPageLink

createPageInNewWindowLink

displayDefaultPage

displayPage

See also:
• Error: Reference source not found

Data Type – TWRole

Within IBPM we have System Groups which are external definitions of collections of people. The
TWRole object is the access to these System Groups. Loosely speaking, the phrases “Role” and
“System Group” names can be used interchangeably. In discussions with users of versions of the
ancestral TeamWorks product, there was a time when the concept of “Participant Groups” did not
exist in the product and the only “user grouping” mechanism was the “Role”. The “Role” was used
in BPMN swim lanes to describe the “role” that a user was to perform (eg. Insurance clerk vs
Forklift driver)

TWRole as of 8.5:

Page 684

With the presumption that the TWRole is mapped to a System Group and a System Group is
managed outside of the IBPM product (commonly as part of LDAP security), these doesn't appear
to be any semantic mapping to the idea of performing the functions known as:

• addUsers

• removeUsers

• addRoles

• RemoveRoles

This data type can not be sent to "log.info()".

See also:

• Data Type – TWParticipantGroup

• Data Type – TWRole

• Data Type – Team

• Data Type – TWUser

• Security Groups

Data Type – TWSearchColumn

This data structure is used to define which columns to return on a JavaScript TWSearch request.

The type must be one of (TWSearchColumn.Types.*). The available types are:

The name parameter must be one of the allowable column names:

TWSearchColumn.ProcessInstanceColumns.*

TWSearchColumn.ProcessColumns.*

TWSearchColumn.TaskColumns.*

Process Instance columns:

Page 685

Field Description

DueDate The date that the process is due to be completed

ID The ID of this instance of the process

Name The descriptive name of the process

Status The status of the process

ProcessApp The name of the ProcessApp that this process belongs to

SnapShot The snapshot name that this process is associated with

Task columns:

Field Description

Activity The name of the BPD activity that owns the task

AssignedToRole

AssignedToUser

ClosedBy Who closed the task

ClosedDate When was the task closed

DueDate

ID The ID of the task

Priority The priority value of the task

ReadDate

ReceivedDate The date that the task was created

ReceivedFrom

SentDate

Status The status of the task. For example Closed, Received, Comment ...

Subject The subject of the task

Page 686

Process Columns:

Field Description

Name The name of the template (BPD) of this process instance

See also:
• Searching for processes and tasks from JavaScript

Data Type – TWSearchColumnMetaData

This data type describes the data returned/available for a particular field search.

• name

• displayName

• type

• valueType – One of:

◦ TWSearchColumnMetaData.ValueTypes.String

◦ TWSearchColumnMetaData.ValueTypes.Integer

◦ TWSearchColumnMetaData.ValueTypes.DateTime

◦ TWSearchColumnMetaData.ValueTypes.Boolean

◦ TWSearchColumnMetaData.ValueTypes.Decimal

This describes the possible data type that a value may have.

• isUsableInSearchCondition

Data Type – TWSearchCondition

The search condition names a column in the data, an operator to be executed against that column
and a parameter for the operation.

The operator is taken from the TWSearchConditions.Operations.*

See also:

Page 687

• Searching for processes and tasks from JavaScript

• Data Type – TWSearchColumn

Data Type – TWSearchOptions

A TWSearchOptions instance provides additional parameters to a TWSearch(). The
properties of this object are:

• isTrieBreakerSorting (Boolean) – When a search is performed and the results
returned, there may not be enough information returned to uniquely sort the results. If the
value of this option is false (default) then tied sorts are in an undefined order. However,
if set to true, additional logical columns are added to the sort to disambiguate the results.
The columns used for the additional sorting are:

◦ instanceId

◦ taskDueDate

◦ taskPriority

◦ taskId

Data Type – TWSearchResults

A TWSearchResults object is returned from the method calls of TWSearch().

It contains the following data:

• columns – Type TWSearchColumnMetaData

• rows – Type TWSearchResultRow

The number of results returned can be found in rows.length;

See also:
• Data Type – TWSearchResultRow

• Searching for processes and tasks from JavaScript

Data Type – TWSearchResultRow

This contains:

• values – The value returned. This is a list of objects (TWObject). The ordinal of the value
corresponds to the order of items to be returned.

The type also contains a method called getTypeName() which returns a description of the type.

See also:
• Data Type – TWSearchResults

Data Type – TWService

Properties

id String

name String

Page 688

type String The type of service that this object represents. See: Data Type – TWServiceTypes

Methods

Map execute(Map inputParams) Execute the instance of this service.

String getTypeName() Get the type that this service implements.

An instance of this object is returned by the global function called
tw.system.model.findServiceByName. The signature of this function is:
TWService tw.system.model.findServiceByName(String serviceName)

Data Type – TWServiceTypes

Properties

Ajax String An Ajax service implementation.

GeneralSystem String A General System service implementation.

Human String A Human service implementation.

Installation String An Installation service implementation.

Integration String An Integration service implementation.

Rule String A Rule service implementation.

Data Type – TWStep

The current step in the process (BPD) can be found from the variable:
tw.system.step

This returns a TWStep object.

(as of 8.5)

The timer property is relevant if the step is a timer. The pre-assignment option of the BPD activity
can be used to get the timerId and not the post-assignment value.

See also:
• Multi-Instance Looping

• Data Type – TWProcessInstance

• Data Type – TWTimerInstance

Page 689

• Data Type – TWTask

• Data Type – TWLink

Data Type – TWTask

As a process instance operates, it can create tasks that users are expected to perform. The TWTask
data type represents a model of this task that can be accessed from BPM applications.

Within a service, the current task can be found from:
tw.system.currentTask

(As of 8.5.0)

The assignedTo field contains the identity of the user or role to which the task is currently
assigned. This may be either a TWUser or a TWRole.

In addition, there are some constant definitions found at:

TWTask.Priorities

Page 690

TWTask.Statuses

We can retrieve an arbitrary task as long as we know it's id. We can do this using:
tw.system.findTaskByID()

Notice that there are two priority properties. One is called "priority" and the other is called
"priorityValue". These two values appear to be in sync with each other. The priority
property contains a string representation while the priorityValue contains a numeric
representation. Changing the priority of a task changes both values. The priorityValue can be
used when a numeric comparison is required … eg … to answer questions such as "When priority is
higher than 'normal'". This would not be easy to achieve if all we had were the string
representation.

See also:
• Data Type – TWProcessInstance

Data Type – TWTeam

(As of 8.5)

This data type represents a team within IBM BPM. There are a number of APIs that can be used to
obtain a team such as:

• tw.system.org.findTeam(teamId, processAppId)

• tw.system.org.findTeamByID(teamId)

• tw.system.org.findTeamByName(teamName)

• getAllTeams()

Page 691

See also:

• Data Type – TWProcessApp

• Data Type – TWProcessAppSnapshot

• Data Type – TWTeam

• Data Type – TeamDashboardSupport

• Data Type – TWRole

• Data Type – TWUser

Data Type – TWTimePeriod

The TWTimePeriod is used to represent a period of time and which days that period is applicable.

• startTime – The time of the day at which the period begins

• endTime – The time of the day at which the period ends

• days – Boolean flags that indicate whether or not this time period applies for this day

See also:

• Data Type – TWDate

• Data Type – TWTimeSchedule

Data Type – TWTimeSchedule

A TWTimeSchedule represents an interval of time during which work is processed. An instance
of this object can be create in JavaScript through:

Page 692

var var1 = new tw.object.TWTimeSchedule();

Once created, the properties of this new object can be set. Once the TWTimeSchedule has been
built, the new Time Schedule can be registered for use with the JavaScript API:

tw.system.addTimeSchedule(TWTimeSchedule timeSchedule);

To retrieve an existing schedule, execute:

tw.system.findTimeScheduleByName(String name)

This returns a TWTimeSchedule object.

To delete a previously registered Time Schedule, the JavaScript call is:

tw.system.removeTimeSchedule(String id);

The product provides a set of pre-existing Time Schedules

• 24X7 – 24 hours a day, every day

• "7AM-7PM M-F" – 7am to 7pm on Mon, Tue, We, Thu, Fri

• "7AM-7PM Every Day"

• "9AM-5PM M-F"

• "9AM-5PM M-F,9AM-1PM Sat"

The list of currently defined Time Schedules can be seen from the pull-down for activities:

These time schedules can be found in the list at tw.system.timeSchedules. The method:

tw.system.addTimeSchedule()

will add a time schedule to this list.

Here is some sample code for adding a Time Schedule:

Page 693

var tim1 = new tw.object.TWTimeSchedule();
tim1.name = "neil1";
tim1.periods = new tw.object.listOf.TWTimePeriod();

var period1 = new tw.object.TWTimePeriod();
period1.startTime = new tw.object.Date();
period1.endTime = new tw.object.Date();
period1.sunday = false;
period1.saturday = false;
period1.monday = true;
period1.tuesday = true;
period1.wednesday = true;
period1.thursday = true;
period1.friday = true;

tim1.periods[0] = period1;

var added = tw.system.addTimeSchedule(tim1);
log.info("ret = " + added);

There is an IBM BPM supplied function called tw.system.calculateBusinessDate()
that will calculate a future date/time based on an original date, a logical increment and a
TWWorkSchedule.
TWDate tw.system.calculateBusinessDate(

TWDate originalDate,
Integer delta,
String units,
TWWorkSchedule workSchedule)

The "units" property can be one of:

• Month

• Day

• Hour

• Minute

See also:
• Data Type – TWTimePeriod

• Due dates for process and activities

Data Type – TWTimerInstance

An instance of this type of object can be retrieved from an instance of the TWStep object through
its timer property.

The timer instance id may be used in the tw.system.rescheduleTimer() method. This
takes two parameters. The first is the id of the timer instance. The second is the date/time at which
the timer should fire. The primary purpose of this function is to re-schedule a ticking timer to fire
at a different time. Take care when trying to obtain the timerId as it seems that we have to use the
pre-assignment of the attached timer activity and not the post-assignment value.

See also:

• Data Type – TWStep

• Timer Events

Page 694

Data Type – TWUser

Because various functions can return an instance of either a TWUser or a TWRole, the
getTypeName() function is common to both. Calling this function for a TWUser object will
return the String "TWUser". This can be used to determine which methods and properties are
available based on the type of object it is determined to be.

The property called attributes is a Record data structure that contains the properties for the
user definition. Be cautious about using either the Record methods toXML() or
toXMLString(). The reason for this is that the IBPM default attributes such as "Task Email
Address" contain spaces in their names and the XML functions throw exceptions when they
attempt to build XML using names with spaces as element names.

We can find a TWUser object if we know the userid/name of that user. The method
tw.system.org.findUserByName("<name>")

will return a TWUser instance.

This data type can not be sent to "log.info()".

See also:
• Data Type – TWParticipantGroup

• Data Type – TWRole

• JavaScript Package - tw.system.org.*

Data Type – XMLDocument

This data type is defined in the System Data toolkit.

See also:

• Data Type – XMLElement

• Data Type – XMLNodeList

• Working with XML in JavaScript

Page 695

Data Type – XMLElement

The XLMElement object represents a node in a DOM tree. Each instance of this object provides
navigators to the next/previous sibling, first/last child and the parent as well as access to the
document as a whole. Through this object common DOM walks and searches can be executed to
perform quite sophisticated data access and manipulation. Each node has the following:

• tag name – The name of the current element

• attributes – zero or more name/value attributes

• text – The textual content of the element

We can walk through an XML document using the firstChild and nextSibling
mechanisms. We can also access the children by name. For example:

• x.y.z – From the variable "x", access the child called "y" and access the property called "z"

• x.y[0].z[1] – From the variable "x", access the 1st (0th) child called "y" and access the 2nd
(1st) property called "z".

See also:
• Data Type – XMLDocument

• Data Type – XMLNodeList

Data Type – XMLNodeList

A list of XMLElement objects.

Page 696

See also:

• Data Type – XMLDocument

• Data Type – XMLElement

JavaScript Libraries
IBM BPM provides predefined JavaScript libraries that can be used in the applications.

Root:

tw.*

JavaScript package - tw.system.*

The package called tw.system.* contains the following (as of 8.5):

From a service (8.5)

Page 697

From a BPD (8.5):

Page 698

Method: executeServiceByName(name, inputValues)

The documentation on this method appears to be wrong. It says it returns a
TWProcessInstance where in reality, it seems to return a Map object which contains the output
values. This makes more sense.

See also:

• Data Type – Map

Method: retrieveTaskList()

Retrieve a list of tasks.

Signature:
retrieveTaskList(TaskListProperties properties,

Integer maxRows,
Integer beginIndex,
String timezone) – TaskListData

Page 699

• properties – The properties passed to control how the retrieval is performed.

• maxRows – The maximum number of rows to return. If unspecified or 0 then all tasks are
returned.

• beginIndex – The index of the start of the tasks to return. Use this parameter in
combination with the TaskListData.total property to allow us to page through a
retrieval.

See also:

• Data Type – TaskListData

• Data Type – TaskListProperties

JavaScript Package - tw.system.step.*

JavaScript Package - tw.system.org.*

(as of 8.5)

See also:
• Data Type – TWUser

• Data Type – TWTeam

Page 700

JavaScript Package - tw.system.model.*

As of 8.5.

This is a particularly interesting package. From within here we can interrogate the meta data of our
environment.

See also:
• Data Type – TWProcess

Getting a list of Process Apps

In the following snippet, we see us getting the list of all process apps known to the system and
logging their names. Each process app is described by a TWProcessApp object which has many
other properties beyond name.
var listOfProcessApps = tw.system.model.getAllProcessApps();
for (var i=0; i<listOfProcessApps.length; i++) {
 log.info(listOfProcessApps[i].name);
}

See also:
• Data Type – TWProcessApp

• Data Type – TWProcessAppSnapshot

• Data Type – TWProcess

• Data Type – TWService

• Data Type – TWManagedFile

Page 701

JavaScript Package - tw.object.*

JavaScript Package - tw.system.model

• TWManagedFile

• TWProcess

• TWProcessApp

• TWProcessAppSnapshot

• TWSavedSearch

• TWScoreboard

• TWSearch

• TWSearchColumn

• TWSearchColumnMetaData

• TWSearchCondition

• TWSearchMetaData

• TWSearchOrdering

• TWService

Methods:

All methods part of the tw.system.model package

Method Description

Page 702

findManagedFileByPath Returns an instance of the managed file represented by the call
TWManagedFile

findProcessAppByAcronym Returns a TWProcessApp based on the acronym of the Process Application
or Toolkit

findProcessAppByID Returns a TWProcessApp based on the identifier of the Process
Application or Toolkit

findProcessAppByName Return a TWProcessApp based on its name.

findProcessByName Returns a TWProcess based on the name.

findServiceByName Returns a TWService based on the name.

findParticipantGroupByName

findPartticipantGroupByID

getAllProcessApps Returns an array of TWProcessApp for all the Process Apps and Toolkits

getAllToolkits Returns an array of TWProcessApp for all the Toolkits

tw.system

• TWLogger

• TWAdhocStartingPoint

• TWDocument

• TWEvent

• TWHelpRequest

• TWHolidaySchedule

• TWProcessInfo

• TWProcessInstance

• TWProcessInstanceSharepoint

• TWProcessStepInfo

• TWReport

• TWSearchResults

• TWSharepointForum

• TWTask

• TWTimePeriod

• TWTimerInstance

Page 703

• TWTimeSchedule

• TWWorkSchedule

Methods for tw.system

Method Description

rescheduleTimer

variableTypeForVariable

createFromSql

createFromXmlElement

cancelStep

touchVariable

addTimeSchedule

findTimeScheduleByName

removeTimeSchedule

addHolidaySchedule

findHolidayScheduleByName

removeHolidaySchedule

startProcessByName Start an instance of a named process. Returns a TWProcessInstance.

executeServiceByName

convertIDToDB

findHelpRequestById

calculateBusinessDate

TWProcess attributes

id String ro The ID of the BPD

name String ro The name of the BPD

description String ro The description of the BPD

searchMetaData TWSearchMetaData ro

processApp TWProcessApp ro

snapshot TWProcessAppSnapshot ro

TWProcess methods

getTypeName

startNew

Creating Business Object instances in JavaScript

Page 704

In IBPM PD we can create custom Business Object data type definitions. When a Business Object
type variable is created, it must be initialized. This can be done through JavaScript with the code:
tw.local.myVariable = new tw.object.ComplexType();

A similar story is also true for data of type list:
tw.local.myListOfStrings = new tw.object.listOf.String();

Variables in a service
Variables in a service are defined in the variables section of that service. Three types of variables
can be defined. These three types are input, output and private.

A JavaScript function called tw.local.allVars() returns a list of string names of the locally
defined variables in the current service.

A function called tw.local.toXML() returns an XML Element object containing all the locally
defined variables.

It is important to note that even though these look like JavaScript variables, the complex ones are
not. They are in fact Java classes accessed through JavaScript syntax. This has an important
ramification if JavaScript methods are used against them thinking that they are JavaScript objects.
Many such functions imply won't work.

Data Type JavaScript "typeof" result

String string

Boolean boolean

Date object

Decimal number

Integer number

Time object

Complex data types can be serialized to XML with the following:

The Dojo Toolkit for JavaScript
Primarily of value to client-side JavaScript coding which executes in the browser, we may wish to
use the services of the Dojo Toolkit. The Dojo Toolkit is supplied and loaded by Coach pages.
Dojo is an open source set of JavaScript libraries that enhance the capabilities of native JavaScript.
Dojo supplies both basic and advanced JavaScript functions. For details on the Dojo toolkit see:
• Dojo API

• Dojo Documentation

• Dojo Home Page

Because Dojo is included with the IBPM coaches, the Dojo Toolkit functions can be used with
custom solutions. Here are some of the more common Dojo patterns:
var x = dojo.byId("name of control");

This returns the DOM node of the control by name.

Commonly, Dojo is thought of as a visual language for building rich web pages. Although this is
an important component of the Dojo Toolkit, it is not its sole function. However, if you are -

Page 705

http://www.dojotoolkit.org/
http://docs.dojocampus.org/welcome
http://api.dojotoolkit.org/

approaching Dojo for building rich user interfaces, strongly consider using IBM's Rational
Application Developer v8 (RAD) for development of the HTML and JavaScript for those functions.
RAD includes a rich UI designer for Dojo development.

Searching for processes and tasks from JavaScript
The ability to search within IBPM's data is all about asking IBPM for information about the current
operating environment. Examples of a search may include:

• Finding a task in the current process

At a high level, the JavaScript object of type TWSearch can be used to execute a search. It has
three primary methods:

• execute()

• executeForProcessInstances()

• executeForTasks()

The TWSearch object has a number of properties that are used to govern the data queried for and
returned.

• TWSearch.columns – The columns of data to be returned

• TWSearch.conditions – The queries to be executed (of type TWSearchCondition)

(As of 8.5)

A call to TWSearch using the execute() method can return a TWSearchResults object.

For reference, the list of columns is shown below:

Tasks Instances Process Business Data

Activity DueDate Name

AssignedToRole ID

AssignedToUser Name

ClosedBy Status

ClosedDate ProcessApp

DueDate Snapshot

ID

Priority

Page 706

ReadDate

ReceivedDate

ReceivedFrom

SentDate

Status

Subject

Example:
log.info("Starting to find other tasks");
log.info("This process: " + tw.system.currentProcessInstance.id);

var col1 = new TWSearchColumn();
col1.name = TWSearchColumn.ProcessInstanceColumns.ID;
col1.type = TWSearchColumn.Types.ProcessInstance;

var search = new TWSearch();
search.columns = [col1];

var condition = new TWSearchCondition();
condition.column = new TWSearchColumn();
condition.column.name = TWSearchColumn.ProcessInstanceColumns.ID;
condition.column.type = TWSearchColumn.Types.ProcessInstance;
condition.operator = TWSearchCondition.Operations.Equals;
condition.value = "270";

search.conditions = new Array(condition);

var order1 = new TWSearchOrdering();
order1.column = col1;
order1.order = TWSearchOrdering.Orders.Descending;

search.orderBy = new Array(order1);
search.organizedBy = TWSearch.OrganizeByTypes.ProcessInstance;

var results = search.execute();
log.info("Result.rows.length = " + results.rows.length);
for (var i=0; i<results.rows.length; i++)
{
}

Notice that the TWSearch execute methods have an optional user/role filter. This allows the list of
tasks/processes to be retrieved as though they were for a specific user. If this parameter is not
specified, then a list of all Tasks/Instances are returned for all users.

Here is an example of some JavaScript which will retrieve all the tasks for all users:
log.info("Starting to find other tasks");

var col1 = new TWSearchColumn();
col1.name = TWSearchColumn.ProcessInstanceColumns.ID;
col1.type = TWSearchColumn.Types.ProcessInstance;

var col2 = new TWSearchColumn();
col2.name = TWSearchColumn.TaskColumns.ID;
col2.type = TWSearchColumn.Types.Task;

var col3 = new TWSearchColumn();
col3.name = TWSearchColumn.TaskColumns.Subject;
col3.type = TWSearchColumn.Types.Task;

var search = new TWSearch();
search.columns = [col1, col2, col3];

search.organizedBy = TWSearch.OrganizeByTypes.Task;

var order1 = new TWSearchOrdering();

Page 707

order1.column = col2;
order1.order = TWSearchOrdering.Orders.Descending;
search.orderBy = new Array(order1);

var results = search.execute();
log.info("Result.rows.length = " + results.rows.length);
for (var i=0; i<results.rows.length; i++)
{
 //log.info(results.rows[i].values);
 var currentTaskInstance = new tw.object.TaskInstance();
 currentTaskInstance.taskId = results.rows[i].values[1];
 currentTaskInstance.processId = results.rows[i].values[0];
 currentTaskInstance.taskSubject = results.rows[i].values[2];
 tw.local.taskInstance[tw.local.taskInstance.listLength] = currentTaskInstance;
}

Here is another example. In this one, we are looking for all tasks associated with the process called
"BAM1" which are not completed. From this, we want to know how many tasks are claimed and
how many are not claimed.
var col1 = new TWSearchColumn();
col1.name = TWSearchColumn.ProcessColumns.Name;
col1.type = TWSearchColumn.Types.Process;

var col2 = new TWSearchColumn();
col2.name = TWSearchColumn.TaskColumns.Activity;
col2.type = TWSearchColumn.Types.Task;

var col3 = new TWSearchColumn();
col3.name = TWSearchColumn.TaskColumns.Status;
col3.type = TWSearchColumn.Types.Task;

var col4 = new TWSearchColumn();
col4.name = TWSearchColumn.TaskColumns.AssignedToUser;
col4.type = TWSearchColumn.Types.Task;

var search = new TWSearch();
search.columns = [col1, col2, col3, col4];

var condition = new TWSearchCondition();
condition.column = new TWSearchColumn();
condition.column.name = TWSearchColumn.ProcessColumns.Name;
condition.column.type = TWSearchColumn.Types.Process;
condition.operator = TWSearchCondition.Operations.Equals;
condition.value = "BAM1";

var condition2 = new TWSearchCondition();
condition2.column = new TWSearchColumn();
condition2.column.name = TWSearchColumn.TaskColumns.Status;
condition2.column.type = TWSearchColumn.Types.Task;
condition2.operator = TWSearchCondition.Operations.Equals;
condition2.value = "Received";

search.conditions = [condition, condition2];

var order1 = new TWSearchOrdering();
order1.column = col1;
order1.order = TWSearchOrdering.Orders.Descending;

search.orderBy = new Array(order1);
search.organizedBy = TWSearch.OrganizeByTypes.Task;

var results = search.execute();
log.info("Result.rows.length = " + results.rows.length);

var claimedCount = 0;
var notClaimedCount = 0;
for (var i=0; i<results.rows.length; i++) {
 if (results.rows[i].values[3] == null) {
 notClaimedCount++;
 } else {
 claimedCount++;
 }
 log.info(results.rows[i].values[0] + ":" + results.rows[i].values[1] + ":" +
results.rows[i].values[2] + ":" + results.rows[i].values[3]);
}

Page 708

log.info("Claimed = " + claimedCount + ", Not Claimed = " + notClaimedCount);

Note: There is an unconfirmed forum post that claims that more than 14 columns requested to be
returned breaks the search.

If some data you are looking for is not part of the data available in a search, remember that a search
may return a process instance or task instance id that can then be used to retrieve a lot more details
on that process or task instance that may include the information you are looking for.

See also:
• Data Type – TWSearchColumn

• Data Type – TWSearchColumnMetaData

• Data Type – TWSearchCondition

• Data Type – TWSearchResults

• Data Type – TWSearchResultRow

• Getting Task and Instance details through REST

Calling Java through LiveScript
JavaScript in IBPM can invoke Java through the Live Connect technology (see: (ext) LiveConnect).
This is not a performance optimal solution but can provide critical functions/features when needed.

Examples of using this include:

Getting the current host-name:
tw.local.hostname = Packages.java.net.InetAddress.getLocalHost().getHostName();

Working with XML in JavaScript
The IBPM supplied framework provides capabilities to work with XML in the JavaScript
environment. These capabilities are based on three supplied classes:

• XMLDocument

• XMLElement

• XMLNodeList

The XMLDocument is the representation of the DOM model of an XML document. An instance of
the XMLDocument can be created from its constructor with:
var xmlString = "<A>123";
var myDocument = new tw.object.XMLDocument(xmlString);

An XPath expression interpreter is supplied which can walk into the document and return a list of
nodes in the document corresponding to the pattern:
var myNodeList = myDocument.xpath("/A/B");

Once we have a node list, we can determine how many (if any) members are in it with its length
property. We can retrieve an XMLElement object with the item(index) method.
var myElement = myNodeList.item(0);

Page 709

https://developer.mozilla.org/en/LiveConnect

We can also get the value of elements with the getText() method:
var myText = myElement.getText();

We can walk the tree using “dot” notation. So if myVar is an XMLElement, we can code:

myVar.A.B.getText() to get the value of <A>....

See also:

• Data Type – XMLDocument

• Data Type – XMLElement

• Data Type – XMLNodeList

Working with document attachments in JavaScript
Document attachments can be associated with Process Instances. These can be added through
Coach Controls or through programmatic additions. The relevant JavaScript components are:

• TWDocument – Data type. See: Data Type – TWDocument.

• tw.system.findDocumentByID()

• TWProcessInstance.documents – This property is an array of TWDocument objects
associated with an instance of a process.

• TWProcessInstance.addDocument() – This function adds a document to a process
instance.

• TWProcessInstance.findDocuments() – This function locates documents
associated with the current instance.

The addDocument() function has the following parameters:

type:String This is either TWDocument.Types.URL or TWDocument.Types.File.

name:String This is the name of the document.

fileLocation:String

hideInPortal:Boolean This is a flag which describes whether or not the document is to be visible in the
Process Portal.

createdBy:TWUser

properties:Map

Note: Experimentation seems to show that the addDocument() function will not work when
called from JavaScript locally coded in a BPD activity but seems to work just fine when coded in a
General Service.

Here is an example of calling addDocument():
var myMap = new tw.object.Map();
var hide = false;
var user = tw.system.user;
tw.system.currentProcessInstance.addDocument(

TWDocument.Types.File,
"name",
"C:\\Projects\\WLE\\Images\\ibm.jpg",
hide,
user,

Page 710

myMap);

Interestingly, there is no exposed API to obtain the content of a document or set the content of an
attached document from within JavaScript. We can write the content of the document to a local file
but that is about it.

See also:
• Error: Reference source not found

• Error: Reference source not found

Working with JSON in IBPM
JSON is a string representation of a JavaScript object that can be transmitted over the network. It is
primarily used for parameter passing. An Open Source JavaScript implementation is available to
both parse and construct JSON strings.

http://www.json.org/js.html

Part of this package is a JavaScript source file called "json2.js". This file should be added as a
Server managed file to your toolkit or process application. This will provide some new global
methods/objects. The core of these is:

JSON.stringify(JavaScript Object);

When invoked, this will return a String representation of the JavaScript object parameter. This
string is a JSON string.

Unfortunately, even though many data structures within IBPM behaves in many ways like
JavaScript objects, under the covers they are not JavaScript objects and don't always work but we
can often code work-arounds. Here is an example of taking a List of Complex data structures and
building a JSON representation:
var newArray = new Array();
for (var j=0; j<tw.local.myPurchase.listLength; j++)
{
 var newObj = new Object();
 for (var property in tw.local.myPurchase[j].propertyNames)
 {
 var name = tw.local.myPurchase[j].propertyNames[property];
 newObj[name] = tw.local.myPurchase[j][name];
 }
 newArray.push(newObj);
}
var jsonText = JSON.stringify(newArray);
log.error("jsonText = " + jsonText);

Within a browser/Coach, we can use the Dojo classes to work with JSON. The method
dojo.fromJson(string) will parse a JSON string to return a JavaScript object while
dojo.toJson(Object) will return a JSON string given a JavaScript object.

JSON can also be used in conjunction with Coaches. For example, imagine a Coach that looks as
follows:

Page 711

http://www.json.org/js.html

In this story, we have a list presented. We want to be able to perform add, delete and update
operations on the list. This is not normally possible with the basic Coach controls as they are
usually display only. The solution to this puzzle is to allow the list to be modified at the
DOM/HTML level but, when the list is to be sent back to the server, we encode the list as a JSON
string and return that. At the server, the JSON is parsed and a corresponding String list is rebuilt at
the JavaScript level.

The way that a JSON string is returned from the Coach is to include a text field in the coach but flag
it as hidden. It will not appear on the screen but can be set at the HTML level in the browser. This
value will be returned back to the server. The following code fragment can then be executed at the
server. This expects a JSON encoded array of strings to be returned into the variable
tw.local.returnText. The result will be a populated tw.local.myData array of strings.
// Decode the returned text in case it is HTML encoded
var jsonText =
Packages.org.apache.commons.lang3.StringEscapeUtils.unescapeHtml4(tw.local.returnText);

// Parse the text as a JSON string
var localList =
JSON.parse(Packages.org.apache.commons.lang3.StringEscapeUtils.unescapeHtml4(jsonText));

// It is expected that the JSON returned is an array of strings
// now we want to convert the JSON string into a BPM array of strings
tw.local.myData = new tw.object.listOf.String();
for (var i=0; i<localList.length; i++)
{
 tw.local.myData[i] = localList[i];
}

One interesting area to note is the use of the
org.apache.commons.lang3.StringEscapeUtils package. This is a JAR file added to
the server managed files. The JAR comes from the Apache Commons Lang environment. It is
used to decode HTML returned data. For example, the data returned:
"hello"

would be returned as
"hello"

The unescapeHtml4() method converts it back to the expected format. Although this example
illustrates the use of simple data types, more complex structures can also be worked upon.

A really useful tool for working with raw JSON data is the web page found here:

http://www.jsoneditoronline.org/

Into this page, one can post JSON data and have it reformatted/parsed for readability.

JavaScript Fragments

Page 712

http://www.jsoneditoronline.org/

When implementing a Process Application, it is likely that JavaScript coding will be required in
some small or large part. This section provides a series of commonly occurring fragments of
JavaScript code and recipes that can be reused in those solutions.

Starting a new process

A new instance of a process can be started by using the
tw.system.startProcessByName() function. This function takes two parameters. The
first is the name of the Process to be started. The second is a Map containing the input parameters
for the process. An instance TWProcessInstance is returned. For example, this will start a
new instance of a process with data:
var inputs = new tw.object.Map();
inputs.put("parm1", "parm1 value");
inputs.put("parm2", "parm2 value");
tw.system.startProcessByName("StartProcess2", inputs);

Note that the process will start executing concurrently.

Getting the current process instance

The current process instance can be retrieved through the variable called:
tw.system.currentProcessInstance

The data type of that object is TWProcessInstance.

See also:
• Data Type – TWProcessInstance

Getting the current userid

The current userid is available as a TWUser object from:
tw.system.user

Realize that at the BPD level, JavaScript based BPD activities do not run as a particular user so
tw.system.user will return 'undefined'.

Starting an external application

If we wish to start an application that is external to IBPM such as a batch file or shell script, we can
perform that task by using the JavaScript LiveScript mechanism. The following fragment will
execute a batch file on a Windows system and can be placed in a JavaScript fragment:
var runtime = java.lang.Runtime.getRuntime();
runtime.exec("C:\\RunMe.bat");

Returning the owner of a task

When a task is completed, we may wish to know the identity of the user that completed the task.
One way to achieve this is to define an output parameter for the Human Service that is the name of
the user that completed the task. Within the Human Service, prior to its termination, this identity
can be determined with the following code:
var user = tw.system.currentTask.assignedTo;

The data type returned is an instance of TWUser.

The property called name of this data type can be used to determine the userid of the user that
claimed the task.

Page 713

As an alternative to returning the userid of the task from within the Human Service, a post-
assignment can be performed on the Human Service. In the Post Assignment, the variable
tw.system.step.task.assignedTo is again a TWUser that holds the TWUser that owned
the Human Task.

Note: As of 2014-01, there appears to be a bug in the entry assist for this variable. When we ask
for entry assist for tw.system.step.task.assignedTo, the PD tool seems to want to think
of this as a "list" when it is in fact a straight TWUser.

See also:
• Data Type – TWUser

Extracting a managed file

If a Process App or a Toolkit contains a managed file, on occasion we may want to extract that from
the run-time to see what it contains. One way to achieve this is to execute the following JavaScript:
var managedFile = tw.system.model.findManagedFileByPath("integration.jar",
TWManagedFile.Types.Server);
log.error("Got the managed file!: " + managedFile);
managedFile.writeDataToFile("C:\\integration.jar");

This will retrieve the named managed file and write its contents of a local file.

Generating a Random Number or string

There are times, especially during development and testing, where we might want a random number
in our solution. This could perhaps be used to determine which path to take in a process or some
similar notion. An easy solution is to leverage the java.util.Random class.
var rand = new java.util.Random();
var value = rand.nextInt(10);

This will generate a random integer between 0 and 9 (inclusive).

If we want a random string of a certain length, there are excellent JavaScript fragments on the
Internet to achieve that. See the references below.

See also:

• stackoverflow – Generate a string of 5 random characters in JavaScript

Page 714

http://stackoverflow.com/questions/1349404/generate-a-string-of-5-random-characters-in-javascript

Key Performance Indicators (KPIs)
Key Performance Indicators (KPIs) are data items that are saved for later examination and are
captured during the execution of instances of processes. These KPIs can be used to measure the
performance or other quality metrics of an IBPM solution. As a Process Server runs solutions, the
KPIs for these processes are recorded. The data for the KPIs is stored in the Performance Data
Warehouse database associated with the Process Server. The product provides a set of pre-defined
KPIs.

KPI values are recorded when auto-tracking is enabled. The values for the KPIs are recorded in the
Auto Tracking tables in the columns:

KPI Name Table Column Name

Cost KPICOST

Execution Time KPIEXECUTIONTIMECLOCK

Labor Cost KPILABORCOST

Resource Cost KPIRESOURCECOST

Rework KPIREWORK

Total Time KPITOTALTIMECLOCK

Value Add KPIVALUEADD

Wait Time KPIWAITTIMECLOCK

Custom KPIs
IBPM provides a series of KPIs out of the box but it also allows for the creation of custom ones.
KPIs can be created from the Performance category of the Library.

Page 715

When the KPI is being created, it can be given a name:

The details section of the KPI looks as follows:

Page 716

The Unit data types available are:

• Boolean

• Count

• Currency

• Time

Associating KPIs with BPD activities
When an activity in the BPD diagram is selected, we find that it has a KPIs tab. This allows us to
associate a KPI with that activity.

As the activity completes, there has to be an assignment to the KPI associated with that activity.

For KPIs that are of unit type Time, there are no further options. The KPI is the amount of time
consumed by the execution of the activity.

For the other types (Boolean, Count and Currency), the assignment to the KPI value can be
governed by the settings for that activity.

The assignment types allowable are:

• Absolute Value

• Value Per Hour (Clock)

• Value Per Hour (Calendar)

• Custom JavaScript

Service Level Agreements (SLAs)
A Service Level Agreement (SLA) can be thought of a target of service performance or quality that
is desired to be met during the execution of a process. An example of an SLA might be "When an
order is received, it is shipped within 3 days". As processes execute, we hope that they meet these
SLAs. IBPM can be configured to monitor the operation of processes and if an SLA condition is
not being met, trigger some attention that will inform us that we have an issue that needs addressed.
When an SLA is not met, we say that the SLA has been violated.

IBPM does not trigger an SLA exception when that logical exception occurs. Instead, IBPM

Page 717

evaluates SLAs only when an activity starts or completes. What this means is that if an SLA is
violated for a process, we aren't informed until perhaps long after an SLA has failed. The IBPM
environment informs only that past SLAs were not met. If real time notification that a time based
SLA has been violated is required then Timer Events can be associated with activities to trigger
actions if the activities have not been completed within a certain period.

Creating SLAs
SLA definitions are created from within the Decisions category of the Library.

The wizard for the creation of a new SLA prompts us for a name of the SLA.

The SLA has its own editor into which the details of that SLA can be entered.

Page 718

The trigger option can be one of the following:

• Whenever violated

• Violated A of the last B times

• Violated N times over period

• Violated % of the time over period

• Violated % more of the time period over period

• Violated % less of the time period over period

The condition is a complex combination expression

It starts with a predicate which can be:

• Single value (The ...)

• Sum of values over time (The sum of the …)

• Average value over time (The average value of the ...)

The Consequence section defines what happens if the SLA is violated. It can be one or both of:

• Send an email to a user

• Execute a BPD process

If we define a process to be started, the process must be defined as having following inputs:

Input variable name Data Type

violationRecord SLAViolationRecord

parameters XMLElement

This is shown in the following image of the Variables for a BPD.

Page 719

Page 720

Dash-boarding
As process instances run in a Process Server environment, they can store tracked performance data.
This data is stored as rows in a variety of tables in the Performance Data Warehouse database and
can be used for subsequent reporting. Through Process Portal or other tools, reports can be
generated that will visualize this performance information.

The performance data that is available is composed of KPIs, SLAs and automatically/explicitly
recorded data.

Reporting as provided natively by IBPM is only one way to track business performance. An
alternative is to utilize the power of the IBM Business Monitor product which seamlessly integrates
with IBPM. See: IBM Business Monitor.

Architecture
As Business Processes run, over time we want feedback on how those processes are behaving. This
feedback is generically termed a dashboard and usually consists of one or more charts displaying
some data associated with the process.

Within IBPM, as processes execute, we can define that one or more variables in a BPD are to be
recorded. This means that the historic values of these variables are stored and continue to be
available past the end of the lifetime of the process. The way that this is achieved is that process
data is written to one or more tables in the Performance Data Warehouse database. The data
structure of these tables are publicly exposed and documented by IBM and database applications
can be written to query the content of these tables to obtain data that can be used for reporting.

Tracking data
Generically, the data that a BPD exposes for reporting is called tracked data. There are a number of
options provided to us to allow data to be tracked. The first of these is called auto-tracking.

Auto-tracking is the ability of IBPM to track performance data automatically without having to
define additional data writing points explicitly within the solution. Auto-tracking is defined on a
per BPD basis and it is enabled by default. With auto-tracking enabled, the start and end of each
activity encountered in the BPD solution is written as a new table row into the Performance Data
Warehouse database.

When we define variables in a BPD we can elect to define none, some or all of them as tracked.
This means that when a BPD changes the values of these variables, these changes will be saved and
later examined in reporting.

The settings for auto-tracking can be found in the Tracking definitions selected from the menu of
the BPD editor.

Page 721

The Autotracking Name attribute value becomes the name of a database view in the
Performance Data Warehouse (PDW) database. Because of this, the Autotracking Name
should be chosen carefully to ensure that a table view created with this name is permitted as a legal
and valid table view name by the database provider.

There is one database table created per BPD and each table name has to be unique.

Variables within the process can be flagged as tracked. Only variables of certain types can be
tracked. These include:

Tracking Type Allowed Data Types

Auto-tracking String, Integer, Decimal, Boolean, Date

Tracking Groups String, Number, Date

To enable tracking either check the box in the Performance Tracking section or right click on the
variable in the Variables list and select Track this Field. Variables which are tracked are
flagged as such in the variables list.

There are some additional limitations on the types of variables that can be tracked. These include:

• No support for list (array) variables

• No support for tracking a complete business object

After having made definitions about the variables to be tracked, these definitions must be "pushed"
out to the Performance Data Warehouse. The File menu in IBPM PD contains a menu item called
"Update Tracking Definitions". Selecting this will cause IBPM PD to contact the
Performance Data Warehouse database to inform it about the new or modified tracking definitions.
It is the sending of the tracking definitions to the Performance Data Warehouse that causes it to
dynamically create the tables and views it needs for recording the information. This capability will
only work if the database userid defined to IBPM has sufficient authority to create tables on the
database.

Page 722

Once the request to push information to the Performance Data Warehouse has been made, a
confirmation message box will be shown.

In the event of problems with tracking data, it is a good idea to use a table viewer tool and validate
that the expected tables were created and that after some runs, they contain data.

The physical database structure for an auto-tracked view is as follows:

Column name Description

NODE_ID What is a "NODE_ID"?

STEP What is a "STEP_ID?"

TRACKING_GROUP_ID

TRACKING_POINT_ID

TASK_ID

FUNCTIONAL_TASK_ID

TIME_STAMP The date/time this record was written.

SNAPSHOT The name of the snapshot associated with this auto tracked table.

ACRONYM The name of the Process Application acronym associated with this auto tracked
table.

TIME_STAMP_YEARS Time stamp with only "years" field varying.

TIME_STAMP_QUARTERS Time stamp rolled up to years/months(by quarters) changing

TIME_STAMP_MONTHS Time stamp with years/months changing

TIME_STAMP_WEEKS Time stamp with years/months/days changing with time grouped to weeks

TIME_STAMP_DAYS Time stamp with years/months/days changing only (hours/minutes/seconds
dropped)

KPICOST KPI value for cost

Page 723

KPIEXECUTIONTIMECLOCK KPI value for execution time

KPILABORCOST KPI value for labor cost

KPIRESOURCECOST KPI value for resource cost

KPIREWORK KPI value for rework

KPITOTALTIMECLOCK KPI value for total time

KPIVALUEADD KPI value for value add

KPIWAITTIMECLOCK KPI value for wait time

Process Designer named tracked
variables

A column for each variable flagged as "tracked"

Let us imagine an example usage scenario. We want to see the list of activities that were executed
on behalf of a process instance. We know the process instance ID (eg. 1061).

We start by executing this query:

SELECT FUNCTIONAL_TASK_ID FROM TASKS WHERE SYSTEM_TASK_ID = '1061'

This retrieves a value called the FUNCTIONAL_TASK_ID. This will act as a key into the rest of
our data. Imagine this returns the value 1724. We can then query the Auto Tracking table that is
associated with a BPD with:

SELECT * FROM AT1318439584743
WHERE FUNCTIONAL_TASK_ID=1724

More precisely, we are interested in the TRACKING_POINT_ID value:

SELECT TRACKING_POINT_ID FROM AT1318439584743
WHERE FUNCTIONAL_TASK_ID=1724

We can then use this as a key into the TRACKING_POINTS view to obtain the details of the steps
executed.

Since the query from the TASKS table should result in a single FUNCTIONAL_TASK_ID we can
combine these queries:

SELECT * FROM AT1318439584743
WHERE FUNCTIONAL_TASK_ID=

(SELECT FUNCTIONAL_TASK_ID FROM TASKS WHERE SYSTEM_TASK_ID = '1061') AND
NODE_ID IS NOT NULL

(The addition of the NODE_ID IS NOT NULL removes strange duplicates)

We can now get even fancier by building an INNER JOIN to perform our work:

SELECT * FROM AT1318439584743
INNER JOIN TRACKINGPOINTS ON
AT1318439584743.TRACKING_POINT_ID = TRACKINGPOINTS.TRACKING_POINT_ID
WHERE FUNCTIONAL_TASK_ID=

(SELECT FUNCTIONAL_TASK_ID FROM TASKS WHERE SYSTEM_TASK_ID = '1061') AND
NODE_ID IS NOT NULL

ORDER BY AT1318439584743.TIME_STAMP

Finally we get to what may be the last query which is a cleaned up version of the previous:

SELECT AUTOT.TIME_STAMP, TRACKINGPOINTS.NAME FROM AT1318439584743 AS AUTOT
INNER JOIN TRACKINGPOINTS ON
AUTOT.TRACKING_POINT_ID = TRACKINGPOINTS.TRACKING_POINT_ID
WHERE FUNCTIONAL_TASK_ID=

(SELECT FUNCTIONAL_TASK_ID FROM TASKS WHERE SYSTEM_TASK_ID = '1061') AND
NODE_ID IS NOT NULL

Page 724

ORDER BY AUTOT.TIME_STAMP

This variant adds an alias on the Auto Tracking table and returns only the time and name of the
activity executed:

See also:
• TechNote: The differences between the functional_task_id, task_id, system_task_id, and system_functional_task_id - 2010-08-30

Tracking Groups Overview

The idea behind Tracking Groups is to define a set of values that are stored in Performance Data
Warehouse tables under explicit control of the process application solution. The Tracking
Intermediate Event primitive is used to achieve this goal:

A Tracking Group can be explicitly created in Process Designer under the Performance category.

Once selected for creation, a dialog is shown which allows the name of the Tracking Group to be
entered.

Page 725

http://www-01.ibm.com/support/docview.wss?uid=swg21439657

The parameters of a Tracking Group definition include a list of field name that are to be considered
a row in the tracking data table.

When an Intermediate Tracking Event (see: Intermediate Tracking Event) is created in a BPD, it
provides a property page in its implementation where a Tracking Group can be named and the
mapping between local data and the Tracking Group field names can be entered:

Page 726

When a tracking point in a BPD is reached, if the field is checked, then its value is contributed to
the new row otherwise there will be a NULL value for that column.

Database Structure for a Tracking Group

The primary view of interest to us is a database view given the same name as the Tracking Group
definition.

Column name Description

Columns for each of the tracked
fields in the Tracking Group.

There will be a column in the View for each of the named tracked fields in the
Tracking Group definition.

TRACKING_GROUP_ID This is the primary key for the Tracking Group entry. This links to the
TRACKINGGROUPS view

TRACKING_POINT_ID This is the primary key for the Tracking Point entry. This links to the
TRACKINGPOINTS view.

TASK_ID This is the primary key into the TASKS view. Rows with the same TASK_ID
were tracking items generated by the same process instance.

FUNCTIONAL_TASK_ID

TIME_STAMP The Time Stamp of the last update of this record.

Page 727

SNAPSHOT The snapshot of the process app that caused the record to be written.

ACRONYM The Acronym of the Process Application

TIME_STAMP_YEARS The time stamp rounded to the year. Month and day become 1/1.

TIME_STAMP_QUARTERS Time stamp rounded to quarter.

TIME_STAMP_WEEKS The Time stamp rounded to the week.

TIME_STAMP_DAYS The Time stamp rounded to the day. The hours, minutes, seconds and
milliseconds are zeroed.

Database Structure for TRACKINGGROUPS view

Column Name Description

TRACKING_GROUP_ID The identity of this tracking group

NAME The name of this tracking group. This appears to be the PDW view name for records
for this tracking group.

DESCRIPTION A description of this tracking group. This should also be considered the name of the
BPD for autotracking.

SNAPSHOT The snapshot name (if any) of the Process Application. Apps running on the Process
Center TIP appear to be NULL.

ACRONYM The Acronym Name of the Process Application

Database Structure for TRACKINGPOINTS view

Column Name Description

TRACKING_POINT_ID This is the primary key for this table.

TRACKING_GROUP_ID This is a foreign key to TRACKINGGROUPS table.

NAME This appears to be the name of the activity that caused the data to be written.

DESCRIPTION A description.

SNAPSHOT The snapshot (if any) of this process application

ACRONYM The acronym of the Process Application that caused the event to be written.

Database Structure for TASKS view

Column Name Description

TASK_ID Primary key for this table.

FUNCTIONAL_TASK_ID

CREATION_TIME The date/time at which the task was created.

START_TIME The date/time at which the task was started. This can be null.

END_TIME The date/time at which the task ended. This can be null.

SYSTEM_USER_ID

Page 728

USERNAME

BPD_NAME

STARTING_PROCESS_ID This appears to be a GUIID of the template of a process (BPD).

ACTIVITY_NAME

SYSTEM_TASK_ID

SYSTEM_FUNCTIONAL_TASK_ID This appears to be the Process Instance ID that owns this task.

SNAPSHOT

ACRONYM

IS_INSTANCE

MAX_STEP

Database Structure for PROCESSFLOWS view

This view has a record appended to it whenever a BPD process "navigates" a sequence line in a
BPD diagram. Note that only the link navigation flows are logged. We will see entries for the ids
of the links followed.

Column Name Description

BPD_ID The UUID of the BPD template/definition. There is currently no known correlation
to this value.

BPD_INSTANCE_ID The BPD instance ID of this instance of the process (eg. 1061). This is the instance
ID that shows up in Process Inspector and elsewhere.

LOCAL_SNAPSHOT_ID The UUID of the snapshot containing the sequence link being traversed. Links to the
SNAPSHOTS view.

SEQUENCE_FLOW_ID The source UUID of the activity from which the sequence line came from.

SOURCE_EUID

STEP_NUMBER

TRACKING_GROUP_ID

TRACKING_POINT_ID

TASK_ID

FUNCTIONAL_TASK_ID

Page 729

TIME_STAMP

SNAPSHOT

ACRONYM

TIME_STAMP_YEARS

TIME_STAMP_QUARTERS

TIME_STAMP_MONTHS

TIME_STAMP_WEEKS

TIME_STAMP_DAYS

See also:
• Tracking Intermediate Event

• Monitor Tracking point data

• DeveloperWorks - Monitoring business processes by using tracking groups in IBM BPM V7.5 - 2011-08-10

Miscellaneous Tracking Data Notes
To disable tracking data emission at the product level, there is a setting in 100Custom.xml that
can be added/changed:

<properties>
<common merge="mergeChildren">

<monitor-event-emission>
<enabled merge="replace">false</enabled>

</monitor-event-emission>
</common>

</properties>

Tracking data is not immediately written to the database. Instead, the data is cached at the Process
Server side and then is periodically flushed as a unit to the database. The interval between flushes
is 30 seconds by default. The value can be found in the <...>/performance-data-
warehouse/config/system/00Static.xml file.

An entry called:

<transfer-execution-interval>30</transfer-execution-interval>

defines the time between successive transfers of data to the database. A second parameters called:

<transfer-block-size>500</transfer-block-size>

defines how many records should be transferred during a single cycle.

Removing tracking data tables

There is no known recipe for removing tracking data tables and views. This feels like a gross
omission but it is what it is. The best recipe currently known is to "reset" the performance data
warehouse which will lose all previous data.

First drop all the tables in PDW that are related to Process Center. This will usually be all the tables
owned by "db2admin".

Next drop all the views.

Now we can re-execute the script to recreate the dropped tables:

Page 730

http://www.ibm.com/developerworks/websphere/library/techarticles/1108_venugopal/1108_venugopal.html

<Profile>/dbscripts/PerformanceDW/<DBType>/PDWDB/createTable_PerformanceDW

Minimizing Tracking Group entries

It is tempting to create a tracking group definition with all the possible entries that you may want.
However, it may be simpler to create a generic tracking group with columns for keys and columns
for values and use those as markers for the data you want extracted:

Timing Intervals
Consider the following example BPD:

Page 731

Notice the three occurrences of Intermediate Tracking Events. These cause Performance Data to be
generated. If we wish to determine the interval between the start of a section of the process and the
conclusion of that section, we can generate a Tracking Event at the start and a corresponding
tracking event at the end. Once done, we can create a Timing Interval definition to measure the
elapsed time between them. The Timing Interval can be created from the Performance section:

When created, we give it a unique name.

Page 732

Next we specify which tracking points will be used to flag the start if the interval and which the
end.

At run-time, we now need to understand how this information exposes itself. The first thing to
understand is a database view called TIMINGINTERVALS. This table has the following structure:

Column name Data type Description

TIMING_INTERVAL_ID Decimal A unique id for the timing interval itself

NAME Varchar The name of the timing interval

DESCRIPTION Clob A description

For example, if we create a Timing Interval definition called "MyTimingInterval" then a
search of the TIMINGINTERVALS view with "NAME='MyTimingInterval'" will take us to a
TIMING_INTERVAL_ID value. There is a one-to-one relationship between
TIMING_INTERVAL_IDs and their associated NAME values.

Page 733

The next table we are interested in is called TIMINGINTERVALVALUE

Column Name Data type Description

TIMING_INTERVAL_ID Decimal The timing interval ID. This is a unique value that is system
generated for each type of Timing Interval. See the
TIMINGINTERVALS view for a mapping from a name to the
TIMING_INTERVAL_ID value.

START_TRACKING_POINT_ID Decimal

END_TRACKING_POINT_ID Decimal

START_TIME Timestamp The start time of the interval

END_TIME Timestamp The end time of the interval

DURATION Decimal The duration of the interval in milliseconds

START_TASK_ID Decimal

END_TASK_ID Decimal

FUNCTIONAL_TASK_ID Decimal

START_SNAPSHOT Varchar

END_SNAPSHOT Varchar

Be careful when creating names of Timing Intervals. If we have two process apps both of which
have the same named Timing Interval, it will be difficult to tell one from another because the
"NAME" column in the TIMINGINTERVALS table will not be unique.

Performance Data Warehouse (PDW) SQL Snippets

There are common patterns that keep appearing when reports are asked for. Here we will discuss
and describe these patterns as well as describing some simple solutions for incorporating these into
the reports.

When using the built-in SQL processing services provided by the product, the JNDI entry for the
PDW DB is "jdbc/PerformanceDB".

See also:
• Database Integration

How many have started but not finished (in progress)

Consider a process which has work to be performed and in the process the work can start and at
some time later be completed. A common question is how many have process parts have started but
not yet completed?

One way to achieve this is to create a field in a tracking group used to track this information.
Before the work item is started, set the field to "START" and write a record to the PDW. When
work completes, set the field to "END" and write a second record to the PDW. The number of
items thus started but not yet finished is the number of rows that have the value "START" minus the
number of rows that have the value "END".

Here is a sample BPD that shows us writing two events.

Page 734

The Start_TE event looks like:

while the End_TE event looks like:

Querying the view for the tracking group will now result in a column called "FIELD1" which has
either "Started" or "Ended" values within it.

Now let us focus on the query.

We want to find the count of "Started" entries and subtract from this the number of "Ended" entries.
A suitable query for this would be:

SELECT count(*)-(select count(*) FROM MYTRACKINGGROUP where field1='Ended') as
inFlight from MYTRACKINGGROUP where field1='Started'

As you may see, if you can't speak SQL, you may be in trouble.

Number of items of different types/day

Consider a company that sells red, green and blue widgets. During the course of a period of time
(say a week), they sell a certain amount of widgets in total on each day. We can imagine a bar chart
with an X-Axis of days and a Y-Axis of widgets sold. To add more detail, we want to break the Y
Axis down into counts of how many were red, how many green and how many blue. How can we
do this?

One way is to expose a variable in a tracking group. The variable's value will either be "Red",
"Green" or "Blue". A report data source can then be.

Sales Rep Color

A Red

B Green

A Green

A Red

B Green

Page 735

A query then may be:

Sales Rep #Red #Green

A 2 1

B 0 2

A suitable SQL query is:

SELECT minute(time_stamp),(select count(*) FROM test2 as t2
WHERE color='green' AND minute(t1.time_stamp) = minute(t2.time_stamp)) as

green,
(select count(*) from test2 as t2 where color='red' and minute(t1.time_stamp) =
minute(t2.time_stamp)) as red
from TEST2 as t1
group by minute(time_stamp)

Getting the last state of a process

As a process instance executes, it passes from one state (activity) to another. A common request is
to be able to see which processes are in which states. As the process runs, we can imagine it
generating Tracking Events as it enters a new state. This means that for a given process instance we
will have a growing list of records of the general format:

PIID Time State

P1 T1 State A

P1 T2 State B

P1 T3 State C

… … …

P1 Tend State End

So if we want to find the current state of the process, what we want to do is find the most recent
record written for a given process.

SELECT * FROM TABLE ORDER BY TIME DESC FETCH FIRST 1 ROW ONLY

Breakdown of how many in which step

Consider the following illustrative process which has three steps.

Now imagine that there are many instances of this process running. For simplicity, let us say that
there are 100 instances running. Of these instances, some number of them will be in step A, some
in step B and some in step C. Now imagine that we want to report on where are we as a business?
We could imagine producing a report that might say:

My Process

Page 736

Step A 25.00%

Step B 40.00%

Step C 35.00%

From this, and at a glance, we can now tell a lot more about the operation of our business. So how
can we build such a thing?

Imagine now a Tracking Group called "APPSTATETG". This has a column/field called
"appState" which will hold the state of a process.

SELECT task_id as t1,MAX(time_stamp) as t2 FROM DB2ADMIN."APPSTATETG"
GROUP BY task_id

SELECT appstate,count(appstate) from DB2ADMIN.APPSTATETG
WHERE time_stamp in
(SELECT max(time_stamp) FROM DB2ADMIN."APPSTATETG" group by task_id)
group by appstate

Last Autotracked row

The following will return data for the LAST autotracked rows:
select * from <AutoTrackTable> as T1, (select TASK_ID, MAX(TIME_STAMP) AS TMAX from <AutoTrackTable>
GROUP BY TASK_ID) as T2 where T1.TASK_ID = T2.TASK_ID and T1.TIME_STAMP = T2.TMAX and T1.KPICOST is
not null

The last predicate in the query appears to be necessary because Task Ids and Timestamps don't
appear to be unique.

Counts of processes started vs completed over an interval

Consider a process which writes a start event when it begins and an end event when it completes.
What we wish to build is a list of how many process instances started and ended within a given time
interval. When the process starts the "datekey1" TG field is written with 'startProcess'. When the
process completes, the "datekey1" TG field is written with 'endProcess'. The following SQL will
illustrate this concept:
-- Return a table of 3 columns. The columns are:
-- o MINUTE - The interval over which the measurement is being calculated
-- o STARTCNT - The number of process instances started in this interval
-- o ENDCNT - The number of process instances ending in this interval
select minute(time_stamp) as minute,

(select count(*) from TGTABLE as t2 where datekey1 = 'startProcess' and minute(t1.time_stamp) =
minute(t2.time_stamp)) as startcnt,

(select count(*) from TGTABLE as t2 where datekey1 = 'endProcess' and minute(t1.time_stamp) =
minute(t2.time_stamp)) as endcnt

from TGTABLE as t1 group by minute(t1.time_stamp)

General DB/SQL useful functions for reports

Date formatting

A timestamp can be formatted into a string with the varchar_format() function. This takes
both a timestamp and a format string and the result is a string complying to the format.

Page 737

Mapping BPM date types to DB TIMESTAMP types

In the tables generated for PDW, there are many places where the TIMESTAMP DB data type is
used. Within BPM, we use a Date data type. There are times when we want to build a SQL query
string and what we have is a BPM Date object and what we need is a DB TIMESTAMP object.
Here is the recipe to map from one to the other.

In a SQL String, we can create a TIMESTAMP object using:
TIMESTAMP('yyyy-mm-dd hh:mm:ss')

so what we need to do is take a BPM Date object and map that to a compatible string. Fortunately,
the BPM Date object has a method called "format" that will format the data for us.
var mySQL = "select X from MYTABLE where" +
 "TIME_STAMP = TIMESTAMP('" + tw.local.myDate.format("yyyy-MM-dd HH:mm:ss") + "')"

See also:

• Data Type – TWDate

Number of items in the current week
select count(*) from tg1 where week(TIME_STAMP) = week(current date)

Counting when a column equals a value

Consider the idea of wanting to count columns where a column value is A or B. What we want is
something like:
select count(number of columnC = A values), count(number of columnC = B values) from myTable;

Unfortunately, this simply won't work. The trick for this is:
select sum(case columnC when 'A' then 1 else 0 end),

sum(case columnC when 'B' then 1 else 0 end) from myTable;

Selecting records within a date range

Consider the notion of selecting records that fall within a particular day. If we have a Tracking
Group table, then it contains a column called "TIME_STAMP". To select rows in a particular day,
the following can be used:
SELECT * FROM "DB2ADMIN"."DEMOTG1" where TIME_STAMP between TIMESTAMP('2013-12-26 00:00:00') and
TIMESTAMP('2013-12-26 23:59:59')

See also:

• developerWorks – DB2 Basics: Fun with Dates and Times - 2003-08-28

Reporting with Microsoft Excel

The Microsoft Excel spreadsheet package can perform powerful charting functions and if we can
import the data to be charted, we can then graph from there.

Developing Custom Dash-boards
As we have seen there are a number of techniques for recording process data into the PDW tables.
Here we now start to think about thinking about how to design dash-boards including data
collection, SQL queries and visualization.

Let us start by thinking about what the dashboard is to contain. Think of it as a screen which should
show business information to business users. The information to be shown should be requested by

Page 738

http://www.ibm.com/developerworks/data/library/techarticle/0211yip/0211yip3.html

the end-users of that information. It is usually wrong for the process designer to make up metrics
for display without consulting with the eventual consumers. It is those consumers who will have
the best notion of what it is they wish to see. Once we have some understanding of what is desired,
we will need to ensure that we have a plan to be able to obtain the data for those metrics that can be
used to show the results. It is no use to hear that we want to show "average salary increase by
department" when no-where in the process do we deal with the salary.

Once we have seen that the process is able to generate data to achieve the metrics, we must ensure
that the data is actually generated. This will usually mean the injection of new tracking points into
the solution.

Next we should experiment with building the SQL statements necessary to retrieve the data. It is
strongly recommended to build such queries using tools such as IBM Data Studio.

With the SQL statements built, now we can turn our attention to building out the Human Service
that will execute that SQL.

With the data now in IBM BPM, we can populate charts and graphs with the data retrieved.

At a high level, the following steps are recommended:

1. Clearly capture the specification of the metric to be shown. This will include discussions
with eventual consumers and napkin drawings of what the metric may look like.

2. Cause the BPM process to generate the data necessary for the metric.

3. Write SQL statements to parse the data and retrieve the data.

4. Build BPM services to make the SQL calls to retrieve the data.

5. Show the data in charts and tables.

A Sample Dashboard

Consider the story of a procurement process. In the process a user can request to buy hardware or
software, specifies the price, the department to be charged and a description. Next a manager
approves or declines the purchase. A simple process.

Now let us consider the metrics that may be calculable:

• The number of procurement requests per month

• The number of procurements approved or declined per month

• The amount of money spent on procurement per month

Page 739

The tracking group is defined as:

Which results in a table that looks like:

Let us now take out first query. This is "The number of procurement requests per month". Suitable
SQL for this would be:
SELECT COUNT(*) AS COUNT, MONTH(TIME_STAMP_MONTHS) AS MONTH
 FROM DB2ADMIN.PROCURETG
 WHERE PLACE = 'END'
 GROUP BY TIME_STAMP_MONTHS

Now, let us build a service to work with the data. The way I like to work is to build Human Service
which, when executed will return a ChartData object instance (see: Chart Control). This is the
data type used by a Chart control to draw a chart instance. While I am building the service, I insert
a Coach in the flow simply to show a chart while building and testing. Once I am happy with the
service, I skip the Coach.

The Service I build has three primary parts. See the following example:

Part 1 called "Build SQL Query" defines the SQL statement to be executed.

Part 2 called "Execute SQL" actually executes the SQL statement to retrieve the data from the
PDW.

Part 3 called "Build Chart Data" takes the results from the SQL query and builds an instance of the
ChartData object.

Page 740

For Part 1, the SQL query is as shown above and assigned to a local private variable called "sql".

For Part 2, we use an Execute SQL nested service call defined as follows:

Note especially the use of the "Record" data type to hold the results of the query.

Finally for Part 3, here is the populate of the ChartData object:
tw.local.chartData = {
 plots: [
 {
 series: [
 {
 label: "Procurement Requests",
 data: []
 }
]
 }
]
};
var chartData = [];
for (var i=0; i<tw.local.Results.listLength; i++) {
 chartData[i]={
 "name": "" + tw.local.Results[i].MONTH,
 "value": tw.local.Results[i].COUNT
 };
}
tw.local.chartData.plots[0].series[0].data = chartData;

And finally, the results of this work would be:

To be able to build your own monitor charts, I maintain that one needs to be able to read the above
and fully understand all the parts involved. The reality is that it isn't as complex as it may at first
appear … however … it does initially appear somewhat bewildering with lots of "parts". Take the

Page 741

time to understand each part by itself and then, only when ready, see how they integrate together to
achieve the desired overall goal.

Page 742

Generating sample data
When building out custom reports, we may wish to create sample data. Unfortunately, running
processes to create the data, although ideal, takes too long so what we want is a way to have the
data created for us without having to run all those processes. When we realize that when a process
is run, its history is saved within the PDW, we can work towards injecting rows into the PDW to
build our data for the system. Again, unfortunately, it isn't as easy as that. We run into the danger
of corrupting our PDW database. In addition, many of the tables have foreign key relationships to
other tables which results in a great deal of confusion on simply inserting rows.

Perhaps the easiest way is to cheat. What we can do is create a second table with the same columns
used in our queries. When we build our queries, we can then use a SQL "UNION ALL" statement
to select from the real PDW table as well as the test table.

Here is an example. In the following we see a Tracking Group table called "DEMOTG1".

Within this table, in our example, we care about a small set of columns:

• BRANCH

• PROCESSSTEP

• STATETAG

• TIME_STAMP

We can now create a new table called "TESTDATA" that looks like:

See that the columns that we care about have the same names.

We can now think about how to populate the new "TESTDATA" table. We have a number of
options including scripts and programs but there are some useful tools available on the Internet
including:

• http://www.generatedata.com/

• http://databene.org/databene-benerator.html

Page 743

http://databene.org/databene-benerator.html
http://www.generatedata.com/

These can generate comma separated value text files that can then be loaded into the database.

When we now wish to write our SQL query, instead of coding:
select BRANCH, PROCESSSTEP, STATETAG, TIME_STAMP from DEMOTG1

we can code:
select BRANCH, PROCESSSTEP, STATETAG, TIME_STAMP from

(select BRANCH, PROCESSSTEP, STATETAG, TIME_STAMP from DEMOTG1
union all select BRANCH, PROCESSSTEP, STATETAG, TIME_STAMP from TESTDATA)

Simulation and Optimization
As processes are designed and built but before they are deployed for real use, it is desirable to know
ahead of time how they might perform in reality. To help achieve this, IBPM provides a simulation
capability built into the IBPM Process Designer which is called the Optimizer. The Optimizer can
be used to examine how a process may perform by using simulated executions with hypothetical
data. In addition, the Optimizer can be used with actual data collected over time from runs of the
processes in production. Using this data, the Optimizer can visualize how the processes actually ran
and provide visual indications of which areas may be good candidates for further improvement.

Drilling down further into the notion of simulation, we see that it is the fictitious execution of
multiple processes. The IBM product pretends (internally) to execute the steps in the process and
calculates timings and other numerical data. After the simulation has ended, the results are then
shown to the user in graphs, charts and tables.

A key notion of a simulation is that it pretend to run faster than it would in reality. For example, if
a step in a process would take an hour for a person to complete, simulating that step should not take
an hour … rather, the product's simulator should internally track it as though it had taken an hour.

See also:
• Vimeo – Technical Demonstration – Using Simulations - 2012-03-14

Defining simulation values
Think of each step in the process as having associated simulation attributes that the designer of the
process explicitly provides. These attributes declare how long it may take to execute.

If we had a simple process that looks as follows:

We see that it is composed of three steps … Step 1, Step 2 and Step 3. If we define that
each step in the process will take 10 minutes to execute then when we run a simulation, we find that
the average duration of a process is 30 minutes.

We can define simulation attributes of a BPD step by selecting the simulation tab in the Properties
view:

Page 744

https://vimeo.com/groups/ibmbpm/videos/38249671

Saying that a step in the process takes a fixed amount of time may not be that useful so we can
define that a step can take a dynamic/variable amount of time based on three available distribution
types:

Fixed distribution type

The fixed distribution time is the simplest of all. Its value is a constant (or fixed). For a wait or
duration time, this means that the wait or duration will always be the constant value supplied.

Uniform distribution type

The Uniform distribution type says that its value will between a lower and an upper bound but the
probability of any given value is evenly distributed across the range. For example, if the lower
bound is 5 minutes and the upper bound is 15 minutes, then any individual value will be equally
likely between these ranges. The probability of the value being 5 minutes is the same as that of
being 10 minutes or that of being 15 minutes.

Page 745

Normal distribution type

This is the most complex of the types of distribution. The distribution is in the form of a bell curve
with the center of the bell curve set to be the Average value. The slope of the curve is based upon
the Standard Deviation value. The Range is an amount of time that is the threshold above
and below the average and marks the possible start and ends of the time interval. For example, an
average of 10 with a range of 5 will produce a series of values between 10-5=5 and 10+5=15. The
distribution of these values is governed by the standard deviation. If the range should be negative
(for example, average=10, range=20 which gives a lower bound of -10) this obviously has no
meaning in simulation so any distribution values less than zero are also ignored.

The value chosen will be between the lower and upper range but the probability of any specific
value will not be a constant across the range. The probability will be as described by the curve.

Gateways and simulation

When a gateway is added into a process:

the simulation settings for such an activity allow us to define a percentage of time one path or
another is followed. A percentage is simply another expression for a probability. A value of 10%
Is the same as saying 1-in10. It is important to realize that during simulation, application data for a
process is completely ignored and, as such, gateway paths are followed based on statistical likely-
hood and not on actual evaluated conditions. It is the choice of the designer to choose the statistical
distribution to be assigned to each of the possible paths.

Page 746

Arrival rate of simulation items
When a simulation is executed, imagine we wish to process 100 requests and then end the
simulation. One of the first questions that comes to mind is "how fast" do we want these requests to
appear to arrive? If we are running a simulation, it doesn't seem to make much sense that they
should all arrive simultaneously as that would not happen in reality.

The Start Event BPMN symbol of a process can be used to describe the arrival rate of the simulated
processes. This has an attribute called the "Firing Delay". If we defined this as "Fixed" with a value
of 30 minutes, we would effectively be simulating 100 processes being started in total with each
process arriving every 30 minutes. Of course, we could use other distribution values to represent
alternate arrival distributions as opposed to a constant process arriving each unit of time.

Simulating the cost of execution
Since Human Tasks are performed by staff members and each staff member has a salary, there has
to be a cost associated with execution a human task. For example, if a person is paid $20/hour and
it takes them 30 minutes to perform a task, then the cost of performing that particular task would be
$10.

In IBPM, we associated an activity with a Participant Group which defines the staff members that
are eligible to perform that task. One of the configurable attributes of a Participant Group is the
idea of a cost per hour. This attribute defines the cost of using a member of that group for an hour
long period.

Page 747

Since we can now model the expected duration of an activity and have also defined the staff
members for that activity, we can calculate the cost of executing that activity. This can be reflected
in the simulation results.

Available staff members for tasks
For simulation purposes, we can also define the capacity of a Participation Group.

This is the number of staff members that are contained within that group. This comes into play
when there is more work to be done than there are people to perform it. Here is an example.

Imagine it takes 10 minutes to review a work request. Imagine that there 5 members in the team
that can review work requests. If 5 requests arrive then all 5 members of the team may be busy
reviewing a request. What happens if a 6th request arrives while the previous 5 are still being
worked? The answer is simple, the 6th request will have to wait until one of the preceding requests
completes at which time releasing the staff member from their previous task to work on the new
task.

The Capacity of the Participation Group defines the number of staff in the group. It can be set to an
estimated number within the simulation settings of the group or else it can be set to the exact
names/number of the users that are actually defined to the group. Using an estimated capacity
allows us to execute "what if" scenarios such as increasing or decreasing the number of staff

Page 748

members in the group.

A worker in a group is unlikely to be able to devote 100% of their day simply to working on IBPM
tasks. They will have other responsibilities such as team meetings, education, management reports
and more. The Availability setting of the Participant Group defines a percentage of their working
hours that can be spent working on IBPM originated tasks.

We are human and can't work at 100% efficiency. We take bathroom breaks, chat with colleagues
and go for coffee. To allow for this in the simulations, we can define an attribute called Efficiency
which is again expressed as a percentage of available working time.

Simulation Analysis Scenarios
A simulation scenario is basically a collection of settings that are used to govern the execution of
the simulation. A scenario describes what we are going to simulate and for how long we want that
simulation to run.

A simulation analysis scenario is created from the Processes category within the library:

The scenario is given a name:

Within the details of the scenario a variety of attributes can be supplied.

Page 749

First there is the simulated start date and time. This is the date and time when the simulation is set
to begin. No processes will be simulated as having started before this time. This will be the epoch
from which start events will be calculated.

When a simulation is to be performed, there must be a point at where the simulation should end.
There are two exclusive choices for this. The first is a run time. This is the amount of elapsed time
starting at the start time over which the simulation is to execute. For example, if we say that the
start date/time will be 2012-08-25 from 09:00 and will run for 8 hours then the simulation will
conclude at 2012-08-26 at 17:00. The number of instances of processes started will be governed by
the firing rate of the process start event.

An alternative to duration is the idea of stopping after some number of instances of a named process
have completed. For example, we can say that the simulation should end after 100 instances of
process ABC have come to an end.

Within a simulation scenario we must supply the names of the Process Applications, Processes and
Simulation Profiles. These are not optional. These will be the entities that are simulated.

Simulation Profiles
Imagine we wish to run simulations with different sets of data to be able to ask and answer "what

Page 750

if" kinds of questions. We can create a named grouping of simulation settings. This grouping is
called a profile.

Associated with elements in the BPD diagram are simulation profiles:

A simulation profile is the set of all simulating settings for a BPD. There can be multiple profiles
and hence multiple sets of simulation settings.

Running Simulations
Once the environment for simulation has been created, we are now ready to execute those
simulations and examine the results. Switching to the Optimize perspective shows the simulation
details.

In this perspective, there are a number of views each with their own tab titles.

The Analysis Scenarios allows us to select a Scenario for execution and then execute it:

Clicking on the Calculate button causes the simulation metrics to be calculated.

The interpretation of the results of the simulation is combination of examining the BPD diagram,
the Heatmap Settings and the Live Reports view.

First, let us examine the Heatmap Settings.

Page 751

In this area of the window the items marked in blue are changeable values. It is not known why
they are not pull-downs.

The Visualization mode is of primary importance. It contains the following:

Selecting one of these report types changes the content in both the BPD diagram and the Live
Reports view.

The first category is Time based.

Wait Time is the time that a task had to wait for execution because a staff member was not
available to work upon it.

The Execution Time is the time taken to work on a task after a staff member became available.

The Total Time is the time taken including both waiting and execution for the task to complete.

Depending on the Visualization Mode selected, the BPD diagram will also change to be annotated
with metrics about the simulation:

This provides an easy to read examination of the process as a whole to understand where time was
spent.

IBPM uses "heatmap" diagrams to draw attention to important areas. Heatmap diagrams use
saturation of color to depict the highs and lows. Activities will have richer colors around them if
they need more attention than activities with softer colors.

Clicking in the BPD diagram will produce different reports in the Live Reports section.

Clicking in the white space of the process as a whole will produce a summary of the overall
execution of the process.

Page 752

From here we can get a great overall picture of the process including the costs, average durations
and breakdown of the activities.

Clicking on a lane in the process will produce a report for all the activities contained in that lane
including their details.

Finally, clicking on an activity step will produce a report on just that single activity.

Details are shown for various steps. These details include:

• The name of the activity

• The Instance ID of the process

• The time that the activity was created

• The time that the activity started

• The time that the activity ended

Page 753

• Which Participation Group the activity was associated with

• The user within the group that was assigned the task

• The amount of time that the task spent waiting for a user

• The elapsed execution time for the task after being assigned a user

• The total amount of time that the task existed for

Another category of visualization is Path based.

This shows us visually the paths taken by the instances of the process. Heat-maps are used to
indicate the relative frequency of paths taken. There are three path choices:

• Path

• Happy Path

• Exception Path

These filter all paths, only happy paths and only exception paths when choosing to show the heat-
maps.

Optimizing a Process
Simulation is great for thinking about and asking questions for future processes or future changes to
processes but this is only part of the story. As equally important a question is to determine where
within the process improvements can be made. If a concern is raised that it is taking too long for
customers to get their ordered products, unless you can tell where within that process time is being
spent you won't know which areas would benefit from improvement.

The Optimizer component of IBPM serves double duty beyond that of being a simulation engine.
The Optimize can retrieve historical data from the Performance Data Warehouse and use that
information to allow the process analyst to examine the reality of previously executed processes.
The data that can be examined includes the same information as was previously seen in the
simulations.

There is some setup required in order to have Process Server capture this information.

First, Auto-tracking must be enabled. This is set in the properties of the Pool:

Page 754

This is enabled by default.

The tracking definitions must be sent to the Performance Data Warehouse:

Page 755

In the Optimized Analysis Scenarios:

Page 756

Start Event Firing Delay

Activity Execution Time

Condition Outgoing Flow Percentages

End Event Firing Delay

Simulation Tutorials
The areas of simulation and optimization make great reading and theory but an ounce of tutorial has
been found to help many folks understand these idea with greater clarity. In addition, working
through a tutorial can result in more solidity when trying to remember these features in the future.

Experiment 1 – A basic start

In order to better understand the nature of simulation and optimization, here is a simple tutorial.
First we build a trivial process that looks as follows:

We accept all the defaults. Now it is time to change some settings. For our purposes, we will
change the arrival rate of new process instances to be one new process every 5 minutes.

We will also say that the time it takes "Step 1" to execute will be 10 minutes.

We now have a bare bones process model as well as a simulation model set up. In order to be able
to run a simulation, we now switch to the Optimizer view. We select "Single Simulation" in mode
and create a new simulation scenario. The simulation scenario describes what we are going to
simulate and for how long.

Page 757

We are now ready to run a simulation. Before actually running it, what do you think the outcome
may show?

After running the simulation by clicking the calculate button:

We can look at the Live Reports tab for the process as a whole.

Page 758

One of the more interesting tables is the Instance Analysis table:

This shows that 200 instances were completed (which was the number we asked to run) and that the
minimum and maximum run-times for all instances were both 10 minutes. This means that each
instance of the process took exactly 10 minutes to execute. This also makes sense to us as there is
only one step in the process and that step is simulated to be exactly 10 minutes long. So … is this
what we expected to see? The answer would have been yes … had it not been for the notion that
we configured a new process to arrive every 5 minutes. If there had only been two process
instances, the first one would arrive at 09:00 and take 10 minutes to complete finishing at 09:10.
The second process would arrive at 09:05 … but … and here is the interesting thing, would we not
have assumed that it could not complete until the first one had finished? If we had thought that
would have happened, we would have been wrong. Clicking on an individual step in our process,
in our case Step 1, we can see the simulated items:

And there we see our answer. Step 1 was defined to be executed by members of a participant group
called "All Users" which contains an unlimited number of theoretical users. As such, if a user is
needed to perform that step there will never be a case that none are available.

We can constrain the number of users available in our simulation scenario:

Page 759

Re-running our simulation now shows us something new.

We now see that the time taken to complete the process is trending upwards and there is great
deviation in completion minimum and maximum times.

Experiment 2

Let us now change the starting rate of new process instances. Currently, it is set at a fixed rate of
one new process every 5 minutes. Let us change this to be one new process on average every 10
minutes. The key words here are "on average". This means on occasion the next process instance
will start in less than 10 minutes and on other occasions the next process instance will start in more
than 10 minutes. Changing the process start distribution type to Uniform, we can control these
settings:

In our example, we say that the average will be 10 minutes with a minimum of 8 minutes and a
maximum of 10 minutes. Running a simulation and looking at the data, we get the following:

Page 760

This is our most interesting graph yet. What it is showing is that the duration of process instances is
no longer cleanly predictable but instead shows quite a broad range of results. If we run the
simulation again, we will get different values because of the randomization of start times for the
process instances.

If we look further in the table, we see the following:

What we see is that the waiting time for this step in the process is not zero. This means that on
occasion this step was waiting for staff members to become available for the process to continue. If
we think back to what we previously did, we said that this step only has one person available to do
it. If we increased the number of staff members available to do this work, we will see the process
completion rate become even again.

Experiment 3

We will now change some more settings. First we will add a new swim lane and two participant
groups. Let us call them "My Team 1" and "My Team 2". We will associated each swim lane with
a team. We will also add a second step.

Page 761

For the second step, we will also define it as having a simulation value of 10 minutes exactly just as
we did with Step 1.

In the simulation scenario, we will define each of the two teams as having only one member.

Again, we will re-run the tests. This time, we want to examine another aspect of the simulation
tooling called heat-maps. In the Heat-map Settings, ensure that the Visualization mode is set to
"Wait Time" and that the scaling range is less than 30 minutes.

Looking at the BPD diagram in Optimizer mode we see an interesting piece of information:

Page 762

We see that Step 1 has been highlighted using heat map visualization as one that needs our
attention.

In our story, we already know where our bottlenecks are because we artificially created the process
to illustrate such things. However, imagine a much larger process with potentially a lot of activities
within in. By simply glancing at heat map diagrams like this, we can immediately see which areas
of our process could use attention.

Next we increase the capacity of My Team 1 to be 2 members and rerun.

Notice that the heat map indication has moved from Step 1 to Step 2 indicating that we have
resolved the bottleneck for Step 1 but now we have a bottleneck in Step 2. We could continue this
onwards but the goal here was to show how heat maps can be used to illustrate where attention
should be provided.

Experiment 4 – Path analysis

Again following on from the last experiment, we are now going to look at decision gateways. We
add a gateway into the process flow to end up looking as follows:

What this represents is a simple process that has a decision within it. In the simulation settings for
the gateway we define that 25% of the time, the decision will direct us to Step 2.

Page 763

Since these are exclusive decisions, this means that 75% of the time, the decision will take the other
path. Having made this change, once again we execute the simulation.

In the Visualization mode, we select Path:

The BPD diagram now shows us the path's taken by the process, again visualized by heat maps and
labels:

We can quickly see the weight of execution in different paths

Page 764

IBPM Web API – Web Services API Access
When a Process Server runs it exposes a set of Application Programming Interfaces (APIs) that
allow external applications to interact with the functions of the server. The binding interface to
Process Server is provided through Web Services allowing these client applications to execute
remotely from the server. IBPM calls these APIs the "Web API". Full JavaDoc is provided along
with a copy of the Web Services WSDL file. The JavaDoc and the WSDL file can be found in the
installation of the server at:

<WLE Install>/web-api/docs

Although there is a copy of the WSDL supplied on the file system it is not recommended that this
be the file used to build the Web API clients. Instead, the WSDL file that is actually in use by the
Process Server should be obtained. This can be retrieved from the following URL:

http://<Hostname>:<Port>/webapi/services/WebAPIService?wsdl

Where Hostname is the host serving the Process Server. The Port number can be found by
examining the SystemOut console log for the server and looking for a line which reads (for
example):

[9/23/10 11:07:07:273 CDT] 00000017 webcontainer I
com.ibm.ws.wswebcontainer.VirtualHost addWebApplication SRVE0250I: Web Module
Lombardi Software Web API has been bound to twprocsvr_host[*:19086].

The port number is shown at the end of the line.

Brining this page up in a browser shows something similar to the following:

Page 765

From here, the WSDL can be saved by right clicking in the page and selecting "Save Page
As...".

Here is a summary of the APIs provided:

Method name Description

AbortProcessInstance

AbortProcessInstances

AddComment

AddHelpRequest

AssignTask

AssignTasks

ChangeProcessInstanceDueDate

ChangeProcessInstancesDueDate

ChangeTaskDueDate

ChangeTaskPriority

ChangeTasksDueDate

ChangeTasksPriority

CompleteTask

CreateDocument

DeleteDocument

DueDateOkForTask

ExecuteSearch Execute a search for tasks or processes

GetActionPermissions

GetAllRoles Retrieve a list of all the roles/groups

GetAllUsers Retrieve a list of all users. Be cautious using this API especially if the
system is configured with an LDAP provider.

GetCurrentUser Retrieve the current user and the roles that user is in

GetDocument

GetDocumentsForProcessInstance

GetDocumentsForProperties

GetExposedItems

GetFavorites

GetPriorities

GetProcessBySystemId

GetProcessInstance

GetProcessInstanceBusinessData

GetProcessInstanceForSavedSearch

GetRoleByName Retrieve details of a role given its name

GetSavedSearches

GetScoreboardData

GetScoreboards

GetSearchMetaData

Page 766

GetSearchMetaDataForProcess

GetServerInfo

GetTask

GetTasksForSavedSearch

GetUserByName

GetUserConfiguration

IgnoreHelpRequest

ReassignTask

ReassingTasks

ReasignTasksToRole

ReassignTasksToUser

ReasignTaskToRole

ReassignTaskToUser

RefreshGroupMemebership

ReplyHelpRequest

ResumeProcessInstance

ResumeProcessInstances

RunFavorite

SendTask

StartExposedItem

StartProcess

StartProcessWithInfoPathForm

StartTask

SubmitInfoPathForm

SubmitInfoPathForms

SuspendProcessInstance

SuspendProcessInstances

SynchronizeTaskLists

TestConnection Tests the connection from the Web Service client to the Process Server
hosting the Web API

UpdateDocument

Here are the APIs by category:

Process Interaction

abortProcessInstance

abortProcessInstances

changeProcessInstanceDueDate

changeProcessInstancesDueDate

getProcessBySystemId

Page 767

getProcessInstance

getProcessInstanceBusinessData

getProcessInstancesForSavedSearch

resumeProcessInstance

resumeProcessInstances

startProcess

startProcessWithInfoPathForm

suspendProcessInstance

suspendProcessInstances

Task Interactions

assignTask

assignTasks

changeTaskDueDate

changeTaskPriority

changeTasksDueDate

changeTasksPriority

completeTask

dueDateOkForTask

getTask

getTasksForSavedSearch

reassignTask

reassignTasks

reassignTasksToRole

reassignTasksToUser

reassignTaskToRole

reassignTaskToUser

sendTask

startTask

submitInfoPargForm

submitInfoPathForms

synchronizeTasksLists

Documents and Comments

addComment

addHelpRequest

createDocument

deleteDocument

getDocument

getDocumentsForProcessInstance

Page 768

getDocumentsForProperties

ignoreHelpRequest

replyHelpRequest

updateDocument

Searching

executeSearch

getExposedItems

getFavorites

getPriorities

getSavedSearches

getSearchMetaData

getSearchMetaDataForProcess

getServerInfo

runFavorite

startExposedItem

Users, groups and security

getActionPermissions

getAllRoles Retrieve a list of all the roles/groups

getAllUsers Retrieve a list of all users. Be cautious using this API
especially if the system is configured with an LDAP
provider.

getCurrentUser

getRoleByName Retrieve details of a role given its name

getUserByName

getUserConfiguration

refreshGroupMembership

Performance data

getScoreboardDara

getScoreboards

A mandatory SOAP header is required when sending requests to IBPM. This SOAP Header is a
ClientInfo structure that looks as follows:

<soapenv:Header>
<web:ClientInfo>

<web:TimeZone>CST</web:TimeZone>
<web:Locale>EN</web:Locale>
<web:AcceptsTimeZone>false</web:AcceptsTimeZone>

</web:ClientInfo>
</soapenv:Header>

Page 769

Where the web suffix is bound to the name space called
"http://webapi.lombardisoftware.com".

An example SOAP request to the WebAPI looks as follows:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:web="http://webapi.lombardisoftware.com">
 <soapenv:Header>
 <web:ClientInfo>
 <web:TimeZone>CST</web:TimeZone>
 <web:Locale>EN</web:Locale>
 <web:AcceptsTimeZone>false</web:AcceptsTimeZone>
 </web:ClientInfo>
 </soapenv:Header>
 <soapenv:Body>
 <web:GetAllRoles/>
 </soapenv:Body>
</soapenv:Envelope>

See Also:
• TechNote – How to use soapUI to test WebAPI in WLE

Starting a Process
We can start a new instance of a process using the startProcess operation. This has two input
parameters:

Parameter Name Data Type

process Process

inputs Variable[]

The process is retrieved by executing a getProcessBySystemId() which takes the
Application Acronym and the processSystemId as parameters. The processSystemId is
shown in the Overview section of a BPD only when the Advanced Features mode of PD is enabled.

The following code fragment will invoke a process that does not expect any parameters:

String acronymName = "WEBAPI1";
String processSystemId = "guid:c23d30e8591083d4:60e15df5:12c2eafac92:-7ffa";
com.lombardisoftware.webapi.Process p = webAPI.getProcessBySystemId(acronymName,
processSystemId);

webAPI.startProcess(p, null);

Page 770

http://www-01.ibm.com/support/docview.wss?uid=swg21444296

The acronym name and the process system id would be changed to suit the process that is actually
being invoked. If the process being invoked has input parameters then these can be supplied by the
caller. Here is an example of passing in a simple string parameter:

ObjectFactory objectFactory = new ObjectFactory();

String acronymName = "WEBAPI1";
String processSystemId = "guid:c23d30e8591083d4:60e15df5:12c2eafac92:-7ffa";
com.lombardisoftware.webapi.Process p = webAPI.getProcessBySystemId(acronymName,
processSystemId);

Variable v1 = objectFactory.createVariable();
v1.setName(objectFactory.createVariableName("inp1"));
v1.setValue(objectFactory.createVariableValue("Hello World"));
ArrayOfVariable arrayOfVariable = objectFactory.createArrayOfVariable();
arrayOfVariable.getVariable().add(v1);

webAPI.startProcess(p, arrayOfVariable);

If the expected parameters are a complex data type, things become a little more challenging. A
working recipe is shown next:

ObjectFactory objectFactory = new ObjectFactory();

String acronymName = "WEBAPI1";
String processSystemId = "guid:c23d30e8591083d4:60e15df5:12c2eafac92:-7ffa";
com.lombardisoftware.webapi.Process p = webAPI.getProcessBySystemId(acronymName,
processSystemId);

com.kolban.data.ObjectFactory of2 = new com.kolban.data.ObjectFactory();
MyDataType mdt = of2.createMyDataType();
mdt.setA(of2.createMyDataTypeA("A"));
mdt.setB(of2.createMyDataTypeB("B"));
mdt.setC(of2.createMyDataTypeC("C"));
ComplexValue complexValue = new ComplexValue();
complexValue.setAny(mdt);

Variable v1 = objectFactory.createVariable();
v1.setName(objectFactory.createVariableName("inp1"));
v1.setValue(objectFactory.createVariableValue(complexValue));
ArrayOfVariable arrayOfVariable = objectFactory.createArrayOfVariable();
arrayOfVariable.getVariable().add(v1);

webAPI.startProcess(p, arrayOfVariable);

To understand this code, realize that the target process was defined to have an input variable of a
custom type called MyDataType. An XSD representing this type was exported from PD and
saved in a file. An import statement was added to the WSDL so that the JAX-WS environment
added the XSD to the list of Java classes to generate. The input parameter was then built and
populated and finally encapsulated in a "ComplexValue" object before being added to the
parameters sent to the target server.

Taking a trace of the SOAP message, the following was found:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header>
 <p:ClientInfo xmlns:p="http://webapi.lombardisoftware.com">
 <p:TimeZone>CST</p:TimeZone>
 <p:Locale>EN</p:Locale>
 <p:AcceptsTimeZone>false</p:AcceptsTimeZone>
 </p:ClientInfo>
 </soapenv:Header>

Page 771

 <soapenv:Body>
 <ns2:StartProcess xmlns="urn:data.kolban.com"
xmlns:ns2="http://webapi.lombardisoftware.com">
 <ns2:Process>
 <ns2:Reference>/25.19641cab-e08b-457a-b21f-a4448c86488f</ns2:Reference>
 <ns2:SnapshotId>2064.4cba9ee4-5502-455a-afb7-
38f71370dee9</ns2:SnapshotId>
 <ns2:Name>Web API Test1</ns2:Name>
 <ns2:SystemId>guid:c23d30e8591083d4:60e15df5:12c2eafac92:-
7ffa</ns2:SystemId>
 </ns2:Process>
 <ns2:inputs>
 <ns2:Variable>
 <ns2:Name>inp1</ns2:Name>
 <ns2:Value xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ns2:ComplexValue">
 <MyDataType>
 <a>A
 B
 <c>C</c>
 </MyDataType>
 </ns2:Value>
 </ns2:Variable>
 </ns2:inputs>
 </ns2:StartProcess>
 </soapenv:Body>
</soapenv:Envelope>

Notes on Object Factory

In the preceding code, there was referenced to an apparently mysterious class called ObjectFactory.
What is this, where did it come from an how is it used? When a WebService is exposed or called,
that WebService may expose parameters of complex data types. These data types are described in
XML Schema Definition (XSD). When we work in a Java environment, these XSDs are not of
much value to us. What we would rather work with are JavaBeans which are Java classes that
expose a complex data type as a Java Object with associated getter and setter methods to access the
data. When using JAX-WS to work with Web Services, each time a WSDL is processed with the
JAX-WS tools and new complex data types are found, JavaBeans are generated and a factory object
is created to create instances of those JavaBeans. The factory object is called ObjectFactory. For
more details on this concept, google "JAX-WS ObjectFactory".

Executing a search
The Web Api provides the ability to execute a search. The operation for this is called
executeSearch and has the following parameters:

Parameter Name Data Type

search Search

maxRows (optional) integer

beginIndex (optional) integer

The key to executing a search is to correctly populate the Search object. This is a rich structure
and should be read carefully to ensure that it is fully understood. The return from a call to
executeSearch is a SearchResults Object.

The way to think about a search is that when the search is executed, a matrix of data is returned.

Page 772

The matrix is composed of rows where each row is broken into a series of columns.

When a search is executed, we explicitly name the columns of data that we want returned. If a
column is not included in the list of columns to be returned, it is not returned. The reason behind
this is that data that is not needed by the caller is simply not returned back to the caller and hence
reduces the amount of work and data that needs to be performed and transmitted.

The rows correspond to instances of data. The search conditions are applied to each row of data
and only those rows that pass the condition filter are returned. Combining this was the columns, for
each row that passes the search condition, the columns to be returned are extracted from the rows
and only these values are returned.

The SearchResult object contains two important parts. One part is a description of which
columns have been returned. This should match the columns requested to be returned. The other
part is an array of rows where each row has passed the filter condition.

Getting the details of a task.
We can retrieve the details of a Task using the getTask operation. This operation takes one
parameter which is the id of the task to be retrieved. A Task object is returned.

Web API Data types
The Web API has a large number of data types (data structures) associated with it. Making Web
Service calls takes input parameters and responses from from Web Service calls also returns output
parameters. The types of these parameters are described in the WSDL describing the Web API.
The following are descriptions of many of the data types used in the Web API.

CustomProperty

name String – The name of the Custom Property

value String – The value of the Custom Property

ExternalActivity

customProperties An array of CustomProperty

inputParameters An array of Parameters

name String – The name of the External Activity

outputParameters An array of Parameters

Page 773

reference String

snapshotId String

systemId String

ExternalActivityAttachment

data ExternalActivityData

externalActivity ExternalActivity

ExternalActivityData

variables An array of Variable

Parameter

name String – The name of the parameter

type QName – The data type of the parameter

Process

name String

reference String

snapshotId String

systemId String

Search

The Search data type contains:

columns an array of SearchColumn. These are the columns that are returned in the search.

conditions an array of SearchCondtion

orderBy an array of SearchOrdering

organizedByType String. Can be one of:
• "Task"
• "ProcessInstance"

A Search object describes the parameters of a search to be executed against the IBPM server. It
contains the following key parts:

• The list of columns of data to be returned from the search. This describes the subset of possible
columns returned when a search is executed. An array of SearchColumn objects are passed
in. Each entry in the array corresponds to column data being returned from the search.

• The conditions used to include a result in the output following a search. This is used to filter

Page 774

the results based on data. The parameter is an array of SearchCondition objects where
each search condition object contributes a predicate in the search.

SearchColumn

The SearchColumn data type contains:

displayName String

name String

type String. One of:
• "BusinessData"
• "Process"
• "ProcessInstance"
• "Task"

The SearchColumn is used to define which of the possible columns of data are to be returned. A
class called SearchableTaskColumn is defined that contains pre-made definitions for tasks.

Activity

AssignedToRole

AssignedToUser

ClosedBy

ClosedDate

DueDate

Id

Priority

ReadDate

ReceivedDate

ReceivedFrom

SentDate

Status

Subject

Similar structures are available for the ProcessColumn and ProcessInstanceColumn.

SearchColumnMetaData

The SearchColumnMetaData is used to describe the nature of a column of data returned.

displayName <TBD> Unknown. Currently returns null

name The name of the column

type one of:
• Task

usableInSearchCondition A boolean that indicates if this column can be used in a search.

valueType The type of data that this column represents. Examples are:
• {http://www.w3.org/2001/XMLSchema}string
• {http://www.w3.org/2001/XMLSchema}long

Page 775

• {http://www.w3.org/2001/XMLSchema}dateTime
• {http://www.w3.org/2001/XMLSchema}double

SearchCondition

The SearchCondition data type contains:

column A SearchColumn

operator A string. Can be one off:
• "CONTAINS"
• "EQUALS"
• "GREATER_THAN"
• "LESS_THAN"
• "NOT_EQUALS"

"STARTS_WITH"

value It is suspected that the value is a function of the data type of the column. In the
generated class it is defined as a JAXBElement.

SearchMetaData

There are two methods that return an object of this type. These are getSearchMetaData()
and getSearchMetaDataForProcess(). The power of these methods is to query the IBPM
runtime to determine which columns can be searched in a search call.

columns An array of SearchColumnMetaData.

process Process

SearchResults

The SearchResults data type is returned from a call to executeSearch. This data type
contains:

columns an array of SearchColumnMetaData

rows an array of SearchResultRow

totalRowCount An int value containing the number of rows returned.

SearchResultRow

The SearchResultRow data type represents a single row of returned Search results"

values An array of values associated with this row

Task

The Task data type contains:

actionPermissions

Page 776

activityName

assignedToRole

assignedToUser

attachedExternalActivity

attachedInfoPathForm

businessData

closedBy

closedDate

dueDate The date the task is due.

id The id of the task.

narrative

participant

participantDisplayName

priority The priority of the task.

priorityRanking

processInstance The details of the process that started this task.

readDate

receivedDate

sentDate

serverAddress

service

sharepointDiscussionUrl

status

subject

TaskStatus

The TaskStatus can be:

• "Actioned"

• "Alert"

• "Answered_Help_Request"

• "Closed"

• "Comment"

• "Deleted"

• "Forwarded"

• "Help_Request"

• "Ignored_Help_Request"

• "New"

Page 777

• "New_or_Received"

• "Received"

• "Replied"

• "Sent"

• "Special"

User

The User represents a user definition as known to IBPM. Functions that refer to users include:

• getAllUsers()

• getCurrentUser()

• getUserByName()

id long

name String

roleMemberships Array of Role

Variable

name String

value Object

The variable types map as follows:

XSD simple type WLE simple type

string String

normalizedString String

token String

language String

Name String

NMTOKEN String

NMTOKENS String

NCName String

ID String

IDREF String

ENTITY String

Page 778

IDREFS String

ENTITIES String

base64Binary String

hexBinary String

anyURI String

QName String

NOTATION String

gYearMonth String

gYear String

gMonthDay String

gDay String

gMonth String

decimal Decimal

double Decimal

float Decimal

int Integer

integer Integer

short Integer

long Integer

byte Integer

nonNegativeInteger Integer

nonPositiveInteger Integer

negativeInteger Integer

positiveInteger Integer

unsignedLong Integer

unsignedInt Integer

unsignedShort Integer

unsignedByte Integer

date Date

dateTime Date

time Time

Page 779

boolean Boolean

WLE simple variable type XSD simple type

String string

Integer int

Decimal double

Date dateTime

Time dateTime

Selection string

Boolean boolean

Variable

name String

value Object

Exposed item types

• Process

• Scoreboard

• Report

• Service

Testing Web API services with soapUI
Some of the Web API operations can be quite complex in nature. For example, a search request has
a lot of parameters and options. Before committing to coding a solution, it can be beneficial to
make the service calls directly in a test environment to validate that what you think will be returned
works and is as expected. Using soapUI to invoke Web API operations can be a good solution.

Create a new soapUI project and provide the URL for where the Web API WSDL can be obtained:

Page 780

You may be prompted for authentication to access the WSDL:

The project will be populate with all the operations discovered by retrieving the WSDL. We will
now demonstrate an example execution of an operation. Let us choose a simple one …
GetCurrentUser.

Open the Request for the GetCurrentUser operation. The ClientInfo header fields must be
populated. In addition, authentication information must be provided:

Page 781

Once executed, the response XML can be seen:

Page 782

See also:
• TechNote: How to use SOAPUI to test WebAPI operations in Teamworks and WebSphere Lombardi Edition

Building a Java Client
Once the WSDL has been retrieved, we can use the WID Web Service generate client to generate a
Java Client that can invoke the WSDL. Unfortunately, WID 7 seems to have a problem with the
WSDL format. The WSDL contains documentation tags of the format:

<a:since ...>

These cause the Java Client generation to fail. I used a grep tool to remove these lines with the
following command:

grep -v a:since originalWSDL.wsdl > newWSDL.wsdl

To test the Web Service interface from the JAX-WS generated code, the following is a suggested
sample:

WebAPIService webAPIService = new WebAPIService();
WebAPI webAPI = webAPIService.getWebAPISoap();

Page 783

http://www-01.ibm.com/support/docview.wss?uid=swg21444296

BindingProvider bp = (BindingProvider) webAPI;
bp.getRequestContext().put(BindingProvider.USERNAME_PROPERTY, "admin");
bp.getRequestContext().put(BindingProvider.PASSWORD_PROPERTY, "admin");

webAPI.testConnection();

System.out.println("Connection worked!");

When using JAX-WS, for testing, the SOAP request can be redirected through a TCP/IP Monitor
with the following:

BindingProvider bp = (BindingProvider) webAPI;
bp.getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
"http://win7-x64:9089/webapi/services/WebAPIService");

where the TCP/IP monitor is listening on port 9089 and redirecting to the target port.

A Web service request to IBPM requires some soap headers to be added, an example fragment of
code that achieves this is shown here:

Map <QName, List<String>> headersMap = new HashMap<QName, List<String>>();
QName myQName = new QName("http://webapi.lombardisoftware.com", "myHeader");
String mySoapHeader =

"<p:ClientInfo xmlns:p='http://webapi.lombardisoftware.com'>" +
"<p:TimeZone>CST</p:TimeZone>" +
"<p:Locale>EN</p:Locale>" +
"<p:AcceptsTimeZone>false</p:AcceptsTimeZone>" +
"</p:ClientInfo>";

List<String> mySOAPHeaders = new ArrayList<String>();
mySOAPHeaders.add(mySoapHeader);
headersMap.put(myQName, mySOAPHeaders);

BindingProvider bp = (BindingProvider) webAPI;
bp.getRequestContext().put("jaxws.binding.soap.headers.outbound", headersMap);

here is a complete sample illustrating a search:

WebAPIService webAPIService = new WebAPIService();
WebAPI webAPI = webAPIService.getWebAPISoap();

Map <QName, List<String>> headersMap = new HashMap<QName, List<String>>();
QName myQName = new QName("http://webapi.lombardisoftware.com", "myHeader");
String mySoapHeader =

"<p:ClientInfo xmlns:p='http://webapi.lombardisoftware.com'>" +
"<p:TimeZone>CST</p:TimeZone>" +
"<p:Locale>EN</p:Locale>" +
"<p:AcceptsTimeZone>false</p:AcceptsTimeZone>" +
"</p:ClientInfo>";

List<String> mySOAPHeaders = new ArrayList<String>();
mySOAPHeaders.add(mySoapHeader);
headersMap.put(myQName, mySOAPHeaders);

BindingProvider bp = (BindingProvider) webAPI;

Page 784

bp.getRequestContext().put(BindingProvider.USERNAME_PROPERTY, "kolban");
bp.getRequestContext().put(BindingProvider.PASSWORD_PROPERTY, "password");

bp.getRequestContext().put("jaxws.binding.soap.headers.outbound", headersMap);
ObjectFactory objectFactory = new ObjectFactory();

Search search = objectFactory.createSearch();
search.setOrganizedByType("Task");

SearchColumn searchColumn = objectFactory.createSearchColumn();
searchColumn.setType("Task");
searchColumn.setName("Subject");
ArrayOfSearchColumn arrayOfSearchColumn =
objectFactory.createArrayOfSearchColumn();
arrayOfSearchColumn.getSearchColumn().add(searchColumn);

searchColumn = objectFactory.createSearchColumn();
searchColumn.setType("Task");
searchColumn.setName("Id");
arrayOfSearchColumn.getSearchColumn().add(searchColumn);
search.setColumns(arrayOfSearchColumn);

SearchCondition searchCondition = new SearchCondition();
searchColumn = objectFactory.createSearchColumn();
searchColumn.setName("Status");
searchColumn.setType("Task");
searchCondition.setColumn(searchColumn);

searchCondition.setOperator("EQUALS");
searchCondition.setValue(objectFactory.createSearchConditionValue(TaskStatus.NEW
_OR_RECEIVED));
ArrayOfSearchCondition arrayOfSearchCondition =
objectFactory.createArrayOfSearchCondition();
arrayOfSearchCondition.getSearchCondition().add(searchCondition);

search.setConditions(objectFactory.createSearchConditions(arrayOfSearchCondition
));

SearchResults searchResults = webAPI.executeSearch(search, null, null);

Building a Flex Client
Adobe Flex provides the ability to invoke Web Services from within a Flash application. The
development environment for constructing Flex Applications is the Adobe Flash Builder (latest is
v4). This IDE includes wizards that will build Web Service client code that can easily be called.

First we assume you have created a Flex Project which needs Web Service API access to IBPM. In
the Data/Services tab click the Connect to Data/Service... link to start the wizard:

Page 785

Next select Web Service as the type of service to build:

Next enter the URL from which the WSDL for the IBPM Web Service can be obtained:

Page 786

Once completed, new artifacts will have been generated:

Page 787

The Web Service code generated does not know about the mandatory ClientInfo SOAP Header
required to successfully make Web Service calls to IBPM. The ClientInfo structure has to be
added manually. Fortunately, this is not a complex task.

Locate the generated source file called _SuperWebAPIService. This can be found in the
services.webapiservice folder.

Open this file in the Action Script editor. Find the constructor function also called
_Super_WebAPIService.

Page 788

Add the following code fragment before the end of the function:

var q1:QName = new QName("http://webapi.lombardisoftware.com", "ClientInfo");
var header1:SOAPHeader = new SOAPHeader(q1,

{"TimeZone": "CST",
"Locale": "EN",
"AcceptsTimeZone": false});

_serviceControl.addHeader(header1);

Here is an example:

Save the changes and you have completed the task. If you should ever have to regenerate the
generated code, you must repeat these steps but fortunately, that should not have to be performed
unless you are upgrading from one release of IBPM to another and need Web Service operations
found in the new release that weren't present in the older release.

We have now completed the preparation of the environment and can leverage the Web Service
calls. Here is an example of a button press callback that executes a search:

protected function button1_clickHandler(event:MouseEvent):void
{

var search:Search;
search = new Search();
search.OrganizedByType = "Task";
var searchColumn:SearchColumn;
var searchColumns:ArrayCollection = new ArrayCollection();
var searchCondition:SearchCondition = new SearchCondition();
var searchConditions:ArrayCollection = new ArrayCollection();

searchColumn = new SearchColumn();
searchColumn.Type = "Task";
searchColumn.Name = "Subject";
searchColumns.addItem(searchColumn);

searchColumn = new SearchColumn();
searchColumn.Type = "Task";
searchColumn.Name = "Id";
searchColumns.addItem(searchColumn);

search.Columns = searchColumns;
search.Conditions = searchConditions;

executeSearch(search, 1000, 0);
}

Page 789

Using a technique like this would allow us to build our own Flex based portal that could execute in
the context of a Flash Player running in a browser or in a stand alone application running in Adobe
AIR.

Page 790

System Data Toolkit
The System Data Toolkit is a toolkit supplied by default with an IBPM installation. The artifacts
contained within are assured to be present in all IBPM environments. This toolkit is automatically
associated with all Process Applications. Importantly, since these services are provided with the
product, they are fully supported by IBM.

IBM Supplied Business Process Definitions
Business Process Definitions are BPDs that are included in the System Data Toolkit.

Send SLA Violation Email

IBM Supplied General System Services
General System Services are services that are supplied with the System Data Toolkit. They can be
referenced anywhere that a General System Service is needed.

Default BPD Event

Default System Service

Extract XML Validation Results

IBM Supplied Historical Analysis Scenarios

IBM Supplied Human Services
Human Services are services that are supplied with the System Data Toolkit that can be used in
solutions anywhere a Human Service is needed.

Default Human Service

When an activity is added to a BPD, it is initially associated with a Human Service called Default
Human Service found in the System Data Toolkit. The details of this task look as follows:

When shown to the user, it looks like:

Page 791

The Coach shows some of the primary details of the Task/Activity that is currently running.

lsw Conditional Activity Selection Coach

The purpose of this Human Service is to present the end user with a tree structured interface that
describes which activities can be skipped and which must be executed. In IBPM, activities can be
flagged as conditional which means that they need not execute. This Human Service interrogates
the process definition and determines the list of activities which are flagged as conditional. For
each of these activities a check box marker is show beside the name of the activity. The user can
then select which activities to execute and which to skip.

For example, look at the following BPD:

Here we see three conditional activities. The first Activity in the BPD as a whole is an invocation
of the lsw Conditional Activity Selection Coach Human Service. The visual appearance of this will
look as follows:

Page 792

The Templates allow us to save selections of which activities are selected and which aren't so that
we can re-use those templates in the future.

Inputs

Name Data Type Suggested value

bpdGUID String tw.system.currentProcess.guid

conditionalActivities List of ConditionalActivity tw.system.currentProcess.conditionalActivities

selectedConditionalActivities List of String tw.system.currentProcessInstance.selectedConditionalA
ctivities

templateID String (default)

isReadOnly Boolean (default)

Outputs

Name Data Type Suggested value

selectedConditionalActivities List of String tw.system.currentProcessInstance.selectedConditionalA
ctivities

templateID String (None)

See also:
• Conditional Activities

Fire Default BPD Event

IBM Supplied Integration Services
Call SPA BAPI-RFC

Call WebService via SOAP

Email Get System Default Properties

Email Send Teamworks Email

Read E-mail via IMAP

Read E-mail via POP

Read from HTTP

Page 793

Read Text File

This service reads text from a named file. The parameters are:

Parameter Description

filePath The full path to the file who's contents are to be read and returnd.

fileContents The data returned from reading the file.

See also:
• Write Text File

Send E-mail via SMTP

This service is described in detail in this book at the following section: eMail.

SLA Send Alert Email

SQL*

This is a set of database interaction services which can be used to retrieve, insert, update or delete
data from a database. For usage, see Database Integration.

Transform XML Document using XSL Document

Transform XML Document using XSL File

Transform XML file using XSL file

Update ALL SLA Statuses

This service has no input or output parameters.

Update SLA Status

Validate XML File

Validate XML from URL

Validate XML String

Write Text File

This service writes data to a file on the local file system on which Process Server is running. The
file can either be overwritten or appended to. The parameters are:

Parameter Description

Page 794

filePath The full path to the text file that will be created or appended. Take care to use forward slashes on
windows.

fileContents The data that is to be written into the file.

appendToFile A value of true means that the file is appended. A value of false means that the file is created or
replaced.

success A boolean indicator saying whether the file IO succeeded or failed.

See also:
• Read Text File

IBM Supplied KPIs

IBM Supplied Layouts
Report Filter – Simple Number Replacement

Report Filter – Time Grouping Range

Report Filter – Hidden User Filter

IBM Supplied Participant Groups

IBM Supplied Server Files

Integration.jar

This is the implementation file for much of the toolkits functions written in Java.

IBM Supplied Tracking Groups

IBM Supplied Undercover Agents

IBM Supplied User Attribute Definitions
Alert on Assign and Run

Image

Locale

Primary Role

Task Email Address

Task Notification

IBM Supplied Variable Types

Page 795

Cookbook Scenarios
In this section of the book we will illustrate some cookbook scenarios. These are not meant to be
full applications but rather to illustrate how a technique or concept can be achieved.

Scenario - Asynchronously starting one process from another
In this scenario we wish to have one process asynchronously start another process. Consider a
process called "Process A". During its execution, we determine that we wish to start an instance of
"Process B" but have "Process A" continue in parallel.

We will use the concept of a UCA to achieve this.

Process B looks as follows:

The interesting part of the process is that it is started by a "Start Message Event" step. This means
that event has to arrive from an external source in order for the process to begin.

The configuration of this Step has as name a UCA which we called "My UCA".

Now let us look at the details of "Process A".

This contains an activity that is implemented as a General System Service.

The primary step in this service is an Invoke UCA step. This step names "My UCA" as the UCA
instance to be invoked.

Page 796

An alternative to this technique is to use the JavaScript API.

Scenario – Making a process extensible by others
A customer (lets call them XYZ Corp) of IBPM wanted to build business processes that they sell to
their own customers and they wanted to allow their customers to make minor customizations. They
faced two problems. The first was that they didn't want the end customers to break the integrity of
the business processes they were selling. The second problem was that the original processes were
to be updated over time with new revisions and they didn't want to "obliterate" the customizations
made by the end customers if the BPDs were replaced with new copies.

One way to achieve this task is to have the core processes make calls to nested BPDs. These nested
BPDs become "exit points" in the core process. If an end customer wants to customize the core
process, they would customize the sub-processes invoked by the core BPDs. If these sub-BPDs are
kept in a separate toolkit from the core Process Application then a replace of the Process
Application with a new version will result in the original Toolkits BPDs being called and that is
where the customizations would take place. This solves both problems. The core processes
become effectively read-only and the sub-processes called by the core become documented "exit
points" in the core process. If the core processes are changed and the calls to the exit points left as
they were then the sub processes will still be called at the correct times. When the new Process
Application version is installed, as long as the Toolkit containing the sub processes is not itself
replaced, the core process will continue to call the sub processes as they were before.

Scenario – Starting a process from an external browser
In previous releases of IBPM, there used to be a concept of favorites when it comes to starting
processes. A process could be defined as a favorite and then started from a favorite list in Process
Portal. This concept is now all but gone from the product but part of the technology still remains.

In Process Portal there is a list of processes that can be started. This list is the set of processes that
have had their "Expose to start" entry defined in the BPD editor in the Overview section:

Page 797

The access to this list of startable processes within the Process Portal is from the New button.
When one right click on an entry in this list, the URL link location (where the web link would take
you) is available to be copied:

See:

If the result of this link location is pasted into notepad, an entry similar to the following will be
found:

javascript:doFavorite(407);

Note the number if parenthesis. Let us call this the "favorite id".

If a web browser now visits:

http://server:port/teamworks/process.lsw?
zObject=Favorite&zActivity=Execute&zPost=1&zFavId=favoriteId

Where:

• server – hostname or IP address of the IBPM server

• port – Port number on which IBPM is listening

Page 798

• favoriteId – the numeric Favorite ID found by the recipe above

An instance of the process will be started and the first coach (if configured) will be displayed.

It is not known if this recipe is formally defined as part of the architecture of IBPM. No reference
to this technique has been found in the product manuals and may not be supported today or work in
the future.

Page 799

Additional Toolkits
The architecture of IBPM lends itself very well to the re-use of logic and code. Through the
concept of Toolkits, function can be added to a project very easily. As such, there are many
Toolkits out there that can be freely used. However, without documentation of what these toolkits
can do for you, they are useless. As the author works with IBPM, he finds commonly used
functions and has built his own set of toolkits. These are freely available with complete source code
where applicable.

Kolban JavaScript Toolkit
This is the repository of JavaScript functions the author finds useful.

function: kolban.date.add

We add a time delta onto an input TWDate and return a new TWDate. If the time delta is negative,
then we subtract time.

Examples:

// Subtract one day
var newDate = kolban.date.add(oldDate, -1, java.util.Calendar.DATE);

originalDate:TWDate An instance of TWDate that is the base date that will have time added to it

delta:Integer The amount of time to be added to the date. May be negative to subtract time

type:Integer The java.util.Calendar constant for the type of time to be added. This is likely to be one off:

• java.util.Calendar.YEAR

• java.util.Calendar.MONTH

• java.util.Calendar.DATE - Date of month

• java.util.Calendar.HOUR

• java.util.Calendar.MINUTE

• java.util.Calendar.SECOND

returns A new TWDate that represents the new time.

function: kolban.task.getTaskByActivity

Return the task as a TWTask object of the task associated with the named activity. If there is no
task associated with that activity, null is returned. If there are multiple tasks associated with the
activity, one is returned but which one is not defined.

Examples:

var myTask = kolban.task.getTaskByActivity("MyActivity");

activityName:String The name of a BPD activity for which the task is to be retrieved.

Returns the TWTask object associated with the activity. If no task is associated with the activity,
null is returned.

Page 800

function: kolban.debug.documentToString

Return a string representation of the passed in TWDocument

Examples:

var myString = kolban.debug.documentToString(myDocument);
log.info("Doc is: " + myString);

document:TWDocument The document to be returned as a string.

Returns a string representation of the TWDocument.

Page 801

Blueworks Live
Blueworks Live is a process discovery and modeling tool that lives on the web. It is a Software As
A Service (SaaS) package. This means that users don't install anything specific on their desktops,
instead they navigate through a Web Browser to the Blueworks Live web site and the functions run
inside the browser.

The home web page for Blueworks Live is:

https://www.blueworkslive.com/sLogin.html?redir=%2Fscr%2Fhome

You must have an account there in order to use it.

On a historical note, Blueworks Live used to be called Blueprint

The home page provides a login screen against which you login.

After logging in, you will be taken into the primary tool itself:

Page 802

https://www.blueworkslive.com/sLogin.html?redir=%2Fscr%2Fhome

The high level purpose of Blueworks Live is to allow staff members to capture their existing
processes and potential changes to those processes. Where IBPM is concerned with capturing
processes with the intent of final execution, Blueworks Live focuses on the discussion and
discovery aspects of process based solutions.

Creating a Space
Within Blueworks Live, a Space is a related set of artifacts associated with a particular process or
business goal. From the home page of your Blueworks Live account, you can create a new space:

Page 803

Creating a Process
A process can be created within a space.

In the dialog, select a name for the process to be created in the project and then select the space into
which the process will be added. An option allows us to create a new space if a suitable one does
not already exist:

Page 804

There is a proverb/saying that says "Unless you know where your destination is, you will never get
there". This is especially true when building BPM based solutions. Whether you are implementing
a Business Process for the first time or revising a currently existing process, you will want to be
able to capture and discuss all the steps in that process before committing to implementation.
Blueworks live, at its simplest level, provides a drawing canvas in which two different but related
styles of process diagram can be drawn. The first is called a "Discovery Map".

Discovery Map
A Discovery Map contains a set of "Milestones" that are reached during the execution of a process.
Capturing these milestones is the highest level in beginning to build out a process. There will
probably be (on average) six to ten milestones in the diagram. More than that probably means that
the process has been drilled down too low to start with.

The milestones are deliberately light in any kind of refinement. After capturing the top level
milestones, we can then look further to think about major activities that need to be accomplished to
achieve those goals. We can then add these activities beneath each milestone.

Page 805

There is no right or wrong answer for this. The Discovery Map is put together by conducting team
and individual interviews. At this stage, the map is still extremely high level but as we can see,
things are starting to take shape.

Each of the activities in the map can be supplied with additional attributes. How much or how little
time you spend on these attributes is up to you. Remember, this diagram is not prescriptive, it is a
powerful aid to help you discuss and capture the process.

Right clicking on an activity brings up its context menu. From here, we can select the Details
option.

The Details option brings up a dialog into which information (or details) about that activity step can
be entered.

Page 806

It contains five tabs called Details, Problems, Documentation, Attachments and Comments.

In the Details tab, we can enter various items about this step in the process. These include:

Participant This is one of the core attributes of a step. It defines the role of the person who is responsible
or eligible to perform this task. Later on we will see that the Participant value entered here
becomes translated to a Swim Lane in a BPMN diagram.

Business Owner(s) One or more entries that describe the Business Owner of this step. This could be a role or
department and should probably not be someone's name. Ask yourself the question "Who cares
about how well this step performs"?

Expert(s) One or more entries that name experts who know about this step. These may be folks who
perform this task today.

System(s) If this step interacts with any IT systems, this is where this interaction can be documented. One
ore more entries may be supplied.

Cycle Time This is an estimate of the duration this step will take.

Cost This is the cost of executing this step.

Supplier(s)

Inputs

Outputs

Customer(s)

Risk

Value Add

In the Problems Tab, we can view and enter the problems that are to be discussed and solved:

Page 807

In the documentation tab we can add documentation on this step or milestone.

In the Attachments tab we can view and add attachments associated with this step or milestone.

Page 808

The comments tab allows others to add comments to this step or milestone.

Within the Details pull-down, we can change the color coding of an activity. Changing the colors
of activities has no semantic effect but can be used to quickly visualize different types of activities.
For example, activities colored red could be expense generating while activities colored green could
be used to indicate revenue generating.

Page 809

We can flag activities as being followed which allows us to track changes to them in a special
fashion. Activities flagged as followed have a star added to their visualization.

The followed activities then show up in the Following category under the followed Activities tab:

Page 810

The Process Diagram
The Process Diagram is the partner to the Discovery Map. The Process Diagram shows a BPMN
style diagram of the operation of the process.

When a Process Diagram is created from a Discovery Map the milestones in the discovery map

Page 811

become the milestones in the process and the activities in the Discovery Map become the activities
in the Process Diagram. The swim lanes in the Process Diagram are taken from the Participants
associated with the activities. Moving an activity from one swim lane to another changes that
activities Participant attribute.

Clicking on the wire link between activities produces a pop-up menu from which additional
elements can be added:

Clicking on an activity produces a details menu from which attributes can be changed. Many of
these attributes are as previously described in the Discovery Map attributes.

One particularly interesting attribute is the Show in Map attribute. By default, this attribute has a
value of true meaning that the activity will also be seen in the Discovery Map. If changed to false,
the activity will not be shown in the Discovery Map. This is particularly useful if the activity
represents a technical aspect of the process as opposed to a business value step.

Working with Sub processes
Selecting an activity and clicking Convert to Sub-process allows us to define that an activity is
actually composed of a sequence of activities.

Page 812

The sub process can then be embellished with additional decisions and activities.

The [-] icon at the bottom of the diagram allows the sub process to be collapsed back to its original
container:

Notice that the container activity now has a [+] symbol indicating that it is a sub process that
contains additional steps.

This sub process is currently not reusable. It is a sequence of steps contained solely within the
containing process. A whole new process can be created from the sub process that can be reused in
other processes. This creates a linked process.

Editing mode vs Viewing mode
The Blueworks Live screen has two modes of view. Editing mode where the Discovery Map and
Process Diagram can be changed and viewing Mode where the Discovery Map and Process
Diagram are viewed with associated details.

Here is an image of a Discovery Map in viewing mode. Notice that there is an area on the right in
which the selected activity or milestone's details are displayed. The Edit button can be pressed to
place the tool into editing mode.

Page 813

Sharing the solution
Both Discovery Maps and Process Diagrams can be printed by pressing the Print Button.

A dialog appears allowing the page size to be selected. At the conclusion a Create PDF button can
be clicked which will render the image as a new PDF document.

A Microsoft Power Point presentation can also be generated by clicking the PowerPoint button.

A dialog appears asking where the Power Point should be saved.

Creating a Process from a Template Library

Page 814

Blueprint provides a set of process templates that can be used as starting points for your own
processes. Selecting the Template Library link shows us a list of categorized process templates that
can be selected.

When a process template has been found which looks like a suitable candidate for forming the basis
of your own process, a copy of the process can be imported into your own project.

Hovering the mouse over a process brings up a caption area in which a summary of the process can
be found.

Clicking on the process picture brings up its preview/details. Both the Discovery Map and the
Process Diagram can be viewed before importing.

Page 815

When changes are made to a process or project, these changes are recorded in the News Feed.
Think of this as a list of all changes that can be scanned like the headlines of a newspaper.

Clicking on the News Feed link shows a summary of the changes made over the last period of time.
These changes can be filtered by date, user who made the change, process in which the change was

Page 816

made or project.

Automating a Process
From within the space where you want to created your automated process, click on the Automate a
Process button:

TBD Describe the different templates

Page 817

Accessing processes from Blueworks in Process Designer
Processes captured and modeled in Blueworks can be directly imported into Process Designer. On
the main Library area, there is an entry called BLUEWORKS LIVE PROCESSES. Clicking the
plus button allows us to subscribe to a Blueworks process.

Page 818

The first time this is navigated, you must enter account information to allow you access to the
Blueworks server.

Once connection with Blueworks has been established, the account for the userid is allowed to be
selected. It is possible a single userid may have multiple accounts:

Page 819

a list of the projects and processes associated with the account are displayed. From this list, one or
more projects can be selected for subscription.

A confirmation summary window is shown in which you can review the projects that are about to
be subscribed to.

Page 820

After a subscription has been made, you will now find a new set of artifacts in your Process
Application that have come from the Blueworks maintained process.

Page 821

IBM Business Process Manager – Advanced
The edition of IBM Business Process Manager (IBPM) known as IBM Business Process Manager
Advanced could trivially be the subject its own book (and more likely many of them). Here we will
cover the core concepts and patterns of this edition of the product. First, we will discuss the
heritage of this area which will give us a good understanding of why things are the way they are.

In 2005, IBM released a powerful product to their customers called WebSphere Process Server
(WPS). WPS was a BPM runtime based on the industry standard language called BPEL. Beyond
simply choreographing work flows, WPS provided a first class environment for achieving
integration with external systems. IBM saw the coming together of technology that could be called
"Enterprise Application Integration" with business process management. Without the ability to
integrate a consumer's existing IT solutions, it was arguable that BPM would not succeed. To
achieve this goal, the WPS environment provided an integration framework that was called Service
Component Architecture (SCA) that provided a solid grounding for building Service Oriented
Architecture (SOA) solutions. All of this will be covered in much more detail later.

After the procurement of the company and products called Lombardi, IBM effectively had two
BPM solutions available. These were WebSphere Lombardi Edition and WebSphere Process
Server. With the latest release of IBPM, these two, distinct entities have been carefully integrated
together to provide the best of all possible worlds. The joining of WLE and WPS provides a super-
set of capabilities of both historic products in one run-time environment. Building a solution that
involves capabilities of what was once WPS and what was once WLE now becomes a very
achievable proposition.

However … there is a catch.

IBM has chosen not to distribute both the heritage WLE and WPS functions with the standard
IBPM edition. Instead, for customers that need just WLE functions, the product is sold as IBM
Business Process Manager Standard Edition. For customers that can utilize both WLE and WPS
functions, there is a second version of the product which is called IBM Business Process Manager
Advanced Edition. In this section of the book, I will assume that you now understand that there are
two marketed versions of IBM BPM … standard and advanced and that when I say IBPM from here
onwards, I am referring to the edition called IBM Business Process Manager Advanced.

The following diagram illustrates the high level schematic of what is contained in each edition.

Page 822

The breadth of additional functions available in the IBPM Advanced edition is huge. There are
capabilities found in there to solve every conceivable integration and SOA issue. However, with
richness comes a degree of complexity. Fortunately, the amount of knowledge needed to build a
solution using these functions is easily manageable as long as one realizes that every solution
doesn't need to use every capability. By way of an analogy, here is a picture of my TV remote
control.

99.9% of the time, I use it to switch on and off the TV, turn up/down the volume and change the
channel. In principle, this means that I need only three buttons yet when I look at the device, there
are buttons everywhere. Some have labels, some have colors, some have multiple functions.
Fortunately, I don't need to learn all the buttons just to watch TV. Once I know what I want to
achieve I can then find the appropriate button because I trust that it is there somewhere. The same
is true for IBM BPM Advanced. I believe it is important to learn what functions are present, when
and where they should be used. The mechanical acts of pressing the correct buttons when needed
will simply come by referring to manuals and other documentation.

Information Sources
Right up front it is important to realize that the functions that make IBPM Advanced different from
IBPM Standard are primarily what used to be known as WebSphere Process Server (WPS). Since
this product has been around for nearly seven years, there is already a wealth of available literature.
However, when you read it, you will find that it refers to WPS by name and not IBPM. It is
expected new materials will refer to the function by the new name but until then, the existing
materials are very much applicable. As such, perform the mental transformation yourself and
realize that when you read WPS you should think IBPM Advanced and when you read WebSphere
Integration Developer (WID) you should translate that to Integration Designer (ID).

Redbooks
Redbooks are IBM free books. These are commonly written by IBMers (and occasionally
customers) and provide real-world and hands-on guidance to products. There are many existing
redbooks that are applicable to our story and what follows is a useful list of the more pertinent ones:

• REDP-4730-00 - WebSphere Process Server Staff Resolution Using Virtual Groups – 2011-02-23

Page 823

http://www.redbooks.ibm.com/abstracts/redp4730.html?Open

• REDP-4724-00 - WebSphere Process Server Versioning: From Design to Production – 2011-01-21

• SG24-7885-00 - Deploying WebSphere Business Process Management V7 in Secured Production Environments – 2010-11-24

• SG24-7876-00 - Version-to-Version Migration to IBM WebSphere Dynamic Process Edition V7 – 2010-07-16

• SG24-7854-00 - WebSphere Business Process Management V7 Production Topologies – 2010-05-11

• REDP-4664-00 - WebSphere Business Process Management and WebSphere Enterprise Service Bus V7 Performance Tuning – 2010-04-30

• REDP-4433-02 - IBM Business Process Management Reviewer's Guide – 2010-04-16

• REDP-4543-00 - BPM Solution Implementation Guide – 2009-10-30

• REDP-4551-00 - WebSphere Business Process Management 6.2.0 Performance Tuning – 2009-07-15

• SG24-7733-00 - z/OS: WebSphere Business Process Management V6.2 Production Topologies – 2009-10-15

• SG24-7732-00 - WebSphere Business Process Management V6.2 Production Topologies – 2009-06-25

• REDP-4495-00 - Business Process Management Enabled by SOA – 2009-03-26

• REDP-4391-00 - An End-to-End SOA Integration Scenario using IBM WebSphere Process Server on z/OS – 2009-03-05

• REDP-4466-00 - IBM WebSphere Process Server Best Practices in Error Prevention Strategies and Solution Recovery – 2008-12-29

• REDP-4432-00 - Configuring IBM WebSphere Process Server V6.1 with an Oracle Database – 2008-07-17

• SG24-7643-00 - Getting Started with IBM WebSphere Process Server and IBM WebSphere Enterprise Service Bus Part 3: Run time – 2008-
07-17

• SG24-7642-00 - Getting Started with IBM WebSphere Process Server and IBM WebSphere Enterprise Service Bus Part 2: Scenario – 2008-07-
11

• SG24-7608-00 - Getting Started with IBM WebSphere Process Server and IBM WebSphere Enterprise Service Bus Part 1: Development –
2008-06-30

• SG24-7477-00 - Human-Centric Business Process Management with WebSphere Process Server V6 – 2007-10-15

• REDP-4196-00 - z/OS Technical Overview: WebSphere Process Server and WebSphere Enterprise Service Bus – 2006-11-19

• REDP-4041-00 - Technical Overview of WebSphere Process Server and WebSphere Integration Developer - 2005-12-06

DeveloperWorks
WebSphere Process Server articles … search query.

• Best practices and tuning for large objects in WebSphere Enterprise Service Bus - 2011-10-03

• Aggregation design patterns and performance considerations in WebSphere Enterprise Service Bus V7.5 - 2011-11-16

• Configuring WS-Security for JAX-WS web services in WebSphere Process Server V7 - 2011-09-14

• Tracing, logging, and error handling in mediation modules using IBM Integration Designer, WebSphere ESB, WebSphere Process Server, and
Business Process Manager Advanced Edition, Part 2 - 2011-08-24

• Troubleshooting WebSphere Process Server projects, Part 1: Integrating LDAP systems for authentication and authorization - 2011-07-20

• Developing a custom tree iWidget for WebSphere Business Space that retrieves data from a REST service using Apache Wink - 2011-07-13

• Just-In-Time Throttler and Dispatcher for WebSphere ESB - 2011-06-15

• Performance tuning the WebSphere JDBC Adapter inbound service - 2011-06-08

• Installing and clustering WebSphere Process Server V7 in non-GUI mode, Part 2: Using the command line to create a cluster - 2011-06-08

• The Enterprise Service Bus, re-examined - 2011-06-01

• Dynamically retrieve and map human task information with WebSphere BPM V6.2 - 2011-06-01

• Decoupling business process and business data in WebSphere Process Server: A new twist to the MVC pattern - 2011-06-01

• Processing an array using an XML map in WebSphere Integration Developer V7 - 2011-05-25

• The Enterprise Service Bus, re-examined – 2011-05-18

• Operating a WebSphere Process Server environment, Part 4: Archiving considerations for WebSphere Process Server - 2011-05-11

• Monitoring your business applications, Part 1: Products offering first-class integration with WebSphere Business Monitor – 2011-05-04

Page 824

http://www.ibm.com/developerworks/websphere/library/techarticles/1105_alcorn/1105_alcorn.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1105_weiser/1105_weiser.html
http://www.ibm.com/developerworks/websphere/techjournal/1105_flurry/1105_flurry.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1105_gooderham/1105_gooderham.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1106_jenny/1106_jenny.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1106_gu/1106_gu.html
http://www.ibm.com/developerworks/websphere/techjournal/1105_flurry/1105_flurry.html
http://www.ibm.com/developerworks/websphere/tutorials/1106_madassery/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1106_lu/1106_lu.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1106_marie/1106_marie.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1106_marie/1106_marie.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1107_yadavalli/1107_yadavalli.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1107_volz/1107_volz.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1108_toth/1108_toth.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1108_toth/1108_toth.html
http://www.ibm.com/developerworks/websphere/tutorials/1109_nasser/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1111_norris/1111_norris.html
http://www.ibm.com/developerworks/webservices/library/ws-largemessaging/
http://www.ibm.com/developerworks/views/websphere/libraryview.jsp?sort_by=Date&show_abstract=true&show_all=false&search_flag=&product_by=P:WebSphere+Process+Server&topic_by=All+Topics&type_by=Articles,Tutorials&search_by=&Submit.x=46&Submit.y=12
http://www.redbooks.ibm.com/abstracts/redp4041.html?Open
http://www.redbooks.ibm.com/abstracts/redp4196.html?Open
http://www.redbooks.ibm.com/abstracts/sg247477.html?Open
http://www.redbooks.ibm.com/abstracts/sg247608.html?Open
http://www.redbooks.ibm.com/abstracts/sg247642.html?Open
http://www.redbooks.ibm.com/abstracts/sg247643.html?Open
http://www.redbooks.ibm.com/abstracts/redp4432.html?Open
http://www.redbooks.ibm.com/abstracts/redp4466.html?Open
http://www.redbooks.ibm.com/abstracts/redp4391.html?Open
http://www.redbooks.ibm.com/abstracts/redp4495.html?Open
http://www.redbooks.ibm.com/abstracts/sg247732.html?Open
http://www.redbooks.ibm.com/abstracts/sg247733.html?Open
http://www.redbooks.ibm.com/abstracts/redp4551.html?Open
http://www.redbooks.ibm.com/abstracts/redp4543.html?Open
http://www.redbooks.ibm.com/abstracts/redp4433.html?Open
http://www.redbooks.ibm.com/abstracts/redp4664.html?Open
http://www.redbooks.ibm.com/abstracts/sg247854.html?Open
http://www.redbooks.ibm.com/abstracts/sg247876.html?Open
http://www.redbooks.ibm.com/abstracts/sg247885.html?Open
http://www.redbooks.ibm.com/abstracts/redp4724.html?Open

• Data4BPM, Part 2: BPEL4Data: Binding WS-BPEL to Business Entity Definition Language (BEDL) - 2011-04-28

• Setting up a global transaction in an SCA mediation module using WebSphere Adapters – 2011-04-18

• Using WS-I compliant referenced attachments in WebSphere ESB - 2011-05-18

• Message binding enhancements in WebSphere Process Server V7.0, Part 1: Developing integration components that interact with WebSphere
MQ and other messaging providers – 2011-04-13

• Installing and clustering WebSphere Process Server V7.0 in non-GUI mode, Part 1: Silent installation and setup – 2011-04-06

• Enabling web services security between modules in WebSphere Process Server V7.0 - 2011-03-16

• Managing failed flows using the Failed Event Manager API in WebSphere Process Server – 2011-03-02

• Migrating from WebSphere Process Server V6.0.2 to V7 – 2011-02-16

• Invoking cross-cell EJBs using WebSphere Integration Developer V7 or WebSphere Enterprise Service Bus V7 – 2011-02-16

• Using COBOL copybooks in WebSphere Integration Developer V7 – 2011-02-09

• BPM Voices: Standards and why they matter for BPM – 2011-01-19

• Business process management adoption scenarios – 2011-01-19

• Recommendations for iterative development in WebSphere Business Modeler – 2011-01-19

• Configuring WS-Security for JAX-RPC web services in WebSphere Process Server V7 – 2011-01-12

• Importing WS-BPEL 2.0 process definitions – 2011-01-05

• Comment lines: WebSphere Process Server and WebSphere Lombardi Edition provide different, flexible BPM options – 2010-12-15

• Using the Java Persistence API 2.0 services with WebSphere Process Server V7, Part 1: Generating the data model – 2010-12-08

• Using the Java Persistence API 2.0 services with WebSphere Process Server V7, Part 2: Generating the JPA entities – 2010-12-08

• Using the Java Persistence API 2.0 services with WebSphere Process Server V7, Part 3: Creating a stateless session EJB - 2010-12-08

• Using the Java Persistence API 2.0 services with WebSphere Process Server V7, Part 4: Creating an SCA client – 2010-12-08

• Using the Java Persistence API 2.0 services with WebSphere Process Server V7, Part 5: Creating a BPEL process – 2010-12-08

• Using the Java Persistence API 2.0 services with WebSphere Process Server V7, Part 6: Generating the user interface – 2010-12-08

• Ensuring transactional integrity using Web Services Atomic Transaction support in WebSphere ESB and WebSphere Application Server –
2010-12-08

• Implementing web services transactions in WebSphere Process Server V7 – 2010-11-24

• Implementing tracing, logging, and error handling in mediation modules using WebSphere Integration Developer and WebSphere ESB V7,
Part 1 – 2010-11-24

• Multi-module monitoring with the V7 WebSphere BPM suite, Part 2: Use new plug-ins for WebSphere Integration Developer V7 to achieve
end-to-end business process monitoring – 2010-11-03

• Building human tasks with the Virtual Member Manager and LDAP – 2010-11-03

• WebSphere Process Server database configuration made easy – 2010-10-27

• WebSphere Process Server relationship service: Efficiently manage static relationship instance data – 2010-10-20

• Multi-module monitoring with the V6.2 WebSphere BPM suite – 2010-10-06

• Multi-module monitoring with the V7 WebSphere BPM suite, Part 1: Use two new plug-ins for WebSphere Business Modeler V7 to achieve
end-to-end business process monitoring – 2010-10-06

• Integrating WebSphere Process Server and SCA Feature Pack, Part 3: Interoperability across SCA web services bindings – 2010-09-29

• Implementing the cancellation function in WebSphere Process Server, Part 1: Adding the correlation set and event handler - 2010-09-22

• Implementing the cancellation function in WebSphere Process Server, Part 2: Adding the compensation and invoking the cancellation with the
Business Process Choreographer EJB API – 2010-09-22

• Static and dynamic relationships in WebSphere Process Server and WebSphere ESB V7 – 2010-09-15

• Performance tuning of throughput-based SOA solutions for WebSphere Process Server – 2010-09-15

• Using the Java Persistence API to initialize HTML-Dojo forms for WebSphere Business Space – 2010-09-08

• Implementing pagination query of business requests with custom properties in WebSphere Process Server – 2010-08-25

• Migrating process instances in WebSphere Process Server V7 – 2010-08-11

• Best practices for BPM and SOA performance – 2010-08-04

Page 825

http://www.ibm.com/developerworks/websphere/library/techarticles/1008_metzger/1008_metzger.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1008_xie/1008_xie.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1008_cheng/1008_cheng.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1009_griffith/1009_griffith.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1009_faulhaber/1009_faulhaber.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1009_venn/1009_venn.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1009_cheng2/1009_cheng2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1009_cheng2/1009_cheng2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1009_cheng1/1009_cheng1.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1009_fong/1009_fong.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1010_lakshmanan/1010_lakshmanan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1010_lakshmanan/1010_lakshmanan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1003_lakshmanan/1003_lakshmanan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1010_nan/1010_nan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1010_madgula/1010_madgula.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1011_ahuja/1011_ahuja.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1011_lakshmanan/1011_lakshmanan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1011_lakshmanan/1011_lakshmanan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1011_toth/1011_toth.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1011_toth/1011_toth.html
http://www.ibm.com/developerworks/websphere/tutorials/1011_madassery/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1012_screen/1012_screen.html
http://www.ibm.com/developerworks/websphere/tutorials/1012_malcolm6/index.html
http://www.ibm.com/developerworks/websphere/tutorials/1012_malcolm5/index.html
http://www.ibm.com/developerworks/websphere/tutorials/1012_malcolm4/index.html
http://www.ibm.com/developerworks/websphere/tutorials/1012_malcolm3/index.html
http://www.ibm.com/developerworks/websphere/tutorials/1012_malcolm2/index.html
http://www.ibm.com/developerworks/websphere/tutorials/1012_malcolm1/index.html
http://www.ibm.com/developerworks/websphere/techjournal/1012_col_fasbinder/1012_col_fasbinder.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1101_koenig/1101_koenig.html
http://www.ibm.com/developerworks/websphere/tutorials/1101_nasser/index.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1101_lau/1101_lau.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1101_portier/1101_portier.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1101_col_jensen/1101_jensen.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1102_fasbinder/1102_fasbinder.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1102_krier/1102_krier.html
http://www.ibm.com/developerworks/websphere/tutorials/1102_madgula/index.html
http://www.ibm.com/developerworks/websphere/tutorials/1103_madgula/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1103_balakrishnan/1103_balakrishnan.html
http://www.ibm.com/developerworks/websphere/tutorials/1104_madassery/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1104_madgula/1104_madgula.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1104_madgula/1104_madgula.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1105_howes/1105_howes.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1105_li/1105_li.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1105_nandi/1105_nandi.html

• Using advanced human task patterns in WebSphere Process Server V7 – 2010-08-04

• Using pureXML in SCA component development with WebSphere Integration Developer V7 – 2010-07-28

• Migrating a business solution from WebSphere Business Integration Adapters to WebSphere Adapters V6.2 – 2010-07-28

• Creating a custom Business Process Choreographer Explorer view of WebSphere Process Server – 2010-07-21

• Developing JAX-WS web service integration solutions using WebSphere Integration Developer V7 – 2010-07-21

• Integrating WebSphere Process Server and SCA Feature Pack, Part 2: Interoperability across SCA JMS bindings – 2010-07-21

• Integrating WebSphere Process Server and SCA Feature Pack, Part 1: Interoperability across SCA bindings – 2010-07-01

• Concurrent human task assignment in WebSphere Process Server V7 – 2010-06-30

• Using the store-and-forward feature in WebSphere Process Server V7.0 – 2010-06-16

• Automatic synchronization of EIS data using the WebSphere Process Server relationship service – 2010-06-09

• Setting custom properties for new query requirements in WebSphere Process Server – 2010-06-02

• What's new in WebSphere Business Modeler and WebSphere Business Compass V7 – 2010-05-26

• Using binary Jar files with WebSphere Integration Developer and WebSphere Process Server – 2010-05-12

• Dynamically select adapters based on context using WebSphere Business Services Fabric – 2010-05-05

• Troubleshooting WebSphere Process Server deadlocks and timeouts – 2010-05-05

• Interacting with WebSphere Process Server via the Web service API and JAXB marshalling – 2010-04-28

• Measuring performance of WebSphere Process Server applications using the Request Metrics tool - 2010-04-21

• Solution design in WebSphere Process Server and WebSphere ESB, Part 3: Process implementation types: Patterns based design for process-
based solutions – 2010-04-14

• Building a RESTful integration for SAP using WebSphere Adapter and WebSphere Process Server, Part 1: Outbound – 2010-04-07

• Operating a WebSphere Process Server environment, Part 3: Setup, configuration, and maintenance of the WebSphere Process Server Business
Process Choreographer database - 2010-04-01

• Develop a rich Web client for a business process application with WebSphere Integration Developer, WebSphere Process Server, and Adobe
Flex – 2010-03-24

• Using Business Space to manage business process applications – 2010-03-24

• Migrating WebSphere InterChange Server artifacts to WebSphere Process Server V7.0, Part 1: Migrated BPEL improvements – 2010-03-17

• Monitoring business database changes with a WebSphere Adapter – 2010-03-10

• Migrating to WebSphere Process Server Version 7 - 2010-03-03

• Using WebSphere MQ bindings in WebSphere ESB, Part 1: Manipulating MQ headers in WebSphere ESB using the XSL transformation
primitive and WebSphere Integration Developer – 2010-03-03

• Customizing WebSphere Business Space V6.2 Human Management widgets - 2010-02-24

• Overview of ILOG JRules and WebSphere Process Server integration – 2010-02-10

• Feeding iPhone applications with WebSphere Process Server V6.2 services - 2010-01-27

• Mediation policy for target services: Constructing a dynamic mediation for WebSphere ESB V7 based on which target service has been
selected – 2010-01-27

• Integrating Oracle E-Business Suite through the Oracle Open Interface and Concurrent Program using WebSphere Adapters - 2010-01-27

• Managing WebSphere Adapters more effectively through wsadmin in WebSphere Process Server - 2010-01-20

• Installing and configuring the 6.1.2 business process management stack on z/OS – 2010-01-18

• Develop custom widgets for Business Space with Rational Application Developer or WebSphere Integration Developer – 2009-12-20

• Business process monitoring in WebSphere Process Server V6.2 using WebSphere Business Monitor V6.2, Part 1: Configuring the integration
– 2009-12-16

• Operating a WebSphere Process Server environment, Part 1: Overview – 2009-12-16

• Operating a WebSphere Process Server environment, Part 2: Options for maintaining an optimal Business Process Choreographer database size
- 2009-12-16

• Developing custom widgets for Business Space using Dojo, Part 1: Generating Dojo markup using a generic markup handler – 2009-12-09

• Ensuring high availability and performance of events delivery with WebSphere Process Server and WebSphere JDBC Adapter - 2009-12-02

• Using DynaCache to improve the performance of your WebSphere Process Server or WebSphere ESB solution – 2009-12-02

Page 826

http://www.ibm.com/developerworks/websphere/tutorials/0912_telerman/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0912_yuan/0912_yuan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0912_khanna/0912_khanna.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0912_herrmann2/0912_herrmann2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0912_herrmann1/0912_herrmann1.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0912_cui/0912_cui.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1004_wayne/1004_wayne.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1001_fanelli/1001_fanelli.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1001_yu/1001_yu.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1001_chang/1001_chang.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1001_hulse/1001_hulse.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1001_hulse/1001_hulse.html
http://www.ibm.com/developerworks/websphere/tutorials/1001_felix/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1002_duan/1002_duan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1002_rodriguez/1002_rodriguez.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0901_norton1/0901_norton1.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0901_norton1/0901_norton1.html
http://www.ibm.com/developerworks/websphere/tutorials/1003_madgula/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1003_xing/1003_xing.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1003_zhang/1003_zhang.html
http://www.ibm.com/developerworks/websphere/tutorials/1003_madassery/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1003_xue/1003_xue.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1003_xue/1003_xue.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0912_grundler/0912_grundler.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0912_grundler/0912_grundler.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1004_yu/1004_yu.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1004_clark/1004_clark.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1004_clark/1004_clark.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1004_pawlikowski/1004_pawlikowski.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1004_jenny/1004_jenny.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1005_fastovets/1005_fastovets.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1005_jain/1005_jain.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1005_taylor/1005_taylor.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1005_fasbinder/1005_fasbinder.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1006_cheng/1006_cheng.html
http://www.ibm.com/developerworks/websphere/tutorials/1006_jain/index.html
http://www.ibm.com/developerworks/websphere/tutorials/1006_madgula/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1006_vanzyl/1006_vanzyl.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1005_fong/1005_fong.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1007_fong/1007_fong.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1007_perepa/1007_perepa.html
http://www.ibm.com/developerworks/websphere/tutorials/1007_nasser/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1007_parate/1007_parate.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1007_xue/1007_xue.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1008_kaeckenmeister/1008_kaeckenmeister.html

• Integrating a Dojo client with an SCA application via SCA HTTP binding – 2009-11-25

• Migrating to WebSphere Process Server V6.2 - 2009-11-11

• Event sequencing using WebSphere Process Server - 2009-10-28

• Managing WebSphere Adapters more effectively through wsadmin in WebSphere Process Server – 2009-10-14

• Build and deploy a business process model using WebSphere Business Process Modeler Advanced and Lotus Forms, Part 3: Implement a
mediation flow – 2009-10-14

• Using the MQ binding plug-in for WebSphere Integration Developer 6.0.2 - 2009-10-07

• WebSphere Process Server throughput management, Part 2 – 2009-11-30

• Using the Query Table Builder in WebSphere Process Server V6.2 - 2009-11-23

• Integrating WebSphere Business Events V6.2 with WebSphere ESB and WebSphere Process Server – 2009-11-16

• Improve performance and usability by implementing TopCount functionality for WebSphere Business Monitor dimensions with DB2
Alphablox – 2009-11-02

• Building mediation flows in WebSphere Integration Developer for deployment on WebSphere ESB or WebSphere Process Server – 2009-08-
19

• Building mediation flows in WebSphere Integration Developer for deployment on WebSphere ESB or WebSphere Process Server – 2009-08-
19

• Solution design in WebSphere Process Server and WebSphere ESB: Part 2 – 2009-08-12

• Validating business objects in Websphere Process Server – 2009-07-29

• Implementing your WebSphere Process Server 6.1 business module the RESTful way – 2009-07-15

• Restoring the WebSphere Process Server deployment manager – 2009-07-01

• WebSphere Process Server throughput management, Part 1 – 2009-07-01

• Exploring WebSphere Process Server transactionality - 2009-06-17

• Getting more out of the WebSphere SAP Adapter – 2009-06-03

• Configuring WebSphere Business Integration Adapters for TCP/IP V1.0.4 on WebSphere Process Server V6.2 – 2009-05-20

• Solution design in WebSphere Process Server: Part 1 – 2009-05-13

• Extending the power of the WebSphere Process Server business rules component – 2009-05-06

• Asynchronous processing in WebSphere Process Server – 2009-04-29

• Business integration using WebSphere Partner Gateway, Websphere Process Server, and Web services – 2009-04-22

• Build and deploy a business process model using WebSphere Business Process Modeler Advanced and Lotus Forms, Part 2: Implement and
test the BPEL process using WebSphere Integration Developer – 2009-04-15

• Customizing HTML-Dojo forms for Business Space powered by WebSphere - 2009-04-09

• Building a process task portlet application using the Portlet Generator in WebSphere Integration Developer 6.2 – 2009-04-08

• Developing a PHP client using the REST API in WebSphere Process Server 6.2 – 2009-04-01

• Using SCA HTTP binding in typical real-life scenarios with WebSphere Integration Developer - 2009-04-01

• Using WebSphere Process Server business calendars in business processes – 2009-03-25

• Working with WebSphere Process Server Relationship Service APIs: Part 1: Pre-populating relationship instance tables – 2009-03-05

• Securing JMS connections to WebSphere Enterprise Service Bus V6.1 or V6.2 – 2009-02-18

• Using WebSphere Process Server operational architecture to design your applications: Part 2: Implementation: SCA runtime, Business Process
Choreographer, and supporting services – 2009-02-11

• What's new in WebSphere Business Monitor V6.2 – 2009-01-28

• Comment lines: Bhargav Perepa: Business calendars and timetables can be fun – 2009-01-28

• Using WebSphere MQ bindings in WebSphere ESB, Part 3: Using custom WebSphere MQ headers with WebSphere ESB – 2009-01-28

• Expanding clustered topologies for WebSphere Process Server and WebSphere Enterprise Service Bus – 2009-01-07

• Repairing processes with WebSphere Process Server – 2008-12-17

• Build and deploy a business process model using WebSphere Business Process Modeler Advanced and Lotus Forms, Part 1: Create and export
the model – 2008-12-10

• Test-driven development in an SOA environment: Part 2: Continuous integration with WebSphere Process Server – 2008-12-10

Page 827

http://www.ibm.com/developerworks/websphere/techjournal/0812_vines/0812_vines.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0812_kiss/index.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0812_kiss/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0812_robeller/0812_robeller.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0901_herness/0901_herness.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0901_norton3/0901_norton3.html
http://www.ibm.com/developerworks/websphere/techjournal/0901_col_perepa/0901_col_perepa.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0901_wayne/0901_wayne.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0901_faulhaber/0901_faulhaber.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0901_faulhaber/0901_faulhaber.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0902_screen/0902_screen.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0902_sun/0902_sun.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0903_khangaonkar/0903_khangaonkar.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0904_kharlamov/0904_kharlamov.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0904_vanzyl/0904_vanzyl.html
http://www.ibm.com/developerworks/websphere/tutorials/0904_gu/index.html
http://www.ibm.com/developerworks/websphere/techjournal/0810_kreis/0810_kreis.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0904_kiss/index.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0904_kiss/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0904_madassery/0904_madassery.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0904_fong/0904_fong.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0905_dinardo/0905_dinardo.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0904_clark/0904_clark.html
http://www.ibm.com/developerworks/websphere/tutorials/0905_parate/index.html
http://www.ibm.com/developerworks/websphere/tutorials/0906_kumar/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0906_fasbinder/0906_fasbinder.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0907_hopkins/0907_hopkins.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0905_sripathi/0905_sripathi.html
http://www.ibm.com/developerworks/websphere/tutorials/0907_voet/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0907_xie/0907_xie.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0908_clark/0908_clark.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0908_ferrier/0908_ferrier.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0908_ferrier/0908_ferrier.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0909_angani/0909_angani.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0909_angani/0909_angani.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0909_klinger/0909_klinger.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0909_grundler/0909_grundler.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0909_hopkins/0909_hopkins.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0910_bhowmik/0910_bhowmik.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0910_kiss/index.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0910_kiss/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0910_xing/0910_xing.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0910_wadley/0910_wadley.html
http://www.ibm.com/developerworks/websphere/tutorials/0911_madgula/index.html
http://www.ibm.com/developerworks/websphere/tutorials/0911_kharlamov/index.html

• Customize your BPM user interfaces with business spaces – 2008-12-04

• What's new in WebSphere Process Server V6.2 – 2008-12-04

• What's new in WebSphere Integration Developer V6.2 – 2008-12-04

• Managing WebSphere Process Server Relationship Service database objects – 2008-11-12

• Analyzing Java virtual machine performance in WebSphere Process Server – 2008-11-05

• Endurance testing with WebSphere Process Server V6.1 – 2008-11-05

• WebSphere Process Server invocation styles – 2008-10-29

• Error handling in WebSphere Process Server, Part 1: Developing an error handling strategy – 2008-10-29

• WebSphere Process Server business rules lifecycle – 2008-10-22

• Asynchronous replication of WebSphere Process Server and WebSphere Enterprise Service Bus for disaster recovery environments – 2008-11-
24

• WebSphere Process Server operational architecture: Part 1: Base architecture and infrastructure components – 2008-11-17

• Use mediation flows to integrate WebSphere Service Registry and Repository with WebSphere Process Server – 2008-09-10

• Versioning business processes and human tasks in WebSphere Process Server – 2008-08-13

• Advanced techniques and patterns for business process client development – 2008-08-06

• IBM SOA Foundation product integration: Leveraging Information as a Service in your WebSphere-based SOA solution – 2008-07-30

• What’s new in WebSphere Integration Developer V6.1.2 – 2008-07-23

• What’s new in WebSphere Process Server V6.1.2 – 2008-07-23

• Web services with SOAP over JMS in IBM WebSphere Process Server or IBM WebSphere Enterprise Service Bus, Part 2: Using the IBM
WebSphere MQ JMS provider – 2008-07-17

• Using WebSphere Transformation Extender V8.2 with WebSphere Process Server and WebSphere ESB V6.1, Part 1: Generating the WTX
maps for use with WebSphere Process Server and WebSphere ESB – 2008-07-09

• Using WebSphere Transformation Extender V8.2 with WebSphere Process Server and WebSphere ESB V6.1, Part 2: Utilizing the WTX Data
Binding with the Flat File Adapter – 2008-07-09

• Implementing a human-centric business process application using WebSphere Portlet Factory: Part 5: Deploying the user interfaces – 2008-06-
18

• IBM SOA Foundation product integration: Managing your WebSphere-based SOA solution – 2008-06-18

• Getting started with Lotus Forms in the WebSphere business process management suite – 2008-06-18

• SOA integration: Decouple service consumers from service providers over an ESB – 2008-06-16

• Use ARM to monitor SCA invocations in IBM WebSphere Process Server V6.1, Part 2: Understand SCA invocation patterns and debug
asynchronous scenarios – 2008-06-05

• Use ARM to monitor SCA invocations in IBM WebSphere Process Server V6.1, Part 1: Debug SCA invocations using IBM Tivoli Composite
Application Manager for Response Time Tracking – 2008-05-29

• Implementing a human-centric business process application using WebSphere Portlet Factory: Part 4: Developing a task list application –
2008-05-28

• Web services with SOAP over JMS in IBM WebSphere Process Server or IBM WebSphere Enterprise Service Bus, Part 1: Using the SIBus
JMS provider – 2008-05-22

• Implementing a human-centric business process application using WebSphere Portlet Factory: Part 3: Developing user interfaces for
originating and participating tasks – 2008-04-30

• Get started with WebSphere business process management V6.1 software – 2008-04-24

• Implementing a human-centric business process application using WebSphere Portlet Factory: Part 1: Solution overview – 2008-04-16

• Implementing a human-centric business process application using WebSphere Portlet Factory: Part 2: Developing a human-centric business
process – 2008-04-16

• Developing integration solutions with WebSphere Process Server relationships – 2008-04-03

• Business Process Management with SOA, Part 3: Combining process execution, content management and user interactions – 2008-04-02

• Building SOA composite business services, Part 12: Combine document-centric workflows in IBM FileNet with business state machines in
IBM WebSphere Process Server – 2008-03-27

• WebSphere Process Server and Lotus Forms integration – 2008-03-26

• Selecting a human task with custom properties using WebSphere Process Server – 2008-03-26

Page 828

http://www.ibm.com/developerworks/websphere/library/techarticles/0803_kolban/0803_kolban.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0803_fasbinder3/0803_fasbinder.html
http://www.ibm.com/developerworks/webservices/library/ws-soa-composite12/index.html
http://www.ibm.com/developerworks/webservices/library/ws-soa-composite12/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0803_lau/0803_lau.html
http://www.ibm.com/developerworks/websphere/techjournal/0802_busjaeger/0802_busjaeger.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0804_kapadia/0804_kapadia.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0804_kapadia/0804_kapadia.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0804_ng/0804_ng.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0804_mathew/0804_mathew.html
http://www.ibm.com/developerworks/websphere/tutorials/0804_santos/index.html
http://www.ibm.com/developerworks/websphere/tutorials/0804_santos/index.html
http://www.ibm.com/developerworks/webservices/library/ws-soapjms1/index.html
http://www.ibm.com/developerworks/webservices/library/ws-soapjms1/index.html
http://www.ibm.com/developerworks/websphere/tutorials/0805_jung/index.html
http://www.ibm.com/developerworks/webservices/library/ws-arm1/index.html
http://www.ibm.com/developerworks/webservices/library/ws-arm1/index.html
http://www.ibm.com/developerworks/webservices/library/ws-arm2/index.html
http://www.ibm.com/developerworks/webservices/library/ws-arm2/index.html
http://www.ibm.com/developerworks/webservices/tutorials/ws-soa-decouple/index.html
http://www.ibm.com/developerworks/websphere/techjournal/0806_mathew/0806_mathew.html
http://www.ibm.com/developerworks/websphere/techjournal/0806_radcliffe/0806_radcliffe.html
http://www.ibm.com/developerworks/websphere/tutorials/0806_chan/index.html
http://www.ibm.com/developerworks/websphere/tutorials/0807_mulley2/index.html
http://www.ibm.com/developerworks/websphere/tutorials/0807_mulley2/index.html
http://www.ibm.com/developerworks/websphere/tutorials/0807_mulley1/index.html
http://www.ibm.com/developerworks/websphere/tutorials/0807_mulley1/index.html
http://www.ibm.com/developerworks/webservices/library/ws-soapjms2/index.html
http://www.ibm.com/developerworks/webservices/library/ws-soapjms2/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0807_fasbinder2/0807_fasbinder.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0807_fasbinder1/0807_fasbinder.html
http://www.ibm.com/developerworks/websphere/techjournal/0807_tost/0807_tost.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0808_schwedler/0808_schwedler.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0808_smolny/0808_smolny.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0809_cui/0809_cui.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0809_faulhaber/0809_faulhaber.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0809_redlin/0809_redlin.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0810_fasbinder/0810_fasbinder.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0810_chacko/0810_chacko.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0811_chacko/0811_chacko.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0810_gunasekaran/0810_gunasekaran.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0811_gunasekaran/0811_gunasekaran.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0811_tikhonova/0811_tikhonova.html
http://www.ibm.com/developerworks/websphere/bpmjournal/0812_fasbinder6/0812_fasbinder6.html
http://www.ibm.com/developerworks/websphere/bpmjournal/0812_fasbinder5/0812_fasbinder5.html
http://www.ibm.com/developerworks/websphere/bpmjournal/0812_fasbinder2/0812_fasbinder2.html

• Configuring SCA HTTP binding to enable real-life scenarios – 2008-03-26

• Building clustered topologies in WebSphere Process Server V6.1 – 2008-03-19

• Modeling human tasks with WebSphere Business Modeler – 2008-03-12

• BPEL or ESB: Which should you use? - 2008-03-12

• Keeping your data in sync with WebSphere Process Server relationships – 2008-03-12

• Versioning and dynamicity: Part 2: Applying versioning and process dynamicity using WebSphere Process Server V6.1 – 2008-03-05

• Map Web services with WebSphere Integration Developer - 2008-02-20

• End-to-end BPEL business activity monitoring with IBM SOA tools: Part 4: Deploying the BPEL workflow application – 2008-02-20

• Handling unmodeled faults within WebSphere Process Server V6.1 – 2008-02-06

• Versioning and dynamicity: Part 1: Creating multiple versions of a business process with WebSphere Process Server – 2008-02-06

• Modeling business processes in WebSphere Business Modeler for BPEL transformation – 2008-01-23

• Authorization and staff resolution in Business Process Choreographer: Part 4: Staff resolution specifications and reference guide – 2008-01-23

• Recovering from failed asynchronous SCA service invocations on WebSphere Process Server – 2008-01-16

• Using the WebSphere DataPower SOA Appliance with WebSphere Process Server – 2008-01-16

• Overview of bidirectional script support in IBM WebSphere Integration Developer – 2008-01-01

• Authorization and staff resolution in Business Process Choreographer: Part 3: Customization options for staff resolution – 2007-12-12

• Incorporating database access in business processes using WebSphere Integration Developer 6.0.2 – 2007-12-05

• What's new in WebSphere Business Modeler V6.1 – 2007-12-05

• What's new in WebSphere Process Server V6.1 – 2007-12-05

• Authorization and staff resolution in Business Process Choreographer: Part 2: Understanding the programming model for staff resolution –
2007-11-07

• Developing Eclipse Rich Client Platform applications for WebSphere: Part 5: Process human tasks in WebSphere Process Server – 2007-11-07

• Creating custom data bindings in WebSphere Process Server without coding – 2007-10-31

• Hello World: Monitor a simple business process using WebSphere Business Monitor V6.0.2 – 2007-10-31

• Business process standards, Part 2: How the standards are used in WebSphere products – 2007-10-24

• Merging partial result sets from multiple sources of DB2 for Linux, UNIX, and Windows and WebSphere Process Server Business Process
Choreographer – 2007-10-24

• Business process standards, Part 1: An introduction – 2007-10-17

• Transactionally integrate CICS COBOL applications into WebSphere Process Server SOA solutions – 2007-10-17

• Using WebSphere Integration Developer and WebSphere Flat File Adapter with custom data bindings – 2007-10-10

• Running migrated WebSphere InterChange Server projects in WebSphere Process Server with global and J2EE security enabled – 2007-10-10

• Business logic versus connectivity logic: Using WebSphere Process Server and WebSphere ESB together – 2007-10-03

• End-to-end BPEL business activity monitoring with IBM SOA tools: Part 2: Developing a BPEL workflow application in WebSphere
Integration Developer – 2007-10-3

• Authorization and staff resolution in Business Process Choreographer: Part 1: Understanding the concepts and components of staff resolution –
2007-09-26

• Migrating WebSphere Commerce to the SOA foundation tooling: Part 3, Migrating a business process to WebSphere Process Server – 2007-
09-12

• Migrating WebSphere Commerce to the SOA foundation tooling: Part 4, Benefits of migrating WebSphere Commerce using WebSphere
Business Modeler and Integration Developer – 2007-09-12

• Migrating WebSphere Commerce to the SOA foundation tooling: Part 3, Migrating a business process to WebSphere Process Server – 2007-
09-17

• Migrating WebSphere Commerce to the SOA foundation tooling: Part 5, Tying it all together with the Esperanto methodology – 2007-09-12

• Using WebSphere Business Services Fabric with SEEC Web service components - 2007-09-05

• Migrating WebSphere Commerce to the SOA foundation tooling: Part 2, Getting WebSphere Commerce and WebSphere Process Server
talking – 2007-09-01

• Migrating WebSphere Commerce to the SOA foundation tooling: Part 1, Introduction to series – 2007-09-01

Page 829

http://www.ibm.com/developerworks/websphere/library/techarticles/0611_mohan/0611_mohan.html
http://www.ibm.com/developerworks/websphere/tutorials/0708_mohan/index.html
http://www.ibm.com/developerworks/websphere/tutorials/0708_mohan/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0709_wallman/0709_wallman.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0709_mohan/0709_mohan5.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0709_mohan3/0709_mohan3.html
http://www.ibm.com/developerworks/websphere/tutorials/0709_mohan4/index.html
http://www.ibm.com/developerworks/websphere/tutorials/0709_mohan4/index.html
http://www.ibm.com/developerworks/websphere/tutorials/0709_mohan3/index.html
http://www.ibm.com/developerworks/websphere/techjournal/0710_lind/0710_lind.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_perepa/0710_perepa.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_perepa/0710_perepa.html
http://www.ibm.com/developerworks/websphere/techjournal/0710_tost/0710_tost.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0709_obas/0709_obas.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_johnson/0710_johnson.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_xu/0710_xu.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_fasbinder/0710_fasbinder.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_richter/0710_richter.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_richter/0710_richter.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_fasbinder2/0710_fasbinder2.html
http://www.ibm.com/developerworks/websphere/tutorials/0711_johnson/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0711_fasbinder/0710_fasbinder.html
http://www.ibm.com/developerworks/websphere/tutorials/0711_xu/index.html
http://www.ibm.com/developerworks/websphere/techjournal/0711_lind/0711_lind.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_fasbinder_wps/0712_fasbinder.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_fasbinder/0712_fasbinder.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_starkey/0712_starkey.html
http://www.ibm.com/developerworks/websphere/techjournal/0712_lind/0712_lind.html
http://www.ibm.com/developerworks/websphere/library/techarticles/bidi/bidiwid.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0801_warrier/0801_warrier.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0801_smirnov/0801_smirnov.html
http://www.ibm.com/developerworks/websphere/techjournal/0801_lind/0801_lind.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0801_kong/0801_kong.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0802_fasbinder/0802_fasbinder.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0802_lezajic/0802_lezajic.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0802_perepa/0802_perepa.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0802_seacat/0802_seacat.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0803_fasbinder/0803_fasbinder.html
http://www.ibm.com/developerworks/websphere/tutorials/0803_busjaeger/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0803_fasbinder2/0803_fasbinder2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0803_napoli/0803_napoli.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0803_chilanti/0803_chilanti.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0803_kharlamov/0803_kharlamov.html

• Integrate metadata between WebSphere Service Registry and Repository and WebSphere Business Services Fabric – 2007-08-29

• Handling exceptions across sequential invocations of SCA business process components in WebSphere Process Server – 2007-08-29

• Dynamic configuration of the Human Task Manager in WebSphere Process Server – 2007-08-22

• WebSphere Process Server Business State Machines, Part 3: Adding more Business State Machine capabilities to your vending machine –
2007-08-08

• Building a human task-centric business process with WebSphere Process Server, Part 4: Portlet development – 2007-07-30

• Differences between WebSphere InterChange Server and WebSphere Process Server support for event sequencing – 2007-07-25

• Endurance testing with WebSphere Process Server V6.0.2 – 2007-07-18

• Configuring WebSphere Partner Gateway V6.1 and WebSphere Process Server V6.0.2, Part 3: Communication configuration – 2007-06-27

• Integrate a sales order validation process between SAP and Siebel using WebSphere Process Server and WebSphere Adapters – 2007-06-27

• Integrating business processes with TIBCO Enterprise Message Service and WebSphere Process Server – 2007-06-20

• Migrating WebSphere Business Integration Adapter solutions to WebSphere Process Server V6 – 2007-06-20

• End-to-end BPEL business activity monitoring with IBM SOA tools: Part 1: Modeling for process execution with WebSphere Business
Modeler – 2007-06-13

• Building a human task-centric business process with WebSphere Process Server, Part 3: Adding portlets – 2007-06-06

• Configuring WebSphere Partner Gateway V6.1 and WebSphere Process Server V6.0.2, Part 2: JMS integration case studies – 2007-05-30

• Configuring WebSphere Partner Gateway V6.1 and WebSphere Process Server V6.0.2, Part 1: JMS integration overview – 2007-05-23

• Leveraging WebSphere Portal V6 programming model: Part 3. Introducing Composite Application Workflow in WebSphere Portal – 2007-05-
16

• Exception handling in WebSphere Process Server and WebSphere Enterprise Service Bus – 2007-05-16

• BPEL fault handling in WebSphere Integration Developer and WebSphere Process Server – 2007-04-25

• Clustering WebSphere Process Server V6.0.2, Part 2: Install and configure WebSphere Process Server clusters – 2007-04-18

• Clustering WebSphere Process Server V6.0.2, Part 1: Understanding the topology – 2007-04-18

• IBM WebSphere Developer Technical Journal: Developing adaptive composite business services using WebSphere Business Services Fabric,
Part 1 – 2007-04-04

• Using WebSphere MQ binding with a client channel definition table – 2007-04-04

• Getting connected with WebSphere Integration Developer adapters : Part 1, An introduction to connecting with adapters - 2007-04-04

• Installing a WebSphere Process Server 6.0.2 clustered environment – 2007-03-28

• Designing and versioning compatible Web services – 2007-03-28

• Building a human task-centric business process with WebSphere Process Server, Part 2: Customizing JSPs – 2007-03-21

• Migrating WebSphere InterChange Server artifacts to WebSphere Process Server artifacts, Part 2: Understanding the WebSphere Process
Server SCA components – 2007-03-14

• How to use additional JMS providers with WebSphere Process Server and WebSphere Enterprise Service Bus Version 6.02 – 2007-02-28

• Connecting Eclipse Rich Client Platform Applications to WebSphere Application Server V6 Service Integration Bus – 2007-02-21

• WebSphere Process Server Business State Machines, Part 2: Enhancing your vending machine – 2007-02-21

• Using SOA with WebSphere process integration products, Part 7: Configure WebSphere security using a file-based custom user registry –
2007-02-20

• Building a human task-centric business process with WebSphere Process Server, Part 1: Using Business Process Choreographer Explorer –
2007-02-14

• WebSphere Process Server made easy, Part 3: Application deployment and server resource configuration – 2007-02-06

• Considering WebSphere on System z for your SOA environment – 2007-01-31

• IBM WebSphere Developer Technical Journal: Reliable and repeatable unit testing for Service Component Architecture modules, Part 3 –
2007-01-24

• WebSphere Process Server and WebSphere Enterprise Service Bus deployment patterns, Part 2: My first WebSphere Process Server cluster –
2007-01-17

• Tip: Canceling a human task – 2007-01-17

• What's new in WebSphere Process Server and WebSphere Integration Developer Version 6.0.2? - 2006-12-20

• Migrating WebSphere InterChange Server artifacts to WebSphere Process Server artifacts, Part 1: Migrating collaboration templates to BPEL –

Page 830

http://www.ibm.com/developerworks/websphere/library/techarticles/0612_seacat/0612_seacat.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0612_wayne/0612_wayne.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0701_kolban/0601_kolban.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0701_carlson-neumann/0701_carlson-neumann.html
http://www.ibm.com/developerworks/websphere/techjournal/0701_artus/0701_artus.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0701_parette/0701_parette.html
http://www.ibm.com/developerworks/websphere/tutorials/wes-wpsprim3/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0702_shankar/0702_shankar.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0702_perepa/0702_perepa.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0702_beers/0702_beers.html
http://www.ibm.com/developerworks/websphere/tutorials/0702_xu/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0702_barker/0702_barker.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0703_seacat/0703_seacat.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0703_seacat/0703_seacat.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0703_shankar/0703_shankar.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0705_narayan/0705_narayan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0703_redlin/0703_redlin.html
http://www.ibm.com/developerworks/websphere/techjournal/0704_gregory1/0704_gregory1.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0704_xu/0704_xu.html
http://www.ibm.com/developerworks/websphere/techjournal/0704_huang/0704_huang.html
http://www.ibm.com/developerworks/websphere/techjournal/0704_huang/0704_huang.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0704_chilanti/0704_chilanti.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0704_chilanti2/0704_chilanti2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0704_desai/0704_desai.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0705_fong/0705_fong.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0705_bernin/0705_bernin.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0705_mulley1/0705_mulley1.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0705_mulley2/0705_mulley2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0706_shankar/0706_shankar.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0706_perepa/0706_perepa.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0706_perepa/0706_perepa.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0706_ouda/0706_ouda.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0706_srivastava/0706_srivastava.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0706_jin/0706_jin.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0706_mulley/0706_mulley.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_gunasekaran/0707_gunasekaran.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_obas/0707_obas.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_shankar/0707_shankar.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0708_beers/0708_beers.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0708_gadiyar/0708_gadiyar.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0708_dinardo/0708_dinardo.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0708_balaji/0708_balaji.html

2006-12-13

• Developing business processes that use WebSphere Portal V6 and WebSphere Process Server V6 – 2006-12-06

• IBM WebSphere Developer Technical Journal : A guided tour of WebSphere Integration Developer -- Part 8 – 2006-12-06

• WebSphere Process Server made easy, Part 1: Architecture – 2006-12-05

• Using WebSphere Business Modeler to build business integration modules in WebSphere Integration Developer – 2006-11-29

• Using SOA with WebSphere Process Integration products: Part 6: Business measures and monitoring – 2006-11-15

• WebSphere Process Server and WebSphere Enterprise Service Bus deployment patterns, Part 1: Selecting your deployment pattern – 2006-11-
08

• Interactions with WebSphere Process Server and WebSphere ESB using Representational State Transfer – 2006-11-08

• IBM WebSphere Developer Technical Journal : A guided tour of WebSphere Integration Developer -- Part 7 - 2006-10-25

• Using SOA with WebSphere Process Integration products: Part 5: Sequential versus concurrent processes – 2006-10-18

• Creating and deploying business rules – 2006-10-11

• WebSphere Process Server Business State Machines concepts and capabilities, Part 1: Exploring basic concepts – 2006-10-11

• IBM WebSphere Developer Technical Journal : A guided tour of WebSphere Integration Developer -- Part 6 - 2006-09-20

• IBM WebSphere Developer Technical Journal: Reliable and repeatable unit testing for Service Component Architecture modules -- Part 2 –
2006-09-20

• Invoke WebSphere business processes from a database – 2006-09-13

• Integrate WebSphere Business Integration Adapters with WebSphere Process Server, Part 3: One-way asynchronous request scenario – 2006-
08-23

• IBM WebSphere Developer Technical Journal: Reliable and repeatable unit testing for Service Component Architecture modules -- Part 1 –
2006-08-23

• Web services client programming for WebSphere Process Server – 2006-08-21

• Publish/subscribe interactions in WebSphere Process Server and WebSphere ESB – 2006-08-16

• Using BPEL and EJBs with WebSphere Process Server and WebSphere Integration Developer – 2006-08-09

• Configuring dynamic authentication in WebSphere Adapter for SAP – 2006-08-09

• Using SOA with WebSphere process integration products, Part 4: Enabling the CBE and CEI infrastructure – 2006-08-02

• Implementing two-way interactions between a business state machine and a human task using WebSphere Process Server – 2006-07-26

• Use a generic data handler for inbound delimited flat files using WebSphere Process Server and WebSphere JCA adapter for flat files – 2006-
07-26

• IBM WebSphere Developer Technical Journal: Web services security with WebSphere Application Server V6 -- Part 4 – 2006-07-26

• Comment lines: Robert Peterson: Be more productive using WebSphere Integration Developer – 2006-07-26

• Developing business processes that use IBM WebSphere Portal and WebSphere Process Server – 2006-06-12

• Create a business process portlet application with WebSphere Process Server V6 using Business Process Choreographer APIs – 2006-06-21

• Implementing custom databinding and custom function selectors in IBM WebSphere Adapters – 2006-06-14

• Using SOA with WebSphere process integration products, Part 3: Business-driven development – 2006-05-31

• Websphere Process Server relationship service: Part 2, Dynamic relationships – 2006-05-17

• Integrating WebSphere Partner Gateway V6 and WebSphere Process Server V6 using JMS: Part 2: In-depth case studies – 2006-05-10

• Integrating WebSphere Partner Gateway V6 and WebSphere Process Server V6 using JMS: Part 3: Communication configuration – 2006-05-
10

• Integrating WebSphere Partner Gateway V6 and WebSphere Process Server V6 using JMS: Part 1: Overview – 2006-05-10

• Integrate EJB services with WebSphere Process Server, Part 2: Advanced scenarios for integrating EJBs running on WebSphere Process Server
and WebSphere Application Server – 2006-05-03

• Recommended reading list: Service-Oriented Architecture and WebSphere Process Server – 2006-04-26

• Integrate WebSphere Business Integration Adapters with WebSphere Process Server V6: Synchronous Request Response (OutboundRequest)
scenario -- Part 2 - 2006-04-26

Page 831

http://www.ibm.com/developerworks/websphere/library/techarticles/0604_reddy/0604_reddy.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0604_reddy/0604_reddy.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0604_issw/rrlsoa.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0605_xu/0605_xu.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0605_xu/0605_xu.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0605_mulley1/0605_mulley1.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0605_mulley3/0605_mulley3.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0605_mulley2/0605_mulley2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0605_lainwala/0605_lainwala.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0605_perepa/0605_perepa.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0606_mishra/0606_mishra.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0606_gu/0606_gu.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0607_roach/0607_roach.html
http://www.ibm.com/developerworks/websphere/techjournal/0607_col_peterson/0607_col_peterson.html
http://www.ibm.com/developerworks/websphere/techjournal/0607_desprets/0607_desprets.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0607_telerman/0607_telerman.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0607_beers/0607_beers.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0608_perepa/0608_perepa.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0608_martinez/0608_martinez.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0608_kagan/0608_kagan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0608_flurry/0608_flurry.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0608_beers/0608_beers.html
http://www.ibm.com/developerworks/websphere/techjournal/0608_artus/0608_artus.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0608_kumar/0608_kumar.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0609_peterson/0609_peterson.html
http://www.ibm.com/developerworks/websphere/techjournal/0609_artus/0609_artus.html
http://www.ibm.com/developerworks/websphere/techjournal/0609_gregory/0609_gregory.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0610_beers/0610_beers.html
http://www.ibm.com/developerworks/websphere/tutorials/0610_kolban/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0610_perepa/0610_perepa.html
http://www.ibm.com/developerworks/websphere/techjournal/0610_gregory/0610_gregory.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0611_flurry/0611_flurry.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0610_redlin/0610_redlin.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0611_perepa/0611_perepa.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0611_wen/0611_wen.html
http://www.ibm.com/developerworks/websphere/tutorials/wes-wpsprim1/index.html
http://www.ibm.com/developerworks/websphere/techjournal/0612_gregory/0612_gregory.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0611_roach/0611_roach.html

Other

A list of knowledge sources has been compiled by IBM and refreshed periodically. Much of its is
already listed in the previous sections but it does make a good reference:

• IBM Business Process Manager 7.5 and WebSphere Process Server 6.X and 7.0 Public
Knowledge Compendium

Integration Designer
The development environment for building SCA and BPEL based modules is called Integration
Designer. It is a standard Eclipse based environment. Once installed, it can be started from the
following menu item:

When Integration Designer (ID) starts, it asks for the location of a WorkSpace directory:

Page 832

http://www-01.ibm.com/support/docview.wss?uid=swg21469876&wv=1
http://www-01.ibm.com/support/docview.wss?uid=swg21469876&wv=1

The WorkSpace directory is where the artifacts of a solution are stored locally on the file system.
Any directory path can be supplied and it is not uncommon to create a new WorkSpace for each
different project upon which you work.

ID has an Eclipse perspective called Process Center. When selected, it connects to the Process
Center repository and displays the process applications that can be found there.

Selecting a Process Application and then "Open in workspace" causes the process application to be
copied from the Process Center into the local file system workspace.

Page 833

The ID Eclipse Perspective is switched to the Business Integration perspective which is where the
majority of work is performed:

By default, a project is shown in its simple mode. This means that only BPMN and related artifacts
are shown:

Page 834

However, there is a toggle button that switches the project to view it in its advanced mode which
then shows more details including the SCA and BPEL artifacts:

Page 835

Inter-operating between a BPMN process and an SCA
module
When we think of a BPMN process contained in a BPD which is itself contained within a Process
Application, we realize that it can "call out" to a variety of back-end systems using its supplied Java
implemented connectors. However, these are secondary capabilities in the overall story. The more
robust and powerful integration engine is contained within an SCA module. As such, we want to be
able to define a step within a BPD as being implemented by an SCA module.

Let us look at a simple example.

Here is a BPD which has a step called Billing. We wish this to be implemented by a call to an
SCA module. In PD, we create a new artifact of the type called the Advanced Integration Service
(AIS).

A wizard is started which prompts us for a name for this new component:

Page 836

Once the name has been entered, we can then supply additional details for this AIS instance:

Primarily, these are its expected input and output parameters.

Once the AIS panel has been completed, we find we have a new artifact available to us in the
Process Application library under the Implementation category:

In the BPD, we can now associate the Billing AIS with the BPD activity we also called Billing:

Page 837

With all of these PD changes made and saved back to Process Center, we can now open an ID
session.

In ID, we see the Billing AIS that was defined in PD as being un-implemented.

We can now right-click on this and select "Implement":

A wizard appears asking us for what we would like the base implementation to contain. The
choices available to us include:

• Microflow – A BPEL process flagged as "short running"

• Long-running BPEL process – A BPEL process flagged as "long running"

• Java component – A Java component

• Empty implementation – No implementation suggestions made

Selecting "Empty implementation" is my recommended selection. This is the most flexible and
allows us to take control from the outset for what we want to achieve.

Page 838

At the conclusion of these steps, an SCA interface is created for the Billing service:

and the Assembly Diagram is updated with an SCA Export for the Billing function. Once the
implementation in the SCA Assembly has been built, we can publish the solution back to Process
Center which will now include the SCA implementation. If we now run the Process App, we will
see control being passed to the SCA module when the billing component is reached. This simple

Page 839

example has achieved a top-down implementation of an AIS. We say top-down because the nature
of the service was described in the high-level BPMN diagram in the BPD while its concrete (lower-
level) implementation was handled in the ID. Schematically, the following shows what we have
achieved:

A bottom-up solution can also be achieved by creating an interface and exposing that interface in an
Assembly Diagram with an Export with SCA bindings. It appears that the name of the AIS created
has the same name as the Interface. This doesn't feel right and is being investigated further.

When ID is started for the first time, we are prompted to define a connection to Process Center:

Page 840

To see the currently selected Process Center URL open the ID preferences and navigate to
Business Integration > Process Center. The URL and userid/password to access
Process Center can be found there.

See also:

• Advanced Integration Service

• BPEL and AIS

• DeveloperWorks - Developing a transactional Advanced Integration Service with IBM Business Process Manager, Part 1: Introduction and
setting up the databases – 2013-03-06

• DeveloperWorks - Developing a transactional Advanced Integration Service with IBM Business Process Manager, Part 2: Defining the
business process - 2013-03-13

• DeveloperWorks - Linking business processes and enterprise services together using IBM Business Process Manager Advanced – 2012-
09-26

• DeveloperWorks - The benefits of using IBM Business Process Manager Advanced - 2012-06-20

Interface Types Exchange

Page 841

http://www.ibm.com/developerworks/bpm/library/techarticles/1206_jones/1206_jones.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1209_mcelroy/1209_mcelroy.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1303_randone2/1303_randone2.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1303_randone2/1303_randone2.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1303_randone/1303_randone.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1303_randone/1303_randone.html

When we define a new AIS in PD what we are in fact doing is describing a new named interface
that can be called from BPM that is implemented by SCA. The input, output and error definitions
defined in PD show up as a new interface in ID. However, some thought is required on this.

• An SCA interface has a name associated with it. This is mapped from the name of the AIS
defined in PD.

• An SCA interface has one or more operations associated with it. These are mapped to the
single name called "invoke" as a single AIS is a single operation.

• An SCA interface has a name space associated with it. This is mapped to the form:
http://<ProcessAppAcronym>/AIS/<AIS Name>

In addition, an AIS that only has input parameters is mapped to a two-way operation in ID. For
example:

If a one-way operation is required, ID provides the capability to re-factor the interface to be one-
way. Clicking on the operation and looking at the Details tab, we can choose the operation type:

Data Types Exchange
In PD, data types are defined as Complex Data Types. For example.

Page 842

When an ID Workspace import is created, the corresponding Business Object for these data types is
created.

Note that the name of the Business Object is the same. The Namespace on the business object is,
by default, the same as the Acronym value for the Process App that defines the data type.

BPDs exposed to an AIS
Each BPD process in a Process App appears in the Processes section of the Business Integration
view of ID.

Page 843

These processes can be dragged to an Assembly Diagram which will generate an SCA Import
allowing the process to be invoked. For each process, two interfaces are created. One for a
request/response call and one for a one-way call. When the process is dropped onto the assembly
diagram, a dialog appears asking us which interface type should be used:

Once added to the diagram, the import looks as follows:

Invoking this import will result in an instance of the BPD being created and started. Since this
otherwise behaves like a normal SCA import, we have all the power that SCA provides in terms of
wiring and usage.

It should be noted that a BPD exposed to be called from an SCA assembly diagram is going to be
invoked asynchronously. What this means is that any caller of this SCA Import that expects the
provider to be synchronous will fail. This shows us (for example) if one adds an SCA Export with
Web Services bindings (over HTTP) and wires that into the BPD SCA Import. A Web Service
Export will always be invoked synchronously and will not be allowed to connect to an
asynchronous provider.

Deploying for testing from ID
To deploy a module for testing, we must define a Process Server definition in the servers tab. Right
click in the blank space for a context menu. Select New > Server.

Page 844

From the wizard, select "IBM Process Server v8.0". I recommend doing this irrespective of
whether or not we are connecting to a Process Center or a Process Server. Both have worked just
fine for me.

Next we must tell IID where the local installation image of Process Server can be found. We point
to the AppServer root directory of the BPM install:

Page 845

Finally we select which profile we will use and also enter the associated userid and password for
connections.

Page 846

Returning faults from an AIS
In principle a called AIS can fail for a variety of reasons such as a system error (a service it depends
upon not being available) or a business error (insufficient funds to perform the debit). In these
instances, what we would like to happen is for the AIS to raise a fault and for that fault to be
captured by the calling BPMN process. Unfortunately, in 7.5, the InfoCenter documentation
explicitly states that interfaces with faults are simply not supported. This appears to raise a
dilemma. One possible solution is to add an extra parameter to the interface that will be used to
hold a return code from the execution of the AIS. After the BPMN process invokes the AIS, it
should then check the value of this response and handle appropriately. This is not as elegant as
being able to use the BPMN Intermediate Exception mechanisms but it does appear to be a solution.

In v8 of the product, this issue is claimed resolved.

Manually un-deploying an SCA module
When we deploy a Process App to a Process Server, the SCA module associated with the project
starts up. On occasion, we may wish to stop or un-deploy such a module. This can be achieved
through the WAS admin console in the Applications > SCA modules area:

Page 847

Page 848

Service Component Architecture
Service Component Architecture (SCA) is a framework for solving one of the most basic issues
relating to building distributed SOA applications. Imagine you have an external application that
exposes itself as a callable service. You now wish to write a new application that calls the external
service. How do you go about doing this? You could look at how the external application is to be
called and you will find that it will be likely be Web Services, JMS, MQ, REST, EJB or some
similar technology. You could then code your new application using the correct API and all will
work. Well … it will work for a time. You have introduced a hard dependency here. You have
bound your application to a specific protocol and associated endpoint for the remote application you
are calling.

If the nature of the service provider application changes such as its location, its communication
protocol or its parameters, then the service caller will also need to be reworked. This means that the
coupling between the caller and the provider is tight. Given that it is our desire to be loosely
coupled and agile to change, maybe we can do better.

At its most simplistic level, SCA provides an abstraction between a service caller and a service
provider. The service caller doesn't actually care about how the provider is called only that when it
is time to invoke the services of the provider that the provider is then called. SCA provides just
such a loose coupling. Instead of the service caller invoking the service provider directly, the
service caller asks SCA to invoke the service provider. In turn, SCA then makes the actual call to
the service provider using the the configured protocol, endpoints and parameters. At first glance,
this doesn't appear to solve any problems … but if we look closer we something wonderful has
happened. The service caller which is customer written logic now no-longer needs to know
mechanical information about the service provider. Instead, the caller asks SCA and SCA does the
work on behalf of the caller. At the SCA level, the binding of protocols and endpoints are
configured at a very high level without coding. Importantly, if the details of the service provider
change, the service caller application (which if we remember, is business logic) is unaffected. Only
the binding details at the SCA level need to be reworked.

The question now becomes one of how to actually use this SCA concept. I'll start by saying that

Page 849

SCA is rich in function. This means that there is a lot of stuff in there. However, try not to let the
Boeing 747 cockpit array of levers and switches deter you from realizing the benefits. We will take
it slowly and carefully and expose the parts that are needed as when we need them.

Let us start with what SCA actually is from a product perspective. SCA is a runtime framework
that separates callers from called services. A caller no longer calls the target service directly but
instead asks SCA to call the service on its behalf. To achieve this a "proxy" is put in place of the
target service. This proxy is configured with the actual knowledge of how to invoke the real target
service. The proxy is identified with a name. When the caller wishes to invoke the target service, it
asks SCA to invoke the target by passing in the name of the proxy. We have thus decoupled the
caller from the target service provider.

Somewhere the rubber must meet the road and some definitions have to be made. SCA asks for
these definitions as an XML document that describes/declares the definitions. The format of the
XML is defined as an XML Schema and conforms to an SCA specification called the Service
Component Definition Language (SCDL). Thankfully, this XML is merely an academic part of the
story as we will never see it. I explain it here only for your understanding. The SCA XML is (for
our discussion purposes) interpreted at run time. When a caller says that it wishes to invoke a
service with a name of "XYZ", the SCA runtime will parse the XML looking for the definition of
"XYZ". This definition will include such things as what protocol to use to connect to the back-end
service, where the service is located and a host of additional (an optional) attributes.

I mentioned that we will never have to work with the SCA XML directly, so how then do we
describe the environment we wish to achieve to SCA? The answer to this is to use the IBM
development environment called Integration Designer (ID). Integration Designer is a full IDE
previously called WebSphere Integration Developer (WID). It is based on Eclipse and looks
familiar to other Eclipse based products.

Within ID, we create modules which are really projects. Each module contains a description of a
single SCA environment, the piece parts that are to be integrated and details of how those parts are
configured together. The description of the SCA environment is called the Assembly Diagram. ID
provides a dedicated editor for creating and modifying the contents of this diagram. Imaginatively,
the editor is called the Assembly Diagram Editor. Using this visual editor the relationship between
components can be wired together. As you may have already guessed, the diagram is basically a
visual representation of the SCA XML document that is used to control SCA operations. The
Assembly Diagram Editor is rich enough that users need never edit the raw XML files by hand. In
fact, ID goes out of its way to hide those from you so that all you ever see is the assembly diagram.

The Assembly Diagram can be opened from the module view.

Once opened, a drawing canvas can be seen which shows the diagram area:

Page 850

This is the mechanical aspect of working with SCA, now we turn our attention to the things that can
be wired together on that canvas. Experience has taught me that this can be one of the more subtle
concepts to get across, so we will take our time here.

Within the SCA story there are basically two types of things that can be described. One type is
code that will actually run on and within IBPM. This includes BPEL processes, Java code, and a
variety of other goodies we have not yet had a chance to discuss. To help set the scene, imagine
that we want to code a fragment of Java that will execute inside IBPM and that we want this Java
code to call an external service. The Java code will be written and contained inside what SCA calls
a component. A component is a unit of thing that is self contained and acts as a place holder for its
implementation. From an SCA perspective, a finite set of SCA component types are available.

Specifically, these are:

• Java Component – A holder for Java code that is user written

• Process (BPEL) Component – A holder for a BPEL process that is user written

• Human Task Component – A holder for a user interaction using the Human Task Manager
engine

• Mediation Flow Component – A holder for data conversion and handling. The core of an ESB.

• Rule Group Component – A holder for business rules that provide simple business rule
functions.

• Selector Component – A holder for time based selection of control flow routing.

• State Machine Component – A holder for a process described as a Business State Machine that
is user written.

We won't go into details on each of the component types here. Instead, there will be much written
on them in subsequent sections. For now, let us simply realize that components are building blocks
in the SCA diagram.

Page 851

As an illustration, let us look at a Java Component. When added to the canvas area, it looks as
follows:

Each of the component types has a unique icon associated with it.

Every SCA component has a name that is unique to the module in which it lives. In this example,
the component is called MyJavaComponent. On the Assembly Diagram, the visual box that is the
component can be thought of as a container or holder for its actual content. We can drill down into
a component to see what is inside it. In this instance, if we open it up, we would see Java code. If
we had a BPEL process, we would see a BPEL process.

Now we get to take the next leap. Imagine that we have create a number of component on our
Assembly Diagram where each component has a discrete and self contained purpose. This is not
yet a solution … what we would have created would be a set of building blocks that we could
construct our solution from. To build the solution we would need to connect the building blocks
together to perform a bigger task.

For example, if we had a component that charges a credit card and we had a component that
receives a customer order, we may wish for the order processing to invoke the services of the credit
card charging. To describe this to SCA, we can draw wires from one component to another. This is
illustrated in the next diagram:

It is important to understand that at the SCA layer, we are not describing flow control. Instead
what we are saying here is that the component called CustomerOrder can (if it chooses) call another
component called ChargeCreditCard. We are not saying that it will, must or does … simply that if
it wants to, it can. Going further, the CustomerOrder component may invoke a service (another
component) that ships product to a customer. The assembly for this may look like:

SCA Interfaces and References
Every SCA component is capable of being invoked (called) by another. This means that the
component has to be able to describe what it is capable of doing and what it expects as input should
it be called. Consider a component that charges a credit card. What does it expect as input? These
inputs are not prescribed by the caller, they are prescribed by the implementation of credit card
processing function or service. An example of input might be:

Page 852

• Credit card number

• Owners full name

• Billing address of the credit card

These parameters are not negotiable. In order to use the cried card service, they must be provided.
This can be thought of as a contract between the credit card service provider and anyone who may
want to call it. Another analogy may also help to make this concrete. In the Java programming
language there is a concept called a Java Interface. The Java Interface describes the methods and
parameters of those methods as well as the return types. The Java Interface does not describe how
the methods are implemented … that is up to the Java programmer to decide. The Java Interface
does however describe the relationship between a calling Java Class and an implementation of a
class that conforms to the Interface.

This latter example is close to what we find in SCA. Every component in SCA exposes an Interface
that describes the operations that can be requested of it. Each operation describes its expected input
parameters and the nature of the parameters returned. It needs to be quickly states that the Interface
is not described as Java … that would be too low level. Instead the interface is described in a
(arguably) complex language called WSDL (Web Services Description Language). However …
IBPM ID hides the WSDL from you and exposes a full function interface description editor that
removes all the complexity.

Let us review what we know so far. When we want to create an SCA component, we will build an
interface that abstractly describes the contract that the component will expose which will include
one or more operations. Each operation will have one or more input parameters and return zero or
more output parameters. When we create an SCA component, we define the type of component that
it is (eg. Java, BPEL, Mediation) and we associate an interface with that component. When we
finally get around to implementing the component, both the type and the interface associated with it
will govern the nature of the implementation.

In the Assembly Diagram, the purple circle on the left with the capital letter "I" contained within is
used to represent the interface possessed by the component. If we hover the mouse over the
interface a pop-up appears showing us the name of the interface implemented by the component.

Another, but related concept associated with an SCA component is known as the Reference. The
Reference is the indication on an SCA component that, during the operation of that component, it
may call out to invoke the services of another component. An SCA component need have no
reference associated with it. This would imply that the implementation of the component is fully
self contained and it needs no further instance to do its work. However, if the component does need
to call other components then it must have one or more references attached to it. A reference is
again described by an interface description. Unlike an interface used by input into the component,
the reference interface is used to describe the interface it expects to find should it need to call out to
another component. Think of interfaces and references like plugs and sockets.

Page 853

The interface that a component provides is like a socket and a reference that connects into that
component is like a plug. If we sit and think about this for a while, an elegant and important
concept comes to mind. Since one component provides an interface and another component that
wishes to call the first provides a reference, unless both components agree on the same description
of the interface it is impossible for the two components to be wired together accidentally. SCA
enforces this desirable policing.

To wire two components together, the Assembly Diagram Editor allows us to draw a visual link
between the two components.

This clearly illustrates to us the relationship between them.

There is one further idea here that I want to bring to the surface. When a component wishes to
invoke another component, the calling component sends the request not to the other component
directly, but instead passes the request to its own local reference. At this point, SCA kicks in and
the Assembly Diagram is consulted. Whatever a components reference is wired to is where the
request will be sent. This means that the calling component is loosely coupled to the component
that provides the service. At any time, the developer can rewire the relationship between a service
caller and a service provider to point to a different service (with the same interface) and this will be
honored. Another way of saying this is that calling SCA component has no idea at development
time who, what or where the request will be delivered to. All it sees is the contract advertised
through the interface. This is SOA in its ultimate form.

The SCA Import Component
So far we have touched upon one SCA component calling another where both components are
hosted inside the SCA framework. In practice, this is rarely sufficient. Most solutions involve
services that are hosted outside of a single SCA environment. For example, there may be a service
that processes credit card billing that is exposed as a Web Service somewhere else in your
organization. You may want to perform a ZIP code lookup which is owned by an external agency.
The service you are calling may be hosted by CICS on a mainframe or accessed via WebSphere
MQ. Simply calling from one SCA component to another inside the SCA environment is not
sufficient. Fortunately, SCA comes to our aid yet again with an additional concept called the SCA
Import. The SCA Import can be thought of as a proxy for communicating with a service that exists
outside of our local environment. On the Assembly Diagram, it looks as follows:

Notice its distinctive icon. Just like other SCA component, the SCA Import exposes an interface
definition. This means that it can be wired as another component's SCA reference. Unlike other
components, the SCA Import does not have a native implementation. Instead, when it is called, it is
responsible for building a network request in a specific format and protocol and transmitting that

Page 854

request to the external system. When a developer adds an SCA Import to the diagram they are also
responsible for binding that component to an external system. Putting it another way, the act of
binding performs the following:

• Names the communication protocol to use such as Web Services, JMS, MQ, REST, EJB or
others

• Names the endpoint information such as the location of the target service. This might be a
machine name/port number, an MQ queue manager and queue or a JNDI name. The endpoint
information is specific to the type of protocol selected in the binding.

• Names the data encoding (if applicable). Some bindings such as MQ and REST do not have
absolute data protocol formats. Instead there must be agreement between the sender and
receiver on the format of data to be passed. This may be XML, JSON, comma delimited,
COBOL copybook or others. Depending on the protocol type selects for transmission, the
developer needs to describe the physical format of the payload data that is to be built and
received by the Import component.

There is much more to be said about the SCA Import component. Each of the different protocol
types has its own story and parameters and these will be described later but for now it is sufficient
to understand that the SCA Import is a proxy to a real external service. Once again we see that
through the loose binding of SCA wiring with its interfaces and references, the caller has no idea
that the request is going external. When the caller sends its request, that request surfaces at the
reference and depending on how the developer has wired the diagram, the request will flow to the
target component. If that component happens to be an SCA Import, then the configuration of the
SCA Import will be honored and the request transmitted externally to the target. If at some later
date, the target changes location or other nature, the SCA Import need only be reconfigured and all
will be well. The business logic of the caller need have no knowledge of changes to the target.
Again, a perfect "separation of concerns".

The choice of name for the proxy has always caused confusion. Why is it called "Import"? The
relatively simple answer is that we are importing the services of an external provider. More on this
naming later after we speak about SCA Exports.

The SCA Export Component
There is one further SCA component that we must address before we go too much further. This
component is called the SCA Export. From a diagraming perspective, it looks as follows:

Again, note its distinctive icon. The purpose of the SCA Export is to expose an entry point into a
module so that an external caller can invoke the logic contained in the module. We have already
seen that an SCA assembly can be used to wire together various pieces of function to achieve a
business goal but we have skipped the idea of how the components contained within the diagram
are initially started. Components contained in an SCA Assembly Diagram are not exposed to be
called directly from outside the diagram. What happens inside the SCA diagram is private (from
the callers). To allow external access, we insert an SCA Export component. Just like other
components, it has an interface associated with it. It is this interface that is exposed to the outside
world. In addition to having an interface, the SCA Export always has a reference attached to it
which is of exactly the same type as its exposed interface. This reference can then be wired to other
down-stream SCA Components.

Page 855

Similar to the SCA Import, the SCA Export acts as a proxy. When it is configured by the
developer, it declares a communications protocol (Web Services, MQ, SOAP etc) that it is willing
to listen upon. When the module containing the diagram is deployed for execution, the module is
examined looking for export components. For each one found, the runtime automatically starts
listening for incoming requests. When a request is received, a new instance of the module is started
and control is given to the component to which the export is wired.

Once again we see loose coupling at work. An SCA component has no idea who has called it, only
that it has been called. This means that the export component hides from other SCA components
the details of how a request was received. A diagram can have multiple SCA Exports. Each
different export could be bound to a different protocol allowing the business function as a whole to
be exposed through a variety of technologies.

SCA Interfaces
When we started the discussion of SCA we quickly found that components have interfaces and may
have references. Both of these are described using Interface descriptions. It was also mentioned
that the interface descriptions are themselves WSDL files under the covers. Now it is time to look
at how an interface is described to SCA.

In a module, each interface defined is a named entity. When created or opened, the interface has its
own editor called the Interface Editor.

When we create a new Interface from scratch, a wizard page is displayed to us that looks as follows:

Page 856

Within this page, we can enter the name that we wish to give the interface. This name combined
with its namespace must be unique. Once a new interface has been created or an existing interface
opened, the Interface Editor is shown.

The editor shows two primary sections. One is an Interface section that shows the nature of the
interface as a whole while the second section shows the operations exposed by that interface. Each
operation is a possible entry point into the component described by the interface. When initially
created, the interface has no operations defined to it. We can add operations by clicking on the add
operation buttons:

There are two buttons corresponding to the two different styles of interface. One style is an
interface that returns data while the other style has no return data. This second style is also called a
one-way operation.

When an operation is defined, the properties for the operation can be changed.

These include:

• The name of the operation

• The number of input and output parameters

• The names of the input and output parameters

• The data types of the input and output parameters

Once the operations have been defined and any changes made, the interface may be saved. Saving
an interface results in the actual WSDL file that the interface represents being written. Again, under
the covers the interface is described in the deeply technical WSDL language but yet we need never
look at the interface from that perspective. In the vast majority of cases, we need only ever work
with the Interface through the logical perspective as shown through the Interface Editor. Only the
runtime execution cares that an interface is actually a mechanical WSDL file.

When we add a new SCA component onto the Assembly Diagram canvas, it has no interface or

Page 857

references associated with it. If we hover the mouse over the component, a pop-up appears from
which we can add and select the interfaces we wish:

There is one button for adding interfaces and a second button for adding references.

SCA Business Objects
When we looked at SCA Interfaces, we say that each operation in the interface may have multiple
input and output parameters and that each parameter has a data type associated with it. The list of
data types available include the usual suspects including strings, integers, floating points, dates,
times etc. However, it is extremely common to want to create our own complex data types. These
complex data types are collections of named fields which themselves have their own data types.
For example, a customer will commonly have an address. We could create parameters on our
interface for each of the expected items such as street, city, state and zip code but this is not as
convenient as creating a single parameter that represents an address as a whole.

In SCA, these complex and structured data types are called Business Objects. Within the ID
tooling, we can create our own named Business Objects and give them fields with names and data
types that we desire. Under the covers, the Business Object is physically represented by an XML
Schema Definition file but, just like with interfaces and WSDL, ID provides an elegant editor to
hide this technical detail from us. The end result is an editor called the Business Object editor that
provides all the capabilities we desire while at the same time hiding from us deeply technical
constructs that in the majority of times, we have no use for.

Similar to Interfaces, Business Objects are first class entities and exist in the Data Types folder.

When a Business Object is created, a wizard allows us to enter its key characteristics. Core
amongst these are the name of the Business Object (BO).

Page 858

When the wizard completes for a new BO or if an existing BO is opened, the BO Editor is shown:

The BO editor shows a container (the BO type) into which the fields of the BO may be defined.
Each field added can be given its own name and data type.

Fields can themselves be typed for other BOs and can also be typed as arrays of data. Once a data
type is defined, that data type can be used within an SCA Interface definition:

Page 859

One of the primary purposes of SCA having Business Objects is to provide a normalized format of
data passing between components. In addition, when raw physical data is received at an SCA
Export, that data is parsed and a corresponding Business Object is constructed and passed forwards.
This insulates other SCA components from having to concern themselves from the physical format
of data sent by a service requestor. Conversely, when an SCA Import call is made and a parameter
is a Business Object, the Business Object's data is serialized into a suitable physical format for
outbound transmission. The Business Object's normalization of data moving around inside the SCA
world make all of this possible.

SCA Event Sequencing
The idea of event sequencing is to ensure that requests that arrive in a given order are processed in
that order but only when this would make a difference. If it doesn't matter what order the requests
are processed in, they can be executed in parallel. Consider for example two requests that arrive in
order. The first request creates a bank account and the second request deposits $100 in that
account. If these two requests are attempted to be executed in parallel, it is conceivable that the
action to add $100 may take place before the creation of the bank account has completed.

Next consider a debit of $50 from one account and a credit of $75 to a different account. Since
these accounts are different and there is no relationship between the requests, the activities can
happily execute in parallel.

SCA Event Sequencing can be used to examine the data in an incoming request and, based on the
content of that data determine if the request should be held until previous requests have completed
or whether the request is eligible for immediate start.

Event Sequencing is enabled at the SCA diagram level. By selecting an interface on a component
and then selecting an operation, we can add a quality of service and one of the options is Event
Sequencing.

Page 860

Once an Event sequencing quality of service has been added, we can then define the properties for
this attribute:

Here we define the parameters used as input of the service and the XPath expression to the field or
fields that are to be used for sequencing.

The underlying implementation of Event sequencing is based on a number of WAS supplied
applications and resources. Specifically:

• The table called PERSISTENTLOCK in the Common DB

• The Work manager resource called wm/ESWorkManager

• The WAS installed application called persistentLkMgr

See also:

• Event Sequencing - 2010-03-18

• Event sequencing using WebSphere Process Server - 2009-10-28

Page 861

http://www.ibm.com/developerworks/websphere/library/techarticles/0910_wadley/0910_wadley.html
http://www.ibm.com/developerworks/webservices/library/ws-eventseq/index.html

• Differences between WebSphere InterChange Server and WebSphere Process Server support for event sequencing – 2007-07-25

SCA Store and Forward
See also:

• DeveloperWorks - Using the store-and-forward feature in WebSphere Process Server V7.0 - 2010-06-16

SCA Versions
SCA was an invention of IBM and some of her competitors. It was designed to provide
interoperability between a variety of SOA players. SCA has become an industry standard and has
undergone a variety of iterations. IBM's WebSphere Application Server provides an
implementation of SCA as part of the base product, however, this is not the same SCA as is
currently found in IBPM.

See Also:

• DeveloperWorks - Integrating WebSphere Process Server and SCA Feature Pack, Part 3: Interoperability across SCA web services bindings -
2010-09-29

• DeveloperWorks - Integrating WebSphere Process Server and SCA Feature Pack, Part 2: Interoperability across SCA JMS bindings - 2010-07-
21

• DeveloperWorks – Integrating WebSphere Process Server and SCA Feature Pack, Part 1: Interoperability across SCA bindings – 2010-05-19

Installing an SCA Module through scripting
After having built an SCA module, we can export it as an EAR file for deployment. The
deployment of the EAR can be accomplished through wsadmin style scripting. The command
called "AdminApp" can be used to work with EAR applications. Full details of using this
command can be found in the WAS InfoCenter.

AdminApp.install('<Path to EAR>')

An example of the output of the installation looks like:
wsadmin>AdminApp.install('C:/temp/SCAInstall.ear')
ADMA5016I: Installation of SCAInstallApp started.
CWLIN1002I: Creating the WebSphere business integration context
CWLIN1000I: Extracting the .ear file to a temporary location
CWLIN1007I: Initializing the WebSphere business integration context
CWLIN1005I: Performing WebSphere business integration precompilation tasks
CWLIN1001I: Compiling generated artifacts
CWLIN1006I: Performing WebSphere business integration postcompilation tasks
CWLIN1004I: Creating an .ear file from the temporary location
CWLIN1008I: Cleaning the WebSphere business integration context
ADMA5058I: Application and module versions are validated with versions of deployment targets.
ADMA5005I: The application SCAInstallApp is configured in the WebSphere Application Server
repository.
CWWBF0028I: Process components of SCAInstallApp have been successfully configured in the WebSphere
configuration repository.
ADMA5005I: The application SCAInstallApp is configured in the WebSphere Application Server
repository.
ADMA5081I: The bootstrap address for client module is configured in the WebSphere Application Server
repository.
ADMA5053I: The library references for the installed optional package are created.
ADMA5005I: The application SCAInstallApp is configured in the WebSphere Application Server
repository.
ADMA5001I: The application binaries are saved in
C:\IBM\WebSphere\AppServer\profiles\ProcCtr01\wstemp\Script13b19bdc42d\workspace\cells\win7-
x64Node01Cell\applications\SCAInstallApp.ear\SCAInstallApp.ear
ADMA5005I: The application SCAInstallApp is configured in the WebSphere Application Server
repository.
SECJ0400I: Successfully updated the application SCAInstallApp with the appContextIDForSecurity
information.
ADMA5005I: The application SCAInstallApp is configured in the WebSphere Application Server
repository.

Page 862

file:///C:/Users/Kolban/temp/SCAInstall.ear
http://www.ibm.com/developerworks/websphere/library/techarticles/1005_fong/1005_fong.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1007_fong/1007_fong.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1009_fong/1009_fong.html
http://www.ibm.com/developerworks/websphere/tutorials/1006_madgula/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_obas/0707_obas.html

ADMA5005I: The application SCAInstallApp is configured in the WebSphere Application Server
repository.
CWSCA3013I: Resources for the SCA application "SCAInstallApp" are being configured.
CWSCA3023I: The EAR file "SCAInstallApp.ear" is being loaded for the SCA module.
CWSCA3017I: Installation task "SCAModuleTask" is running.
CWSCA3017I: Installation task "Resource Task for SCA Messaging Binding and EIS Binding" is running.
CWSCA3017I: Installation task "Resource Task for SCA Messaging Binding and JMS Binding" is running.
CWSCA3017I: Installation task "SIBus Destination Resource Task for SCA Asynchronous Invocations" is
running.
CWSCA3017I: Installation task "EJB NamespaceBinding Resource Task for SCAImportBinding" is running.
CWSCA3017I: Installation task "SIBus Destination Resource Task for SCA SOAP/JMSInvocations" is
running.
CWSCA3017I: Installation task "Deployment Task for JaxWsImportBinding and JaxWsExportBinding" is
running.
CWSCA3014I: Resources for the SCA application "SCAInstallApp" have been configured successfully.
ADMA5113I: Activation plan created successfully.
ADMA5011I: The cleanup of the temp directory for application SCAInstallApp is complete.
ADMA5013I: Application SCAInstallApp installed successfully.
''

After making changes through this command, remember to call:

AdminConfig.save()

to save the configuration changes.

Once installed, the application can be seen from the WAS admin console. Applications installed
through scripting are initially in the stopped state:

Page 863

SCA Java Components
One of the component types available in an SCA assembly is a "Java Component". This is a Java
class that can be used to implement an Interface. When the assembly calls the component,
appropriate entry points in the Java code are called.

A Java component is an SCA component that has been implemented in Java. Thus, if you have an
interface and you think the best implementation of that interface would be in Java, you can drag the
interface onto your assembly diagram and choose to implement it in Java.

When doing this, a natural question arises: "if I am a component, I can have references. How do I
access them?"

Calling a Reference
When a Java component wishes to call a reference defined as WSDL, there are two cases. The first
case is the easy one: the WSDL is defined such that the input and output of the operation is a
DataObject. In such a case, the programming model is the SCA model we know and love.

Service myService = (Service)ServiceManager.INSTANCE.locateService("Name_Of_My_Reference");
DataObject inputObject = DataFactory.INSTANCE.create("Namespace_of_object",
"name_of_object");
DataObject result = (DataObject)myService.invoke("operation_name", inputObject);

But what if the WSDL operation hasn't been defined to take a DataObject but, rather, is specified as
a collection of primitives? In this case, you know you need a DataObject (since that's what the
"invoke" method wants) but you don't have one. The 'Type' support in SCA/SDO is the answer:

Service myService = (Service)ServiceManager.INSTANCE.locateService("Name_Of_My_Reference");
Reference ref = myService.getReference();
OperationType opType = ref.getOperationType("Name_Of_My_Operation");
Type targetType = opType.getInputType();
DataObject input = DataFactory.INSTANCE.create(targetType);
//
// input now points to a DataObject with an element for each input parameter on the interface.
//

Java Component Error Handling
Java Components provide the unique ability to leverage the SCA programming model directly. This
direct interaction allows a fine grained control of the client to service invocation. SOA can be
described as a series of client and service provider interactions where a service can be a client for
other services. Consider the following interaction

Component A calls component B.

Component B calls component C.

Component A is a client to the services provided by component B.

Component B is a service provider to component A and a client to component C.

Page 864

When implementing Java components that promote a comprehensive error handling strategy there
are a few factors to consider.

Defensive programming and programming with problem determination in mind encourage system
and solution stability.

The problem determination strategy is an important subset of the overall error handling goal and
should be consistent across all Java component implementation.

These considerations can be best described in the perspective of the client and the service provider.

Client Programming with Java Components

The purpose of this section is to understand service interactions and how they relate to the client
implementation.

There are two primary aspects of a client and service provider interaction. The operation type that
the service provides and the invocation pattern that the client uses to invoke the service. Refer to the
section call SCA Programming Model for a more detailed description of operations and invocation
patterns.

Additionally, when Java components are implemented there are many opportunities for the
component implementation to raise unexpected exceptions. For example, if the Java component
implementation uses a variable that is not set this could raise a NullPointerException. The best
practice should be to catch all exceptions prior to return. So as not to push the implementation of
the Java Component beyond its interface.

Synchronous Invocation Patterns

The try and catch blocks can be used to control the upstream propagation of expected and
unexpected exceptions. Failure to handle exceptions can lead to unpredictable results and overall
system instability.

Try and catch blocks should be used in the operation implementation. This will prevent the
inadvertent propagation of business and run-time exceptions.
// Call the request response service and catch any exception
try {
 DataObject errorBOReturned = eI.reqresp(errorBO);
} catch (ServiceBusinessException sbe) {

System.out.println("************* Business exception caught insync/reqresp");
System.out.println("************* " + sbe.toString());

} catch (ServiceRuntimeException sre) {
System.out.println("************* Runtime exception caught in sync/reqresp");
System.out.println("************* " + sre.toString());

} catch (Exception e) {
System.out.println("************* some other exception caught in sync/reqresp");
System.out.println("************* " + e.toString());

}

The code sample above makes a call to the reqresp method of the service via a reference.

Any exception returned from this invocation will be caught and printed to the system out log.

Business exceptions should be thrown when the java component encounters an exception that was
defined on the interface. Business exceptions must represent the signature of the fault/throws
defined on the service interface.

There are a couple of ways to create and throw a service business exception in a java component.

Page 865

The first way is to construct he business exception using a string.
ServiceBusinessException sbe = new ServiceBusinessException("************ Service Business Exception
constructed by string");
throw sbe;

The second way is to construct a data object that represents the BO defined by the service interface.
Populate the data object and throw.

BOFactory bof = (BOFactory) sm.locateService("com/ibm/websphere/bo/BOFactory");
DataObject faultBO = bof.create("http://ErrorHandling/com/ibm/summercamp",
"FaultBO");
faultBO.setString("faultString", "faultBO fault string");
ServiceBusinessException sbe = new ServiceBusinessException(faultBO);
throw sbe;

Service Run-time Exceptions

Run-time exceptions should be thrown when the java component has encountered an exception
where the exception cannot be associated to a fault/throws defined in the interface.

Dependent on the invocation style used by the client, the run-time exception will be recorded as a
failed event in the case of asynchronous type (one way, deferred response, and callback) or the run-
time exception will be returned to the client to catch and handle or propagate further up stream.

Service Run-time Exceptions are handled differently when the client is a BPEL component.

Page 866

BPEL - Business Process Execution Language
When the Web Services standard was being baked and shortly after its early adoption, the hopes for
it were extremely high. Businesses looked to create reusable services across their enterprise. All
looked good. As the services started to appear, applications were then written to build solutions
from these by writing code that called the services when needed. As time passed, more and more
services were built and patterns started to appear in the methodology of how solutions were built.
Common discussions went along the lines of "First we call Service A, then we call Service B and
depending on the outcome, we call Service C or Service D". In effect what we were seeing was the
creation of the desire to aggregate services together to flesh out the solutions. The path taken to call
the services tended to be linear with decision points along the way. Naturally this could be coded
up in Java or another programming language, but this required coders, skills and it was not readily
apparent by looking at the code just what was going on.

From this state of affairs, an idea was born. What if we could provide a descriptive language that
was oriented towards invoking services in sequence? This language would accommodate calling
services, would have variables and would provide decision points where different paths could be
followed based on the values of variables and previous service calls. This was the beginnings of the
language called Business Process Execution Language (BPEL).

At its most basic level, BPEL is an XML document that conforms to the BPEL prescribed XML
Schema. The tags in the document have precise semantics associated with them. For example, a
tag called <Invoke> causes a service to be called. By describing the sequence of steps to be
executed in BPEL and by having a runtime engine that can understand BPEL, we effectively have a
control language for invoking services in sequence. Effectively, we have created a "flowchart" like
language (that goes back to the 1970s).

BPEL became an industry standard championed by OASIS and supported by many vendors. IBM
brought a product to market that was called WebSphere Process Server (WPS) that acted as a BPEL
runtime engine. That BPEL engine is what is now found in IBM Business Process Manager
Advanced.

A BPEL process description could be written with a text editor if one knew the XML syntax for the
language … however … that would be error prone and would basically have the similar
maintenance and readability issues as was previously found by writing solutions in application
code. IBM solved this problem by providing a sophisticated BPEL editor. This editor allows the
user to build BPEL solutions visually. A canvas areas is shown and into that canvas, the various
BPEL activity types can be dragged and dropped from a palette. The activities can then be visually
wired together to describe the control flows. The end result is a flowchart style diagram which is
actually a visual representation of the underlying BPEL. This BPEL editor is now a core part of the

Page 867

IBM Integration Developer IDE used with IBM Business Process Manager Advanced.

With this brief background on BPEL, the remainder of this section will drill down into the BPEL
language and how it can be utilized with IBPM.

BPEL Activities
When one learns a new programming language (say Java for instance), you would be taught the
basic constructs of the language. This would include variable definitions, assignments, loop syntax,
function calling and others. Once you have and understanding of the grammar and can then make
sense of a single line of code when you see it, only then can you start to go further and put together
multiple lines of code to build a program. I am going to treat our learning and understanding of
BPEL in the same way. First we will examine all the separate building blocks of a BPEL program
and, once we are comfortable with those, then we can turn our attention to building complete
solutions. First, we will look at the nature of a BPEL Process.

The notion of a BPEL Process

Notice that the "P" in BPEL stands for "Process" and the "B" in BPEL stands for "Business".
Arguably, BPEL was an early beginning to the BPM story. It was definitely a start in making the
IT solutions that run a business much more comprehensible to the business process workers in such
a company. But … it could never have been written by business oriented staff. BPEL is quite
definitely in the domain of needing IT skills to build and maintain. BPEL pre-dates BPMN (which
was originally just a drawing language) and the hope was that it would bring business process
owners and IT staff responsible for creating such processes much closer together. To some degree,
that did indeed happen however because of the IT nature of BPEL, there was never truly a daily
pollination between these two camps.

So where does that leave BPEL today? My opinion is that BPEL is still extremely relevant for the
central core of what it was designed to do … namely to invoke multiple external services in a
specific order. Whether those services are business related (debit one account, credit a second
account) or IT related (Add a row to the DB2 database, place a message on an MQ queue), the
tactic is still the same. BPEL is IT centric while BPMN is business centric.

However one wishes to perceive BPEL, knowing what it is and what it isn't is extremely important
to understanding all of IBPM. Part of understanding BPEL is to understand its history and some of
its language and that brings us back to "Process". In BPEL, the most coarse grained entity we can
build is called a "Process". Going back to our flowchart analogy, the process can be thought of as
the flowchart as a whole. Before we can create BPEL activities to describe what we want to
achieve, we must first create the process.

Page 868

Variables in BPEL

When we think of an Java application, we can think of it as a combination of control statements and
variables. As the application runs, it executes sequences of statements that update and use the
values of variables within the program. At any point in time, the state of the program is
characterized by where we currently are in terms of the next Java statement to execute plus the
values of the variables in effect. BPEL is not that different. Just like programming, BPEL has the
notion of variables. A variable is a named entity within the process that has an associated data type.
As the process executes a sequence of BPEL activities, these activities can retrieve or update the
values of these defined variables. The data types of the variables can be any of the simple data
types such as string or integer but they can also be types as Business Objects allowing a variable to
represent a complex structure.

Receive Activity

When a BPEL process template is created, that does not mean that there are now running instances
of that process. Somehow instances of the BPEL processes has to be brought into existence. This
is where the BPEL Receive activity comes into play. The Receive activity is commonly found at
the start of a BPEL process template. Its purpose is to flag the starting point of the process.
Associated with the Receive is an Interface and operation. The Interface is what the BPEL process
exposes to the outside world to allow it to be invoked. If a caller invokes an operation on the
interface, it is the Receive activity within the process that is given control.

When we think of an Interface and operations on that interface we should recognize that an
operation can have input parameters. When we define a Receive activity we must also define BPEL
variables that will be used to hold copies of the passed in parameters. When an external caller
invokes the BPEL process, any parameters supplied by the caller can then be found in the variables
within the process by subsequent activities following the Receive.

In the following diagram, we illustrate this idea in more detail. A caller invokes the exposed
interface to the process and passes in parameters p1 and p2. The Receive activity is configured to
be associated with the interface and operation and also to map the incoming parameters to local
variables (v1 and v2). Following the completion of the Receive activity, control passes onwards to
the next activity in the flow.

Page 869

Reply Activity

The Reply activity is closely related to the Receive activity. When a Reply activity is encountered
in a process it sends a response back to a caller that previously caused a Receive activity to be
executed. Similar to the Receive activity, the Reply activity maps variables to the expected
response parameters of the call. When the Reply is reached, the values of the variables in effect at
that time are used as the response values to the caller. Typically, processes conclude with a Reply
activity but it is important to note that Reply does not indicate the end of the process. If there are
additional activities following the Reply, these will be executed as normal. Only one reply can be
sent to a previous caller.

In the following diagram, we illustrate the use of the Reply activity. When Reply is reached, it is
associated with the interface and operation that had a previous Receive. In addition, the values of
the variables v1 and v2 and used to build the response values to the caller of r1 and r2. Note that
the variables used for reply don't have to be the same variables used in the Receive.

Page 870

Invoke Activity

The Invoke activity is arguably the heart of the BPEL language. Its purpose is to call outbound to a
service that lives outside the process and wait for a response. When the Invoke activity is added to
the process diagram, it must name an interface and operation that it wishes to call. In the likely
event that the operation has input parameters, the Invoke activity names BPEL variables who's
values will be used and passed to the partner when the call is made. For return parameters from the
Invoke, these are also mapped to BPEL variables.

Assign Activity

In a BPEL process there are variables. The values of these variables may have been set by input
data when the process was started or set by returns from Invoke activities. It is not uncommon for
us to want to set or change the values of these variables while the process is executing as part of the
process. For example, an Invoke activity may call a service that calculates the cost of a customer's
order while a second Invoke calculates the shipping cost. The result may need to be a total cost and
hence we must update a variable used for the Reply with the sum of the two previous values.

When added to the BPEL process, the assign activity allows us to specify expressions using the
XPath language. We can assign values to the variables from either constant values or expression
based on the values of other variables.

Wait Activity

The Wait activity causes the process to suspend its own execution for a period of time. The amount
of time can be described as either a relative value from when it is executed or a specific date and
time in the future.

Page 871

Choice Activity

The Choice activity is a decision point mechanism within the process. When reached, a series of
XPath based expressions are executed. The first of these expressions that evaluates to true then
causes activities beneath that expression it to be executed. Associated with the Choice are one or
more such expressions that are called "cases".

While Loop Activity

The While Loop activity executes its child activities while a boolean expression associated with the
loop remains true. It is assumed that the activities will cause the expressions outcome to eventually
change by updating some variable's value where the expression uses that variable.

Repeat Until Loop Activity

Similar to the While Loop, the Repeat Until Loop executes its child activities until some condition
becomes false. Since the expression is evaluated after each iteration of the loop, the body will be
assured to be executed at least once.

For Each Loop Activity

The For Each Loop activity executes its body some defined number of times. This can be a fixed
loop or can be based on the number of elements in an array. The For Each Loop had a variety of
additional options that can be used to control its operation.

Page 872

Parallel Activities Activity

The Parallel Activities activity is a container for other activities. When reached, it causes all the
activities contained within to start executing concurrently with each other. The Parallel Activities
container does not terminate until all of the contained activities have themselves terminated.

Scope Activity

The Scope Activity is another container activity. When reached, it provides a new and nested
environment in which its contained activities execute. Think of it as providing a "scope of control".
Amongst its functions it includes the ability to define BPEL variables that are local in scope only to
the Scope Activity. When the Scope Activity completes, any variables associated with that activity
are deleted. In addition to variables other BPEL constructs can also be associated with the Scope
such as fault handler for handling errors, event handlers for handling out of band events and
compensation handlers for handling transactional characteristics.

Generalized Flow Activity

Normally when activities are added to a BPEL process, one activity explicitly follows another.
There is no actual visual wiring that need be done as inserting an activity after or between two
existing activities implicitly declares where it will be executed in the sequence of work. On
occasion, we may wish much finer grained control and choose to explicitly wire one activity to
another. It is here where the Generalized Flow Activity comes into play. Activities contained
within this container must be explicitly wired together to describe their order of execution.

Terminate Activity

The Terminate Activity causes the instance of the process to come to an immediate conclusion.
This activity is implicitly present as the last activity in a process and hence need not be explicitly
included. When reached, the process simply and cleanly ends. The Terminate Activity is not an
error indication.

Throw Activity

The Throw Activity results in an error condition being indicated. It is similar to the Java Language
throw construct. How the caught error is handled is dependent on whether or not there are event
handlers in place.

Page 873

In-line Human Task Activity

This activity is not currently part of the BPEL specification but is instead an IBM addition. When
reached, it causes the BPEL process to suspend and a new work item to be created for human
attention. The work item is created in the Human Task Manager engine which is distinct from the
Human Task manager functions found in the BPMN engine.

Snippet Activity

The Snippet Activity is another IBM extension to the BPEL specification. The Snippet Activity
allows us to supply in-line Java Code that will be executed within the context of the process when it
is reached. The activity has access to all the variables in the process both for read and write. By
escaping down into Java code, virtually any algorthimics that need be performed can be achieved.

BPEL Transactionality
Transaction processing is the notion that when a program or process runs, its outcome should be "all
or nothing" and not some indeterminate state. Consider for example a process that transfers funds
from one bank account to another. A simple implementation may first debit one account and then
immediately credit another. But what if there is a failure (such as a power outage) following the
debit but before the credit? The first account will have had funds reduced while the second will not
have had the funds added. We can not simply re-execute the process because this would result in
two debits to the first account and again we will be in trouble.

What is needed is the ability to react to a failure by undoing the work that was previously done so
that the process can behave as though it had never started in the first place. If it had never started,
then we would be safe to restart after a failure.

The classic IT solution to this problem is to use a paradigm called two-phase commit. In this story
when an update is made to some data by a process, the data owning system knows that it is part of a
recoverable transaction. A good example of such a data owning system would be a database.
When data is changed, added or removed, it is not really changed. It is held in a pending state until
either the transaction as a whole commits (completes successfully) or rolls back (indicates a
failure). In the event of a commit, the changes are made permanent and can no longer be undone.
For a roll back, the data owning system has the ability to undo any changes made as part of that
transaction. At the conclusion of the roll-back, the data is returned to the state it was in prior to the
transaction having started.

Two-phase commit has been around for a long while and is implemented as part of the WAS server.
Updates to recoverable resources include databases, JMS, and Java EE resources such as EJBs.
Unfortunately, there are some limitations to two-phase commit. In order for it work, all the
participants in the transaction that can own or change data must be able to know that they are part of
a transaction. This is commonly achieved through an industry standard transaction processing
protocol called "XA". Typically, Web Service calls do not participate in transactions. Web
Services have always been considered stateless. What this means is that when a Web Service call is
made to a Web Service provider, upon conclusion of the provider processing the request, it forgets
everything about the previous call and passively waits for the next one to arrive. A key concept of
two-phase commit is that the data owning system remember previous interactions and be informed
about the final outcome of the transaction. A second problem is that transactional updates to data

Page 874

owning systems must be of short duration. Imagine if this were not the case. Consider debiting an
account by $100 and then not concluding the transaction for a long period of time. During this
period another program or system may come along and ask for the value in the account. To return a
value that is $100 less than when the original process started would probably be a mistake as there
is an opportunity that the monies will be returned if the transaction is rolled back. What commonly
happens in these instances is that other users of the data are suspended until the transaction
concludes one way or another. If a transaction takes a long time to complete (say many minutes or
hours), the system can quickly grind to a halt and worse, deadlock scenarios can be introduced.

For both the preceding reasons, the BPEL standard does not support the two-phase commit
protocol. This would seem to imply that BPEL can't support transactions. Fortunately, BPEL has
come up with a solution. That solution is called compensation.

If we think back to the primary goal of transactionality which is to return the state of a system back
to its original state that existed before the process started, in the event of a failure, we can perform
an explicit undo operation to undo what was previously done. Back to our funds transfer example.
If we debit an account by $100 and then fail to credit a second account, if we perform a credit of
$100 to the original account, the end result will be that the original account is back to its starting
value. We say that the original debit has been compensated. Compensation is the act of performing
a secondary operation that reverses the first operation.

Within BPEL we can define what are called Compensation Handlers. A Compensation Handler is
a set of additional BPEL activities that can be associated with other BPEL activities. In the event
that a failure is detected, BPEL can automatically cause the Compensation Handlers to be executed.
Each Compensation Handler would this be responsible for undoing what was done previously.

BPEL and AIS
When we create an AIS we are saying that when called it will invoke an SCA module. Within that
module we can have a BPEL process. This means that we can invoke a BPEL process from an AIS.
There are some very interesting effects that we can achieve with this combination.

BPMN compensations using BPEL

One of the more interesting abilities is the idea of using BPEL compensations to undo the effect of
a BPMN described process. To illustrate this, I will keep the story generic to explain the principles
which can be applied to an arbitrary process solution. Let us start by examining a simple BPMN
process as follows:

In this story, we see that the process is composed of three steps each executed one after another.
We will assume that these steps also update external data systems (systems of record). Since the
process updates external systems, if we were to terminate or cancel the process, we may very well
be left with an inconsistent data environment. For example, if a step scheduled someones time for
some future work and the process was canceled, that person may still have the booked time on their
calendar even though there is now no need for them to do any work. Another example would be
allocating parts in a warehouse for assembly which is now no longer going to happen. Those parts
would be considered "reserved" and would incorrectly not be able to be used for other projects.

What we need to do is "undo" the steps that were previously executed to return the environment to a

Page 875

logically consistent and accurate state. One way to achieve this is to explicitly model it within our
process. An example might be:

Hopefully you can see how this would work but it also starts to get awkward very quickly. Another
possibility for modeling would be to use the "Event Sub-process" notion:

Here the "Undo" step is executed in the event of an exception. The implementation of that might
look like:

This looks a little better but now we have to explicitly track which steps in the process were actually
performed so that we can know which ones to undo. In addition, the story starts to break down if
we have branches or loops in the original process.

Ideally what we would like is the notion that the steps performed by the process which update
external systems are somehow "tracked" by the BPM run-time. Since BPM would then "know"
which steps were previously performed, BPM would then be able to automatically execute the undo
steps to rollback or "compensate" what the process had done so far before it was canceled.

Fortunately, we can achieve exactly this capability by leveraging the compensation architecture of
BPEL. When a BPEL process executes a step, BPEL remembers that it has executed that step. In
addition, we can instruct BPEL on what to do "if" that step was ever asked to be undone. Since
BPEL now knows what steps were actually performed and what to do if the step is to be
compensated, BPEL can now automatically go through its history of steps performed and execute
the compensation steps to undo those.

This is a great notion, but we want to avoid writing our business processes in BPEL but instead use
the power of BPMN and its business level comprehensibility to model. How then can we merge the
story to achieve the best of both worlds?

Page 876

With IBM BPM Advanced, we have the ability to define steps as being executed by an "Advanced
Integration Service" or AIS. When an AIS is reached in IBM BPM, this is an instruction that the
work is to be performed by an SCA module and an entry into the SCA module is achieved. Within
the SCA module, we can create a BPEL process and wire the AIS call as an entry into that BPEL
process. Putting this in simpler terms, we can have an AIS call within BPMN be a call into a BPEL
process.

What we can then picture in our minds is something along the following lines:

What this picture represents is the notion that the BPMN process does not make the changes to the
external data systems. Instead, BPMN uses AIS to ask BPEL to make the changes. Since BPEL is
making the changes, BPEL knows which steps were performed and how to undo those in the event
of a failure.

So far so good, so let us start taking this notion to the next set of steps with the goal of actually
achieving this design. The first thing to realize is that when the BPMN process runs we can
logically think of it as being a process that runs for some period of time until it has a final outcome.
Similarly, we need a corresponding BPEL process to also exist for the same duration. The BPMN
process and the BPEL process are distinct from each other. There is no known technique that will
cause the BPEL process to complete simply because the BPMN process completes. This means that
we have to introduce a signaling mechanism that is executed at the very end of the the BPMN
process to say that the process has completed and that the corresponding BPEL process can also
complete. It is important that we do tell BPEL that it is complete so that it no longer has to
maintain the knowledge of how to undo previous steps. If we failed to do this, BPEL would have to
remember how to undo previous steps that are no longer ever going to be asked to be undone. We
would have a resource leak that would hurt us.

The second thing to consider is that if the BPMN process is asked to undo, we need to tell the BPEL
process that it too has to undo its previous work. This introduces a second signal that should be
sent from the BPMN process that asks BPEL to rollback. Putting these together we are saying that
the BPMN process must either tell BPEL that we are complete or that we are to compensate. One
of these must be performed before the BPMN process can be forgotten.

We will call these two types of signals BPEL_Commit and BPEL_Compensate.

Page 877

Given that there may be many instances of the BPMN process in existence, it is important that we
direct requests to the corresponding correct instance of the BPEL process. This is achieved through
the concept of "correlation" which is a first class entity in the BPEL world. In order to achieve
correlation, it is suggested that we use the Process Instance ID of the BPMN process as the
correlation key.

The signature of the two signals then becomes:

• BPEL_Commit(String correlationId) – When called, causes the BPEL process
to complete and release any resources needed for subsequent compensation.

• BPEL_Compensate(String correlationId) – When called causes the BPEL
process to execute compensation for all previously executed steps.

Looking back at the implementation of the data updates that the BPMN process wishes to perform,
we saw that each of these will be modeled in BPMN as AIS services. We now also see that these
AIS calls will also need the correlation ID so that all work is performed within the same BPEL
process instance.

Hopefully we now see all the pieces that we need to provide in the BPMN side of the house to
achieve our model and now we turn our attention to the details of the BPEL story.

We see that in Process Designer, we have the following AIS definitions.

When we open the project in IID, we see the same items:

Next we implement these choosing "Empty implementation". At the end of this, we now have entry
points for each of the AIS's:

Page 878

Before we go any further, let us look at a generated interface for one of these AISs:

Notice that the operation name generated is "invoke". This is the same operation name for each of
the services. We will run into problems if all our operations have the same name as the BPEL
interface built for us won't be able to distinguish one operation from another. What we now should
do is rename the operation names in each of the generated interfaces. This is an easy task and a
good name for the operation is the same name as the service as there will only ever be one operation
per service.

With this done, we can create a new BPEL process and wire each of the SCA entries into the
process. The result will be:

Page 879

The way to interpret this is that each AIS call will now result in an entry into the BPEL Process.

Now comes the fun part. Now we have to implement the BPEL process to achieve all of these
steps. One possible solution looks as follows and is extensible to a wide variety of situations:

To fully comprehend the elegance of this solution, one really has to have an understanding of
BPEL. What follows is a summary description.

The core of the solution is a "while loop" which simply loops forever. Within the while loop is the
BPEL "Receive Choice" activity. This suspends the process until such time as one of the interfaces
to the process is called. The Receive Choice will be waiting for any and all of the different types of
interface in our story. Through the magic of BPEL, there won't actually be an instance of this
process in existence before the first call from BPMN. The Receive Choice is flagged to create a
new process if none already exist. This causes the BPEL run-time to listen as though there was a
process but no actual process is present. When the first call arrives for which there is no
corresponding correlation ID, a new instance will be created. For all subsequent calls with the same
correlation ID, the requests will be directed to the already existing instance for processing.

The "function" steps (Step A, Step B and Step C in this example) have a BPEL "Scope" attached to
them. Within this Scope we perform the logic necessary to achieve the required request. This
could be a database update, a Web Service call, a messaging call or a wide variety of other
possibilities. Associated with each BPEL Scope is a compensation handler. This is the logic that
will be invoked to "compensate" for the work done in the body of the scope should compensation
be needed. It is this logic plus the associated data that the BPEL run-time remembers should it need
to subsequently perform compensation. The logic to actually perform the compensation is itself
defined in the compensation handler and can again be any of the back-end integrations that may be

Page 880

needed. Remember also that the data needed to perform the compensation is also part of the
compensation scope and hence quite subtle and sophisticated permutations are handled
automatically for us.

The logic of "BPEL Commit" is merely to terminate (gracefully and normally) the BPEL process.
This causes the run-time to clean up any data it may be hanging on to that allows it to perform
future compensation.

Finally, the "BPEL Compensate" throws a BPEL exception to cause the BPEL process to
compensate itself.

The final BPMN process that takes advantage of this story looks as follows:

Here we execute the BPEL_Compensate AIS if either an Ad Hoc request to cancel the process
arrives or an unexpected exception is trapped.

See also:

• Advanced Integration Service

• Inter-operating between a BPMN process and an SCA module

Page 881

Mediations and ESB
Having looked at SCA and BPEL we are now ready to examine another core concept of the IBPM
Advanced product. SCA allows us to decouple service callers and service providers from the tight
coupling that might be needed to invoke them. BPEL allows us to provide process flow control to
describe the sequence of execution. There is still another level of function that we may need. That
function is generically called "mediations".

Mediations deals with aspects of the physical bridge to the outside world. When we think about
Web Services calls, JMS calls, MQ calls or other interactions, we can easily imagine simple
invocations of these technologies. Nine times out of ten, these simple interactions are all that are
needed but in some circumstances, we need to exercise detailed and low level control and access.
Consider for example a JMS message that contains a property in its header that defines when the
message was originally sent. This is not usually surfaced through SCA as SCA abstracts away the
details of technical interaction. Consider a Web Service provider that, when called, expects a
special token in the SOAP header. Again, an SCA Import doesn't normally accommodate such
things as the call to SCA hides the identity and nature of the target system from whomever may be
trying to call it.

To solve such problems, lower level access to the physical headers of incoming and outgoing
requests has been exposed.
• Book – WESB 7.0 Development Guide

• DeveloperWorks – Building mediation flows in WebSphere Integration Developer for deployment on WebSphere ESB or WebSphere Process
Server – 2009-08-19

Service Message Object (SMO)
The Service Message Object (SMO) is a representation of the data to be transformed and the
resulting output of that transformation. The SMO contains more than just application data. It
contains headers for MQ, SOAP and others as well as contextual information that can be saved and
later made available. It is essential to learn the SMO in order to use the mediations capabilities.

When a message arrives at an SCA module from outside of IBPM, it may have protocol information
associated with it such as MQ or JMS headers or SOAP envelope information. In addition if a
request is made outbound from a module, we may wish to set the protocol information. This is
above and beyond the payload of the message itself.

In order to work with such information, a tree data structure called the Service Message Object is
created by the system. When building a mediation flow, it is the SMO we work with. The SMO is
a large and complex data structure. Fortunately it is well organized and doesn't require full mastery
of all of its fields in order to be useful.

context

correlation

transient

failinfo

failureString

origin

Page 882

http://www.ibm.com/developerworks/websphere/library/techarticles/0908_ferrier/0908_ferrier.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0908_ferrier/0908_ferrier.html
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC34-7206-00

invocationPath

inTerminal

name

outTerminal

predecessor

primitiveContext

EndpointLookupContext

endpointReference

registryAnnotations

classification

relationship

FanOutContext

iteration

occurrence

WTXContext

shared

dynamicProperty

propertySets

group

properties

name

value

type

isPropagated

userContext

entries

name

value

type

headers

SMOHeader

MessageUUID

Version

MessageType

Operation

Action

Target

AlternateTarget

SourceNode

SourceBindingType

Interface

Page 883

JMSHeader

JMSDestination

JMSDeliveryMode

JMSMessageID

JMSTimestamp

JMSCorrelationID

JMSReplyTo

JMSRedelivered

JMSType

JMSExpiration

JMSPriority

SOAPHeader

namespace

name

prefix

value

SOAPFaultInfo

faultcode

faultstring

faultactor

extendedFaultInfo

properties

name

value

type

MQHeader

md

control

header

HTTPHeader

control

header

EISHeader

WSAHeader

body

attachments

contentID

contentType

data

bodyPath

Page 884

Mediation Primitives
A mediation flow component is itself composed of a sequence of one or more primitive actions that
are visually composed in WID. In some products such actions are called nodes while in WPS they
are called primitives. A mediation flow is characterized by the combination of these primitives and
the configuration attributes associated with each of the primitives.

Input primitive

Every mediation flow starts with an Input primitive. This is the start of the transformation.

Callout primitive

The callout primitive is usually the end of the transformation. When a callout is reached, the SMO
passed into it is sent out the reference terminal of the SCA Mediation Flow node and sent onwards
to what ever is wired to that terminal on the assembly diagram.

The properties of the callout primitive are shown below:

Async timeout (seconds) – The amount of time in seconds after a request message is sent before
waiting for a response is abandoned. The default value of this is only 5 seconds which is probably
too low, especially when performing manual testing. Other values for this include “0” for
immediate return and “-1” for no timeout (unlimited duration).

Invocation Style – One of Synchronous, Asynchronous or Default. Default will eventually
resolved to either Synchronous or Asynchronous based on some convoluted rules.

Business Object Map primitive

Custom Mediation primitive

The Custom mediation primitive provides the ability for the programmer to code mediation logic in
the Java programming language. Within the primitive, the programmer has addressability to the
SMO data structure and can see/play with all aspects of the incoming data. The logic can also
choose which of the defined output terminals an outgoing SMO will be sent.

In the code for the Custom Mediation there are a number of predefined objects:

Page 885

• smo – ServiceMessageObject – The DataObject that contains the data passed in

• inputTerminal – InputTerminal – The terminal of the node on which the data arrived

• out – OutputTerminal – The terminal of the node that is the output terminal

BOFactory boFactory =
(BOFactory)ServiceManager.INSTANCE.locateService("com/ibm/websphere/bo/BOFactory
");
DataObject newBody = boFactory.createByMessage("http://Med1Tests/I1",
"operation1ResponseMsg");
DataObject operation1Response = newBody.createDataObject("operation1Response");
DataObject output1 = operation1Response.createDataObject("output1");
output1.setString("x", "xVal");
output1.setString("y", "yVal");
output1.setString("z", "zVal");
smo.setBody(newBody);
out.fire(smo);

Data Handler primitive

The purpose of the DataHandler primitive is to transform data from one format to another by
executing a DataHandler. This primitive's configuration allows us to name the data handler type to
be used. The configuration is made in the Details section in the Properties view within WID. The
following screen shot illustrates this screen.

First, the DataHandler configuration is selected. This is where we select the DataHandler to be
invoked at runtime. Clicking on the Browse button opens the DataHandler configuration window:

Page 886

From here we can select one of the existing DataHandler known to the DataHandler registry.
Alternatively, we can select a custom DataHandler from the lower part of the screen. This will
examine the workspace looking for a Java Class that implements DataHandler. Optionally, this
DataHandler class can be added to the binding registry.

Once the DataHandler has been selected, the Source XPath and Target XPath locations can be
supplied. These are locations within the SMO where the input data to the DataHandler will be
sourced from and where the output data from the DataHandler will be stored. If a custom data
handler is being written, this is data that will be sent to the source parameter of the transform
method. The data type of the target field will be the class supplied in targetClass.

Database Lookup primitive

This mediation primitive enables the message to be augmented with information from a database.
The primitive is configured with the JNDI name of a JDBC data source, the name of a table in that
database and the name of the column in that table that should be used as a key. An XPath
expression is then given that defines where that key is located in the input message. At runtime, the
row matching that key is retrieved. If a matching row is not found then the message is propagated to
the ''keyNotFound'' terminal unchanged. The primitive can then configured with the columns in the

Page 887

returned row that should be set in to the message at locations given by XPaths. The augmented
message is then passed to the out terminal. If processing fails, for example because a connection to
the database cannot be achieved, then the message is passed to the fail terminal.

A common pattern is likely to be to use a database lookup to place information in to the transient
context of the message and then wire the output to a filter which will then use the information that
has been retrieved to make a routing decision.

Endpoint Lookup primitive

See Also
• DeveloperWorks – Use mediation flows to integrate WebSphere Service Registry and Repository with WebSphere Process Server – 2008-11-

10

Event Emitter primitive

Fail primitive

Fan In primitive

See also:

• DeveloperWorks - Aggregation functionality in IBM WebSphere Enterprise Service Bus V6.1, Part 1: Introduction to aggregation – 2008-03-
13

• DeveloperWorks - Aggregation functionality in IBM WebSphere Enterprise Service Bus V6.1, Part 2: Service invocation – 2008-03-27

• DeveloperWorks - Aggregation functionality in IBM WebSphere Enterprise Service Bus V6.1, Part 3: Best practices and patterns for
aggregation – 2008-04-24

• DeveloperWorks - Building an aggregation function using WebSphere ESB - 2007-08-15

Fan Out primitive

See also:

• DeveloperWorks - Aggregation functionality in IBM WebSphere Enterprise Service Bus V6.1, Part 1: Introduction to aggregation – 2008-03-
13

Page 888

http://www.ibm.com/developerworks/webservices/library/ws-websphereesb1/
http://www.ibm.com/developerworks/websphere/library/techarticles/0708_butek/0708_butek.html
http://www.ibm.com/developerworks/webservices/library/ws-websphereesb3/index.html
http://www.ibm.com/developerworks/webservices/library/ws-websphereesb3/index.html
http://www.ibm.com/developerworks/webservices/library/ws-websphereesb2/
http://www.ibm.com/developerworks/webservices/library/ws-websphereesb1/
http://www.ibm.com/developerworks/websphere/library/techarticles/0809_cui/0809_cui.html

• DeveloperWorks - Aggregation functionality in IBM WebSphere Enterprise Service Bus V6.1, Part 2: Service invocation – 2008-03-27

• DeveloperWorks - Aggregation functionality in IBM WebSphere Enterprise Service Bus V6.1, Part 3: Best practices and patterns for
aggregation – 2008-04-24

• DeveloperWorks - Building an aggregation function using WebSphere ESB - 2007-08-15

Flow Order primitive

Gateway Endpoint Lookup primitive

The purpose of this primitive is to perform a lookup of a service registry to dynamically retrieve the
endpoint of a target service. This primitive is used in the Gateway and Proxy service patterns.

There are three different techniques for resolving an endpoint via lookup. These methods are:

• URL – The URL to the gateway module has had the name of a virtual service appended to it.
For example, if the gateway can be reached at http://localhost/MyExport then
sending a request to http://localhost/MyExport/Gold will attempt to lookup a
target service with the virtual service name of Gold.

• XPath – The XPath location of a field in the SMO that is resolved to a value at runtime. This
field is then used as the Virtual Service name in the lookup in the built-in proxy gateway
configuration set by the administrator through Business Space.

• Action

The information returned from the lookup causes changes to be made to the SMO. Specifically, the
following changes are made:

Page 889

http://www.ibm.com/developerworks/websphere/library/techarticles/0708_butek/0708_butek.html
http://www.ibm.com/developerworks/webservices/library/ws-websphereesb3/index.html
http://www.ibm.com/developerworks/webservices/library/ws-websphereesb3/index.html
http://www.ibm.com/developerworks/webservices/library/ws-websphereesb2/

• The endpoint address of the resolved target is placed in
/headers/SMOHeader/Target/address

• If there are alternate targets, a list of these is placed in
/headers/SMOHeader/AlternativeTarget

• Details of all services found are placed in the context
/context/primitiveContext/EndpointLookupContext

HTTP Header Setter primitive

JMS Header Setter primitive

Message Element Setter primitive

Page 890

Message Filter primitive

Message Logger primitive

Message Validator primitive

MQ Header Setter primitive

In an MQ message, there can be multiple headers that prefix the payload of the data. These
include:

• MQRFH2

• MQCIH

• MQIIH

in addition there is a mandatory header of which there can be only one called MQMD.

The purpose of this primitive is to create, copy or delete whole headers as well as set values in those
headers. We can create multiple instances of MQRFH2, MQCIH and MQIIH but because there is
only one MQMD, it doesn't mean anything to try and create a second instance or delete the original
instance of that structure.

This primitive can be very useful for creating an MQHeader in an SMO where no MQHeader exists
(for example when the flow was started by something other than MQ).

When using this primitive for the first time, the following instructional box may appear:

In the dependencies section of the module that contains the primitive, check the box for MQ Header
primitive schemas.

Page 891

Policy Resolution primitive

When a mediation flow is given control, it executes based on the logic in the mediation in
combination with the data supplied with the incoming message. For example, the logic in the
mediation may say that a discount applied if the price is over $1000. The price of an actual order
may be found in the body of the incoming message. This works just fine but suffers from a
maintenance issue. If the decision logic changes periodically, such as the price at which the
discount applies or the value of the discount itself, we would have to open up the Mediation in
Process Designer, make the change, save the module and redeploy to the server. Hardly an agile
environment. Fortunately, the mediation technology provides a potential solution for this through
the use of exposed promoted properties. A property of a mediation can be a variable value used in
the solution or a variety of other configurable artifacts. If a property is promoted then it can be
dynamically changed through the WAS admin console. This is an improvement but still requires
detailed WAS admin console access and means that all mediation flow instances have to use the
same single value.

The latest solution is to make use of WSRR and the WS-Policy specification. Using this technique,
a set of one or more WS-Policy files can be registered with WSRR. At runtime, the Policy
Resolution primitive can be used to contact the WSRR server and dynamically select one or more of
those policies based on the values of data passed in as part of the incoming message. Because the
policy data is stored as part of WSRR, it is much easier to maintain and modify.

See Also

• DeveloperWorks – Mediation policy for target services: Constructing a dynamic mediation for WebSphere ESB V7 based on which target
service has been selected – 2010-01-27

• DeveloperWorks - Policy lookup with WebSphere Service Registry and Repository using the policy resolution primitive in WebSphere ESB
V6.2 – 2009-06-24

• DeveloperWorks - What's new in WebSphere Enterprise Service Bus V6.2, Part 3: Mediation policy - 2009-06-17

Service Invoke primitive

Page 892

http://www.ibm.com/developerworks/websphere/library/techarticles/0906_jackson3/0906_jackson3.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0906_warrier/0906_warrier.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0906_warrier/0906_warrier.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1001_hulse/1001_hulse.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1001_hulse/1001_hulse.html

Set Message Type primitive

SLA Check Primitive

SOAP Header Setter Primitive

Stop primitive

Subflow primitive

Trace primitive

Type Filter primitive

UDDI Endpoint Lookup Primitive

Page 893

Mapping primitive

The purpose of a Mapping transformation is to build a new SMO using an existing SMO as input
data. The ID based tooling present a source tree structure representing the input SMO and a
destination or target tree structure representing the result. The developer can then perform wiring to
map the source fields to the target fields. When a wiring is made, this is called a transform. ID
provides a set of pre-defined transforms to achieve the mapping.

The primitive is called an XSLT transformation as the result of using ID to generate the mappings is
saved in a proprietary IBM format called a ".map" file. This .map file is then itself transformed
automatically into an XSLT file. It is this XSLT file that is executes by IBPM at run-time using an
XSLT 1.0 or XSLT 2.0 processing engine.

When defining the XSLT transformation, you have the ability to select how much of the SMO you
wish to map to/from. There are four choices:

• / – Map the whole SMO

• Context – Map only the context section of the SMO

• Headers – Map only the headers section of the SMO

• Body – Map only the body section of the SMO

Core transformations

• append – ???

• assign – Assign a specific hard-coded value to the output element.

• concat – concatenate two or more input elements into an output element. Suffices, prefixes

Page 894

and delimiter characters can be introduced.

• convert – Transform a simple data type to another simple data type

• custom – Invoke direct code to perform the transformation. The code can be supplied as Xpath,
XSLT or Java. See also
◦ developerWorks - XML mapping in WebSphere Integration Developer V7, Part 2: Working with complex XML structures - 2010-03-24

• for each – Iterate over an array executing a transformation for each element in the array. The
output must also be an array.

• move – Move is the simplest transformation. It copies the value of the source field to the
target field.

• group – ???

• if, else if, else – ???

• join, merge – Merge is similar to local map but instead of just providing a single input source,
multiple input sources can be supplied

• local map – A local map is a stylistic assistance. It allows a mapping from a complex structure
to another complex structure to be nested into an easier to manage sub-mapping. Unlike

Page 895

http://www.ibm.com/developerworks/websphere/library/techarticles/1003_spriet2/1003_spriet2.html#Custom

submaps, a local map provides no reuse.

• lookup – ???

• move – ???

• normalize – White space is removed from the string.

• submap – A submap invokes a named pre-existing map to perform the transformation. This
allows a map to be created once and re-used in multiple transforms.

• substring – ???

XSLT and XPath functions

Calling Java

Within an XSLT primitive mapping, there is the ability to invoke a Java function. This Java must
be implemented in a Java class available to the project. Within the Java class, any method that is to
be called from the XSLT must be defined as static. The parameters to the method will be taken
from the input parameters supplied in the WID editor. The return value from the method will be the
value stored in the target.

The catalog of Data Maps

Over time it is not uncommon to create large numbers of Data maps as part of an enterprise
solution. ID provides a view call the Data Map Catalog that shows all the available maps plus their
inputs, outputs and other related information. From this you can quickly find the map you may
wish to use or reuse.

The Data Map Catalog can be opened from the menu bar:

or from the Data Maps folder:

TechNotes

ID Date Description

2141767 01/28/10 MediationRuntimeException and CWSXM1025E on Move transformation on array
elements in XSL Transformation primitive

Page 896

http://www-01.ibm.com/support/docview.wss?uid=swg21417672

See Also

• DeveloperWorks - Processing an array using an XML map in WebSphere Integration Developer V7 - 2011-05-25

• DeveloperWorks - XML mapping in WebSphere Integration Developer V7, Part 1: Using the Mapping Editor to develop maps – 2010-03-24

• DeveloperWorks - XML mapping in WebSphere Integration Developer V7, Part 2: Working with complex XML structures – 2010-03-24

• DeveloperWorks - XML mapping in WebSphere Integration Developer V6.1.2, Part 1: Using the XML Mapping Editor to develop maps –
2008-11-26

• DeveloperWorks - XML mapping in WebSphere Integration Developer V6.1.2, Part 2: Working with complex XML structures – 2008-12-17

• DeveloperWorks - Using XSLT primitives for data transformation in WebSphere ESB – 2007-10-31

• DeveloperWorks - WebSphere Integration Developer and WebSphere ESB advanced topics, Part 2: Data enrichment, transformation, and
validation – 2007-10-31

• DeveloperWorks - Advanced XSL transformation mediation of arrays in WebSphere ESB – 2006-10-18

The Service Gateway pattern
Consider the following illustration. It shows a series of service requesters invoking a series of
service providers using ESB technology to mediate between them. As is commonly the case, the
ESB may be protocol switching or performing data content/format transformation or some other
such task. Obviously this works but can we do better?

Now lets us consider this next diagram:

Page 897

http://www.ibm.com/developerworks/websphere/library/techarticles/0610_lin/0610_lin.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_chan/0710_chan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_chan/0710_chan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_telang/0710_telang.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0812_rice/0812_rice.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0811_rice/0811_rice.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1003_spriet2/1003_spriet2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1003_spriet1/1003_spriet1.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1105_gooderham/1105_gooderham.html

Once again we have a series of service requesters and service providers but now the routing flows
through something called a Service Gateway. A Service Gateway is nothing new from an SCA
Mediation perspective, instead it is a pattern of usage as opposed to a radically new technology.
The Service Gateway can be thought of as an aggregation of function into a single mediation where
previously there would otherwise have been multiple mediations.

Looking at the Service Gateway pattern, it isn't immediately obvious what problem it solves or
benefits it adds. However, there are many. Some of them include:

• Common and consistent processing of requests such as logging or auditing.

• Addition or removal of service providers dynamically.

• Additional quality of services such as security.

By using the Service Gateway pattern, the target provider services all become accessible through a
single incoming endpoint. The providers that are exposed through the Service Gateway effectively
become a set of target services that become logically grouped together.

Within Integration Developer, there is a wizard that is available to create these patterns. It can be
found at Window > Show View > Patterns Explorer.

The Service Gateway patterns do not need to be created through the wizard; they can just as well be
created by hand.

See also

• DeveloperWorks - What's new in WebSphere Enterprise Service Bus V6.2, Part 2: Service gateway patterns - 2009-06-10

Proxy Gateways

Consider an example where we have three possible back-end service providers. These may relate to
customer service levels such as Silver, Gold and Platinum. If we have a calling service, this would
appear to need bindings to each of the three back-end services. This is not a great solution. It could
easily end up being brittle. Binding the client to three back-end services doesn't give us much
flexibility if we need to change a service location. In addition, we would have to replicate three
qualities of service for each of the different back-ends. For example, if we wanted to add logging to
the logical service, we would have to perform that task three times.

The solution provided by the mediations functions is the introduction of something called a virtual
service. Think of a virtual service as being a logical name of a target service which, at runtime, is
resolved via a lookup to the actual service that is to be called. By utilizing this technique, we have
again separated the caller from the target service. The caller now supplies the name of the virtual
service to be invoked and the mediation performs the determination of how to reach the physical
service that the virtual service represents. This pattern is caller a Proxy Gateway.

Page 898

http://www.ibm.com/developerworks/websphere/library/techarticles/0906_jackson2/0906_jackson2.html

When a caller invokes a mediation that uses this Proxy Gateway pattern, the mediation looks at the
request and then performs a calculation to determine the final destination and then routes the
request onwards for processing. The mediation thus becomes a proxy (or stand-in) for the real
target service.

The core technology behind the Proxy Gateway pattern is the mediation primitive called the
Gateway Endpoint Lookup primitive.

Proxy Gateways are managed from within Business Space using the widget called Proxy Gateway.
This can be found in the Solution Operations folder.

Let us look at an example. Imagine we have a Gateway Endpoint Lookup that has the following
definition:

Now we need to introduce the concept of a Proxy Group. A Proxy Group is a logical set of service
providers that are collected together in a named group/set. By grouping them together we have a
way to refer to them as a unit. Notice that in our example we have defined a proxy group called
"proxyGroup1". Once the module containing the mediation that contains the gateway endpoint
lookup is deployed, a new entry will be found in the Business Space Proxy Gateway widget:

Note the name of the proxy group and the name of the proxy gateway. The proxy gateway name is
the name of the module. On the right hand side of the entry there is a pencil icon which indicates an
editing session. This is where we associate endpoints with the group. Here is an example of some
endpoints already added.

Page 899

Note the primary attributes of an entry. There is the virtual service name, the endpoint and whether
or not it is enabled. To add a new virtual service, enter the location of the wsdl in the WSDL
location text box and click the Add Service... button.

We are presented with the details of the new virtual service to add. Clicking Save will save the
definitions. A Virtual Service is the mapping of a named entry to a concrete or real endpoint. So
based on what we have seen, a Proxy Gateway is a module that can have one or more Gateway
Endpoint Lookup primitives. Each one of these can define one or more Proxy Groups and a Proxy
Group is a collection of one or more Virtual Services.

Obviously this information has to be stored somewhere. IBPM Advanced provides a built-in
storage mechanism for hosting this data. It is the Business Space widgets that provide the
administration of these logical functions.

For additional details on using the Proxy Gateway pattern, see the Gateway Endpoint Lookup
primitive.

See Also

• DeveloperWorks - Developing and deploying a proxy gateway using WebSphere ESB V7, WebSphere Integration Developer V7, and Business
Space powered by WebSphere – 2010-07-14

SOAP Message Attachments

Page 900

http://www.ibm.com/developerworks/websphere/library/techarticles/1007_jackson/1007_jackson.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1007_jackson/1007_jackson.html

With Web Services, a request from a caller is sent to a provider. The caller builds an XML
document that conforms to the industry standard SOAP specification that encodes the request that is
desired to be made. This is then usually transmitted over HTTP to the service provider which
unpacks the SOAP request, performs the work requested of it and may send back a response.

There are cases however where the caller wishes to send over what we generically call attachments.
These are commonly much larger items that parameter fields and include such things as images,
scanned fax documents, zip files, or office documents. Typically these attachments are natively
represented as binary data which is not suitable for encoding within the normal SOAP body as
parameters. The product has a limitation of no more than 20 MBytes for the total attachment sizes.

The trick to passing these attachments is to encode them using the Multipart Media (MIME).

Here is an example SOAP message with an attachment:

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
 start="<claim061400a.xml@claiming-it.com>"
Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <claim061400a.xml@claiming-it.com>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
..
<theSignedForm href="cid:claim061400a.tiff@claiming-it.com"/>
..
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: image/tiff
Content-Transfer-Encoding: binary
Content-ID: <claim061400a.tiff@claiming-it.com>

...binary TIFF image...
--MIME_boundary--

There are a number of styles of SOAP with attachments. The first is called an unreferenced
attachment. It is called this because in the SOAP envelope there is simply no reference to the
contained attachment. The alternative is known as a referenced attachment. In this case, an
element in the SOAP message logically refers to the attachment data.

See Also:

• DeveloperWorks - Using attachments in SOA applications with WebSphere Integration Developer V7 – 2010-03-17

• DeveloperWorks - Using SOAP with attachments in WebSphere Enterprise Service Bus 6.2.0.1 – 2009-08-05

• WS-I - Attachments Profile Version 1.0 - 2006-04-20

• W3C - SOAP Message Transmission Optimization Mechanism – 2005-01-25

• W3C – SOAP Messages with Attachments – 2000-12-11

Tracing

Page 901

http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/soap12-mtom/
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ibm.com/developerworks/webservices/library/ws-SOAPWESB/
http://www.ibm.com/developerworks/websphere/library/techarticles/1003_bist/1003_bist.html

A suitable WAS trace flag for tracing mediations is:

com.ibm.ws.sibx.*=all

Page 902

Business Calendars
See also:

• DeveloperWorks - Using WebSphere Process Server business calendars in business processes – 2009-03-25

• DeveloperWorks - Comment lines: Bhargav Perepa: Business calendars and timetables can be fun - 2009-01-28

JCA Adapters
Many back-end systems that we wish to integrate with may not be exposed as logical services. This
means that they have no generic interface to them. There is no Web Service, JMS, MQ or REST
access. In order to interoperate with services like these, we would have to write connector code.
Classically such connectors are called adapters. IBPM Advanced supplies a set of adapters that can
be integrated with the SCA framework. These adapters are based on the Java Connector
Architecture (JCA). The following section provides descriptions of these adapters and how they
might be utilized.

Flat File Adapter
The Flat File adapter provides the ability to write to a file or read from a file from an SCA Import or
Export. At a high level, the adapter provides the following functions:

• Create a new file where one did not previously exist

• Append to an existing file or overwrite the content of an existing file

• Get the content of a file

• Obtain a list of file names in a given directory

• Delete an existing file

• Determine if a named file exists or not

• Periodically check a folder for the existence of new files

Inbound processing is when the adapter is watching a folder for the arrival of new files. The
adapter polls the directory on a configurable frequency. When a file is found, its content is read and
turned into a BO. The transformation from physical file data to a BO is performed by a
DataHandler.

Outbound processing is when the SCA module wishes to create, update, delete or list files. Again,
BO to physical data transformation has to take place and again this is performed through a
DataHandler.

Sample – Reading a Flat File with delimited data

Here is a sample walk through of reading a Flat File as input which contains delimited data.

We will start by considering a Business Object definition that looks as follows:

Page 903

http://www.ibm.com/developerworks/websphere/techjournal/0901_col_perepa/0901_col_perepa.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0903_khangaonkar/0903_khangaonkar.html

Our goal is to read a record from a file which looks like:

"Val1", "Val2", "Val3"

which will create an instance of the BO. We create an Inbound Flat File adapter which launches the
wizard:

We next select the implementation of the Adapter to be used.

Page 904

The adapter to be read is loaded into its own Java project. The adapter is loaded from a RAR file.
We are asked to name the Workspace project that will hold the RAR.

Page 905

Now we get into the core wizard screens of the Flat File adapter. There are a lot of properties here
covering the myriad of permutations available from the adapter.

Page 906

Page 907

Page 908

Page 909

Page 910

Page 911

Page 912

Page 913

Page 914

Page 915

Page 916

Page 917

Page 918

Page 919

See also:

• DeveloperWorks - SOA integration: Decouple service consumers from service providers over an ESB - 2008-06-16

• DeveloperWorks - Using WebSphere Integration Developer and WebSphere Flat File Adapter with custom data bindings - 2007-10-10

• DeveloperWorks - Getting connected with WebSphere Integration Developer adapters : Part 2, An introduction to the WebSphere Adapter for
Flat Files - 2007-05-09

• DeveloperWorks - Building an ESB mediation to transform delimited files to service invocations - 2006-10-04

• DeveloperWorks - Use a generic data handler for inbound delimited flat files using WebSphere Process Server and WebSphere JCA adapter for
flat files - 2006-07-26

• DeveloperWorks - Implementing custom databinding and custom function selectors in IBM WebSphere Adapters – 2006-06-14

Page 920

http://www.ibm.com/developerworks/websphere/library/techarticles/0606_mishra/0606_mishra.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0607_telerman/0607_telerman.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0607_telerman/0607_telerman.html
http://www.ibm.com/developerworks/websphere/tutorials/0610_telerman/
http://www.ibm.com/developerworks/websphere/techjournal/0705_gregory/0705_gregory.html
http://www.ibm.com/developerworks/websphere/techjournal/0705_gregory/0705_gregory.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_johnson/0710_johnson.html
http://www.ibm.com/developerworks/webservices/tutorials/ws-soa-decouple/

JDBC Adapter
The JDBC adapter provides a service interface to database operations. The adapter utilizes the
JDBC packages and hence the name of the adapter. In principle, any database that utilizes JDBC
can be accessed through this adapter. This includes all the usual suspects.

We create an outbound adapter by selecting the outbound JDBC adapter entry:

We are then asked for the name of the project to be created that will contain the JDBC configuration
and code:

Page 921

Page 922

Page 923

See also:

• DeveloperWorks - Ensuring high availability and performance of events delivery with WebSphere Process Server and WebSphere JDBC
Adapter – 2009-12-02

• DeveloperWorks - Getting connected with WebSphere Integration Developer adapters : Part 3, An introduction to the WebSphere Adapter for
JDBC - 2007-06-13

Page 924

http://www.ibm.com/developerworks/websphere/techjournal/0706_gregory/0706_gregory.html
http://www.ibm.com/developerworks/websphere/techjournal/0706_gregory/0706_gregory.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0912_yuan/0912_yuan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0912_yuan/0912_yuan.html

Advanced Web Services
Beyond the basic concept of Web Services as used to invoke one service from another, there are
advanced concepts that occasionally come into play. This section discusses some of these concepts
and describes how they can be used in conjunction with IBPM.

WS-Notification
WS-Notification is an open standard that overlays the concepts of Publish and Subscribe on top of
Web Services. WebSphere Application Server implements v1.3 of the specification.

A NotificationProducer is a component that produces messages. Put another way, the
NotificationProducer is a message publisher. In the WS-Notification specification, messages that
are published are called “Notifications”. Another concept is the component known as the
NotificationConsumer. Relating this back to the more common publish and subscribe terminology,
this can be though of as a subscriber. The NotificationProducer accepts requests from
NotificationConsumers for subscriptions. When a subscription is made, the subscription includes
information allowing the NotificationProducer to send messages to the subscriber and it also
identifies which messages should be sent.

A NotificationConsumer sends a SubscribeRequest message to a NotificationConsumer when it
wishes to register for a subscription. The subscriber is returned a reference to a Subscription that is
managed by the SubscriptionManager. A SubscriptionManager is a service that implements the
subscription management interface. The SubscriptionManager is considered to be a subordinate to
the NotificationProducer and may be implemented as part of the NotificationProducer.

When a subscriber registers a desire for a subscription, it names the form of the subscription that
should be taken. There are two possible options here. Raw notification and Notify Message
notification. The Notify Message form includes additional metadata beyond the payload of the
published message.

Subscription Manager

• GetResourceProperty

• Renew

• Unsubscribe

• PauseSubscription

• ResumeSubscription

• Destroy

• SetTerminationTime

Notification Broker

• GetResourceProperty

• Notify

• Subscribe

• GetCurrentMessage

Page 925

• RegisterPublisher

• CreatePullPoint

• GetMessages

• DestroyPullPoint

Publisher Registration Manager

• DestroyRegistration

• GetResourceProperty

• Destroy

• SetTerminationTime

To subscribe to a topic, the subscriber sends a Subscribe message. The result from this is a
Subscription.

A NotificationConsumer can itself be a Web Service provider. In this case, when the Notification
Producer generates a message, that message is sent to the NotificationConsumer directly. This
model of operation is called a “push-style” as the messages are pushed from the producer to the
consumer. There may be cases where this is not possible such as the NotificationConsumer existing
behind a firewall. In these circumstances, the consumer can utilize a “pull” model. The consumer
can “poll” the provider to see if a message it is interested in is available for retrieval. To allow this
“pull” model, a subscriber can ask the provider to create a “PullPoint”. Think of this as a location
against which published messages are collected on behalf of the subscriber.

The concept of a NotificationBroker is that it relieves a publisher and a consumer from having to
implement Web Services. The NotificationBroker performs the role of both a NotificationProducer
and a NotificationConsumer. WAS 7.0 implements a NotificationBroker so we will focus on that
for the remainder of the story. Associated with a NotificationBroker are one or more applications
that are known as “Publishers”. A publisher sends messages to be published to the
NotificationBroker.

Subscribe Request

A Subscription Request is made against the Notification Broker. It may be made by the actual
subscriber itself or on behalf of the subscriber. The subscription request names an Interface offered
by the Subscriber such that when a publish is made, the notification broker will invoke the
subscribers interface to deliver the published message. The interface offered by the subscriber
must conform to the NotificationConsumer interface provided.

Page 926

Here is a SOAP message that was mechanically captured for a successful subscription.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">

<wsa:To>http://localhost:9081/weatherWSNServiceweatherWSNServicePointNB/Service<
/wsa:To>
 <wsa:MessageID>urn:uuid:8A37D7D3CF62D4990C1283181983897</wsa:MessageID>
 <wsa:Action>http://docs.oasis-open.org/wsn/bw-
2/NotificationProducer/SubscribeRequest</wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 <Subscribe

xmlns="http://docs.oasis-open.org/wsn/b-2"
xmlns:ns2="http://docs.oasis-open.org/wsn/t-1"
xmlns:ns3="http://docs.oasis-open.org/wsrf/bf-2"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:ns5="http://docs.oasis-open.org/wsrf/rp-2"
xmlns:ns6="http://docs.oasis-open.org/wsn/br-2"
xmlns:ns7="http://docs.oasis-open.org/wsrf/r-2">

 <ConsumerReference>

<wsa:Address>http://127.0.0.1:9081/WeatherWSNConsumerPushWeb/WeatherNotification
Consumer</wsa:Address>
 </ConsumerReference>
 <Filter>
 <TopicExpression

Dialect="http://docs.oasis-open.org/wsn/t-1/TopicExpression/Simple"
xmlns:tns="http://weather"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="TopicExpressionType">tns:daily-weather</TopicExpression>

 </Filter>

Page 927

 </Subscribe>
 </soapenv:Body>
</soapenv:Envelope>

Here is a sample response message

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsa:Action>http://docs.oasis-open.org/wsn/bw-
2/NotificationProducer/SubscribeResponse</wsa:Action>
 <wsa:RelatesTo>urn:uuid:8A37D7D3CF62D4990C1283181983897</wsa:RelatesTo>
 </soapenv:Header>
 <soapenv:Body>
 <b2:SubscribeResponse xmlns:b2="http://docs.oasis-open.org/wsn/b-2">
 <b2:SubscriptionReference>
 <wsa:Address
xmlns:wsa="http://www.w3.org/2005/08/addressing">http://win7-
x64:9080/weatherWSNServiceweatherWSNServicePointSM/Service</wsa:Address>
 <wsa:ReferenceParameters
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <subscriptionId
xmlns="http://www.ibm.com/websphere/wsn/reference">sub_01ccc151d9a246c3d5c60ebc_
12ac39b203b_5</subscriptionId>
 <wsaucf:RoutingInformation
xmlns:wsaucf="http://ucf.wsaddressing.ws.ibm.com">

<wsaucf:HAClusterId>00000000020004747970650010575341465f5349425f4d455f5555494400
0475756964001046444143453444413033303532303336</wsaucf:HAClusterId>
 </wsaucf:RoutingInformation>
 <messagingEngineUuid
xmlns="http://www.ibm.com/websphere/wsn/reference">FDACE4DA03052036</messagingEn
gineUuid>
 <wsaucf:VirtualHostName
xmlns:wsaucf="http://ucf.wsaddressing.ws.ibm.com">default_host</wsaucf:VirtualHo
stName>
 </wsa:ReferenceParameters>
 <wsa:Metadata xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <ServiceName EndpointName="SubscriptionManagerPort"
xmlns="http://www.w3.org/2006/05/addressing/wsdl"
xmlns:ns1121979737="http://www.ibm.com/websphere/wsn/subscription-
manager">ns1121979737:weatherWSNServiceweatherWSNServicePointSM</ServiceName>
 </wsa:Metadata>
 </b2:SubscriptionReference>
 <b2:CurrentTime>2010-08-30T15:26:17.659Z</b2:CurrentTime>
 </b2:SubscribeResponse>
 </soapenv:Body>
</soapenv:Envelope>

To make a subscription from a mediation flow, the SMO has to be constructed as follows:

/headers/SOAPHeader[1]/nameSpace
http://www.w3.org/2005/08/addressing

/headers/SOAPHeader[1]/name

Page 928

Action

/headers/SOAPHeader[1]/value (Cast: anyURI)
http://docs.oasis-open.org/wsn/bw-2/NotificationProducer/SubscribeRequest

/headers/SOAPHeader[2]/nameSpace
http://www.w3.org/2005/08/addressing

/headers/SOAPHeader[2]/name
MessageID

/headers/SOAPHeader[2]/value
someUUID

/body/Subscribe/ConsumerReference/Address/value
WS-Hostname&Port

/body/Subscribe/Filter/TopicExpression/@Dialect (Cast: TopicExpression)
http://docs.oasis-open.org/wsn/t-1/TopicExpression/Simple

/body/Subscribe/Filter/TopicExpression/*mixed
topic value

Publishing a message

In order to publish a message, the Notification Producer uses the Web Services interface provided
by the Notification Broker and calls the Notify operation passing in the message to be published.

As of 2011-04, it appears that the notification message must be a single line of text. Errors are
reported otherwise. This problem is claimed to be fixed in WAS 7.0.0.9 and above and there is an
APAR with a fix for releases prior to that.

Here is a sample published message:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">

<wsa:To>http://localhost:9081/weatherWSNServiceweatherWSNServicePointNB/Service<
/wsa:To>
 <wsa:ReplyTo>
 <wsa:Address>http://www.w3.org/2005/08/addressing/none</wsa:Address>

Page 929

 </wsa:ReplyTo>
 <wsa:MessageID>urn:uuid:8A37D7D3CF62D4990C1283269176009</wsa:MessageID>
 <wsa:Action>http://docs.oasis-open.org/wsn/bw-
2/NotificationConsumer/Notify</wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 <Notify xmlns="http://docs.oasis-open.org/wsn/b-2"

xmlns:ns2="http://docs.oasis-open.org/wsrf/bf-2"
xmlns:ns3="http://www.w3.org/2005/08/addressing"
xmlns:ns4="http://docs.oasis-open.org/wsrf/rp-2"
xmlns:ns5="http://docs.oasis-open.org/wsn/t-1"
xmlns:ns6="http://docs.oasis-open.org/wsn/br-2"
xmlns:ns7="http://docs.oasis-open.org/wsrf/r-2">

 <NotificationMessage>
 <Topic

Dialect="http://docs.oasis-open.org/wsn/t-1/TopicExpression/Simple"
xmlns:tns="http://weather"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="TopicExpressionType">tns:daily-weather</Topic>

 <Message>
 <weatherobj xmlns=""

xmlns:ns8="http://docs.oasis-open.org/wsn/b-2">partly cloudy,-
5,SW,39,1283269151817</weatherobj>
 </Message>
 </NotificationMessage>
 </Notify>
 </soapenv:Body>
</soapenv:Envelope>

Using a mediation flow to build a WS-Notification message

The messages to be sent to the NotificationBroker can be built by a WESB mediation flow. This
involves a little work but once understood isn't that complex. Here is an example of a Notify
message:

Page 930

To describe these mapings in this document, an XPath like notation will be used:

/headers/SOAPHeader[1]/nameSpace
http://www.w3.org/2005/08/addressing

/headers/SOAPHeader[1]/name
Action

/headers/SOAPHeader[1]/value (Cast: anyURI)
http://docs.oasis-open.org/wsn/bw-2/NotificationConsumer/Notify

/body/Notify/NotificationMessage/Topic/@Dialect
http://docs.oasis-open.org/wsn/t-1/TopicExpression/Simple

/body/Notify/NotificationMessage/Topic/mixed
daily-weather

/body/Notify/NotificationMessage/Message/MyPayload (Cast: as appropriate)
data

Page 931

Topics for WS-Notification

When a subscription is made, it is made on a particular topic. This describes which publications
that notifiers publish will be delivered to a given subscriber. A Topic is actually considered a topic
expression and has rules that govern its structure.

Here is a simple example of the Topic section:

<Topic
Dialect="http://docs.oasis-open.org/wsn/t-1/TopicExpression/Simple"
xmlns:tns="http://weather"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="TopicExpressionType">tns:daily-weather</Topic>

In general, a Topic is contained within a <Topic> tag. This tag has a mandatory attribute called
Dialect which will be discussed shortly. The Dialect attribute describes how the Topic
should be interpreted. The body of the <Topic> tag identifies the topic.

There are three classes of topic expressions.

Simple Topic Expression

The class known as Simple Topic Expression has the dialect attribute of the <Topic> tag set to:

Dialect="http://docs.oasis-open.org/wsn/t-1/TopicExpression/Simple"

The topic value is an explicit value with no hierarchy descriptions nor wild cards.

Concrete Topic Expression

This class known as Concrete Topic Expression has the dialog attribute of the <Topic> tag set to:

Dialect="http://docs.oasis-open.org/wsn/t-1/TopicExpression/Concrete"

The topic value is again an explicit value but with the addition of "/" characters to represent a
hierarchy.

Full Topic Expression

The class known as Full Topic Expression has the dialect attribute of the <Topic> tag set to:

Dialect="http://docs.oasis-open.org/wsn/t-1/TopicExpression/Full"

The topic value can use XPath notation to define the topic.

Building a Notification Subscriber

A Notification Subscriber is a Web Service implementation that implements the Notification
Consumer service interface. The Notification Subscriber is the “application” that is destined to
receive the notifications that a publisher has published a message. This interface has a single
operation on it called “Notify”:

Page 932

http://docs.oasis-open.org/wsn/t-1/TopicExpression/Full
http://docs.oasis-open.org/wsn/t-1/TopicExpression/Concrete

It is the service endpoint of the NotificationSubscriber that is supplied in a subscription request.
This means that when a publisher publishes a message, the broker can look at its current set of
subscriptions and for each subscription matching the publish, send a message to the subscriber by
invoking its service interface.

A trivial implementation of the subscriber interface may look as follows:

The export is given the NotificationConsumer interface and a Web Services binding is defined.
Here is an example of an SMO generated as a result of a published message received by a
subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<Se:smo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:Se="http://www.ibm.com/websphere/sibx/smo/v6.0.1"
xmlns:_2="wsdl.http://docs.oasis-open.org/wsn/bw-2"
xmlns:_2_1="http://docs.oasis-open.org/wsn/b-2"
xmlns:ad="http://www.w3.org/2005/08/addressing"
xmlns:ht="http://www.ibm.com/xmlns/prod/websphere/http/sca/6.1.0"
xmlns:re="http://www.ibm.com/websphere/wsn/reference"
xmlns:uc="http://ucf.wsaddressing.ws.ibm.com"
xmlns:wsdl="http://www.w3.org/2006/05/addressing/wsdl">
 <context/>
 <headers>
 <SMOHeader>
 <MessageUUID>ED0819C0-012A-4000-E000-1910C0A8016F</MessageUUID>
 <Version>
 <Version>7</Version>
 <Release>0</Release>
 <Modification>0</Modification>
 </Version>
 <MessageType>Request</MessageType>
 <Operation>Notify</Operation>
 <Action>http://docs.oasis-open.org/wsn/bw-
2/NotificationConsumer/Notify</Action>
 <SourceNode>MyConsumer</SourceNode>
 <SourceBindingType>WebService</SourceBindingType>
 <Interface>wsdl:http://docs.oasis-open.org/wsn/bw-2</Interface>
 </SMOHeader>
 <HTTPHeader>
 <control>
 <ht:URL>http://localhost:9080/WSNMod1Web/sca/MyConsumer</ht:URL>
 </control>
 </HTTPHeader>

Page 933

 <WSAHeader version="http://www.w3.org/2005/08/addressing">
 <ad:To>http://localhost:9081/WSNMod1Web/sca/MyConsumer</ad:To>
 <ad:ReplyTo>
 <ad:Address>http://www.w3.org/2005/08/addressing/none</ad:Address>
 </ad:ReplyTo>
 <ad:Action>http://docs.oasis-open.org/wsn/bw-
2/NotificationConsumer/Notify</ad:Action>
 <ad:MessageID>urn:uuid:8B98FC5FF77DBF4EA81283876991522</ad:MessageID>
 </WSAHeader>
 </headers>

<body xsi:type="_2:Notify">
<_2_1:Notify>

<_2_1:NotificationMessage>
<_2_1:SubscriptionReference>

<ad:Address>http://win7-
x64:9080/weatherWSNServiceweatherWSNServicePointSM/Service</ad:Address>

<ad:ReferenceParameters>

<re:subscriptionId>sub_d0e1004de6f28244ac58deb0_12aecf2aee3_1</re:subscriptionId
>

<uc:RoutingInformation><uc:HAClusterId>00000000020004747970650010575341465f53494
25f4d455f55554944000475756964001041453745313633354531454645353134</uc:HAClusterI
d></uc:RoutingInformation>
 <re:messagingEngineUuid>AE7E1635E1EFE514</re:messagingEngineUuid>
 <uc:VirtualHostName>default_host</uc:VirtualHostName>
 </ad:ReferenceParameters>
 <ad:Metadata>
 <wsdl:ServiceName
EndpointName="SubscriptionManagerPort">ns1121979737:weatherWSNServiceweatherWSNS
ervicePointSM</wsdl:ServiceName>
 </ad:Metadata>
 </_2_1:SubscriptionReference>

<_2_1:Topic Dialect="http://docs.oasis-open.org/wsn/t-
1/TopicExpression/Simple">daily-weather</_2_1:Topic>
 <_2_1:Message>

<MyPayload>
 <a>1
 2
 <c>3</c>
 </MyPayload>

</_2_1:Message>
</_2_1:NotificationMessage></_2_1:Notify>

</body>
</Se:smo>

A WS-Notification Sample

Here we will build a complete WS-Notification sample. We will use the simple story domain of
stock prices for our illustration. We will have a publisher that is publishing stock updates. We will
also have a subscriber that is watching for such updates.

We will start by setting up a WS-Notification environment. WAS implements WS-Notification on
top of the WAS SI Bus JMS technology. We could re-use an existing SI Bus but for this story, we
will create a new bus as it is a relatively quick task.

Page 934

First we create a new SI Bus to host our Stocks topic environment.

We have decided to switch off SI Bus security at this time as this only complicates the overall story.
Once the bus has been created, at least one bus member must be added.

Page 935

Standard options were selected and the local server was added as a Bus Member.

Following the creation of a new SI Bus, we can now define a new WS-Notification environment.
This can be found here:

Page 936

Page 937

Page 938

Page 939

Once complete, the WS-Notification environment should be available. It is suggested to stop and
restart the WAS server to be sure.

In order for applications to use the WS-Notification configuration just made, they must make Web
Service calls to the server. To make a Web Service call, these applications will need WSDL that
describes the target server and operations. The WSDL for these services can be dynamically
retrieved from the new server configuration using the WAS admin console.

Page 940

Page 941

Once the WSDL and XSD files have been exported, create a new Library project to hold the
content. When the project has been created, import the ZIP file content that were exported from the
WAS server.

Page 942

Don't import all the content, just the NBModule. The NB acronym is Notification Broker.

Warning!!: When importing these artifacts, be sure to only import the files and not the folders.
The folders contain the period character (".") which can not be used as folder names in WID as this
conflicts with Java Packaging constructs.

Page 943

There are three services that we are going to be interested in. Two already exist and one we will
build. The WS-Notification environment provides operations to register a subscription for a topic
against a subscriber and also provides an operation to publish a notification. We will want to create
a service that will act as a recipient for a subscription request.

We will start with that. We create a new module and associate the library we just built with that
new module. In the module, we create an Export component and select the interface called
NotificationConsumer as the interface of that export. We define a Web Service binding for that
export. Finally we implement a trivial mediation flow for the export simply to show that it is called
when we expect it to be called.

The next thing we wish to accomplish is to be able to register a subscription with the WS-
Notification engine. WS-Notification provides us a service interface to be able to achieve exactly
this. In the module, we add in the import for the WS-Notification broker.

Page 944

Implementation notes

• As of 2010-09-03 it has been found that there are occasional problems with “cast” in the WESB
XSLT mapping. Sometimes when a cast is requested in the WID editor, no list of possible data
types is displayed. If the WID editor is stopped and restarted, the list of data types is once
again shown.

• Payload data that is described as an XSD with a namespace appears to fail. A PMR has been
raised. Currently use XSD data types that aren't associated with a namespace.

• When certain messages are sent to the broker in a multi-line format as opposed to a single line,
an error is received in the console log. The error logged is:

[4/27/11 14:18:42:663 CDT] 0000005b WebServiceExc E
org.apache.axis2.jaxws.WebServiceExceptionLogger log A
javax.xml.ws.soap.SOAPFaultException throwable was caught. The detail message
is: ationMessageHolderType instance: unexpected Java class
com.ibm.ws.webservices.engine.xmlsoap.Text encountered for child object

at
com.ibm.ws.sib.wsn.webservices.utils.WSNMarshallerImpl.createSOAPFaultException(
WSNMarshallerImpl.java:748)

at
com.ibm.ws.sib.wsn.webservices.impl.inbound.provider.NBInvokerImpl.invoke(NBInvo
kerImpl.java:311)

at
com.ibm.ws.sib.wsn.webservices.impl.inbound.provider.NBProviderImpl.invokeTarget
Service(NBProviderImpl.java:142)

at
com.ibm.ws.sib.wsn.webservices.impl.inbound.provider.WSNProviderImpl.invoke(WSNP
roviderImpl.java:140)

at
com.ibm.ws.sib.wsn.webservices.impl.inbound.provider.NBProviderImpl.invoke(NBPro
viderImpl.java:108)

Changing the format to be single line seems to make the error disappear. A PMR has been raised to
address this issue (2011-04-27 – 82736,7TD,000).

• IBM Suggests the following trace settings for debugging WS-Notification:

SIBWsn=all:com.ibm.ws.sib.webservices.*=all

Page 945

Bugs and Fixes

A problem was found where payload data with name spaces was not being handled correctly. A
PMR was opened (00850,004,000) and a fix was provided. The fix requires the setting of a custom
property. After applying the fix, a custom property need be set. Here is the doc on that:

To set this: Click Servers > Server Types > WebSphere application servers >
server_name, and then, in the Server Infrastructure section, click Java and
process management > Process definition > Control > Java virtual machine >
Custom properties Then define a new property and in the Name field, type the
property name "sib.wsn.client.includeNSDecls". In the Value field, type the
value "true". (The default value is false) .

References – WS-Notification

• OASIS – WS-Notification Technical Comittee

• WS-Notification – Specification - 2004-03-01

• DeveloperWorks - WS-Notification in WebSphere Application Server V7: Part 2: Configuring JAX-WS applications with WS-Security for
WS-Notification – 2009-04-08

• DeveloperWorks - WS-Notification in WebSphere Application Server V7: Part 1: Writing JAX-WS applications for WS-Notification – 2008-
11-12

• DeveloperWorks - Leveraging Key WS-Notification Features in your Business Applications - 2009-04-09

• DeveloperWorks - How patterns shaped new WS-Notification functionality in IBM WebSphere Application Server 7.0 - 2008-12-23

• DeveloperWorks - Optimal message processing with WS-Notification filters – 2007-05-08

• DeveloperWorks - Implement WS_Notification in WebSphere Application Server V6.1 - 2006-12-21

• DeveloperWorks - WS-Notification in WebSphere Application Server Version 6.1 – 2006-11-15

• WS Notification and WS Topics in the WS Resources Framework – 2006-07-13

• IBM Education Assistant - WS-Notification

• RedBooks – IBM WebSphere Application Server v7.0 Web Services Guide – Chapter 9 - 2009-07-30

WS-Addressing
WS-Addressing is the ability to describe Web Services endpoint information in a standard format.
There are many uses for this capability.

Within an SCA Module we can define in the dependencies that the inclusion of WS-Addressing
should be done.

Page 946

http://publib-b.boulder.ibm.com/abstracts/sg247758.html?Open
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/topic/com.ibm.iea.was_v6/was/6.1/ProgrammingModels/WASV6.1_WSN/player.html
http://www.devarticles.com/c/a/Web-Services/WS-Notification-and-WS-Topics-in-the-WS-Resources-Framework/
http://www.ibm.com/developerworks/websphere/library/techarticles/0611_roberts/0611_roberts.html
http://www.ibm.com/developerworks/architecture/library/ar-wasnot/
http://www.ibm.com/developerworks/autonomic/library/ac-musewsn1.html
http://www.ibm.com/developerworks/library/ar-wsnpat/index.html
http://www.ibm.com/developerworks/webservices/library/ws-leveragingWS-Notification/index.html
http://www.ibm.com/developerworks/websphere/techjournal/0811_partridge/0811_partridge.html
http://www.ibm.com/developerworks/websphere/techjournal/0904_jiang/0904_jiang.html
http://www.ibm.com/developerworks/websphere/techjournal/0904_jiang/0904_jiang.html
http://www.ibm.com/developerworks/webservices/library/specification/ws-notification/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn

This adds a number of data types into the project.

Within BPEL, we can perform assignments into a WS-Address by declaring a variable of type
ServiceRefType. If we declare a variable of this type and then perform an assignment to it, we have
two selection options. The first is selecting a Partner Reference. This will plug-in SCA bindings to
the target.

Page 947

The second option is an explicit Endpoint Reference. Using that technique, a wizard is displayed
which prompts us for a variety of input parameters:

This will plug in the specified details.

If we look at a value of an example ServiceReferenceType we see that it has the following
structure:

<p:ServiceRefType xsi:type="p:ServiceRefType"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ad="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:i3="http://Async1/I3"
xmlns:p="http://schemas.xmlsoap.org/ws/2004/03/business-process/">

 <ad:EndpointReference>
 <ad:Address>http://localhost:9080/Async1Web/sca/I3Export</ad:Address>
 <ad:PortType>i3:I3</ad:PortType>
 <ad:ServiceName
PortName="I3Export_I3HttpPort">i3:I3Export_I3HttpService</ad:ServiceName>
 </ad:EndpointReference>
</p:ServiceRefType>

Now let us give some thought to dynamic BPEL invokes. At a high level, we have the following
notion. A BPEL process wishes to invoke a Partner service. Let us call this partner service "ABC".
However, at development time, the endpoint address of "ABC" is not known. What we need to do
is set the endpoint information dynamically at runtime. When we defined the BPEL process, we
added a partner reference. Inside BPEL, this named partner reference is actually a variable of type
ServiceReferenceType. What this means is that if we assign a ServiceReferenceType
variable instance to the partner reference variable, the value of ServiceReferenceType will
be honored. This specifically includes the addressing information and hence we have achieve
dynamic invocation.

WS-Security
Security associated with Web Service calls is based on the idea of Policy Sets. A policy set is a set
of definitions of how security should be performed. Prior to policy sets, each service caller or
provider would be explicitly coded or declared to have its own security settings. If a solution had
many such services, each service would have to have the security settings replicated by hand which

Page 948

was error prone and tedious. If a change was required to the security settings, all locations where
the change needed to be applied had to be found and replaced. All in all, not a good situation. With
the arrival of JAX-WS as a Java based Web Services engine/package, the notion of policy sets was
introduced. Think of a policy set as a container of all the settings that one may wish to apply to a
service. When a service is created, the named policy set can now be associated with that service.
For additional web services, they can also be associated with the same named policy set. Because
of this, the definitions for the security need only be created once and re-used when and where
needed. A change to the policy set definitions results in an effective change to all the other services
that referenced the policy set.

When an SCA Import is associated with a JAX-WS web service call, a named policy-set can then
be associated with the SCA Import.

As such, the actual SCA import is not configured for security but instead a policy set is created and
then the policy set associated with the import. If there are multiple SCA imports, each one can be
re-use the same named policy set and thus provide loose coupling. If a security entry needs to be
changed, changing it within the policy set will change it where ever that policy set is referenced.

The same notion applied to SCA Export components:

To delve deeper into policy sets, we must set up some definitions.

• Policy Type – The Policy Type is a type of potential definitions for a type of policy. Think
of it like a template of a group of setting that can be configured. Supplied Policy Types
include:

◦ WS-Security

◦ WS-Addressing

◦ WS-ReliableMessaging

◦ HTTPS

◦ WS-Transaction

• Policy – A policy is named instance of a Policy Type. It contains specific definitions for that
Policy Type but explicitly does not include some specifics.

Page 949

• Binding – A binding is associated with a Policy. The binding contains environment specific
information. There are two types of binding:

◦ Application-Specific binding

◦ General bindings

• Policy Set – A collection of policies

Policy set configurations are performed in the WAS admin console under Services > Policy
sets:

The security settings for a security policy look as follows:

Page 950

In the Message Part Protection section we define how we want either the request or response
messages protected. Protected in this case means two primary considerations. The first is
encryption. If encryption is used then we define which parts of the message will be encrypted so
that anyone examining the message in transit will not be able to decode all or part of the content.
Note that this is not the same as SSL which encrypts at the transport level. Encryption in WS-
Security encrypts parts of the body of the message.

The other part of message protection is called integrity. This is a technique to prevent tampering
with a message once it has been sent but before it arrives. The integrity of a message is assured by
digitally signing the request message and on receipt checking that the signature of the message was
not changed. Think of this as performing a CRC or hash function over the content of the message
and then including the resulting hash value as part of the message. If the message were changed,
when the receiver performs the same hash function then the signature generated would be different
than the one supplied with the message. The original signature is itself encoded with private keys
so that a message can not simply have a new (but tampered with) signature added to the tampered
message.

The parts of the message chosen for encryption and the parts for signing do not have to be the same.

Page 951

See also:

• RedBook - Implementing Kerberos in a WebSphere Application Server Environment - SG24-7771-00 - 2011-04-25

• RedBook – IBM WebSphere Application Server v7.0 – Web Services Guide – SG24-7758 – 2009-11-02 – (Chapter 6 – Policy Sets)

• RedBook - Web Services Feature Pack for WebSphere Application Server V6.1 – SG24-7618

• DeveloperWorks - Configuring WS-Security for JAX-RPC web services in WebSphere Process Server V7 - 2011-01-12

• DeveloperWorks - Java web services: WS-Security without client certificates – 2010-08-03

• DeveloperWorks - WS-Policy security integration between DataPower and WebSphere Application Server – 2009-11-18

• DeveloperWorks - JAX-WS client APIs in the Web Services Feature Pack for WebSphere Application Server V6.1, Part 1: Creating a Dispatch
client – 2009-11

• DeveloperWorks - JAX-WS client APIs in the Web Services Feature Pack for WebSphere Application Server V6.1, Part 2: Creating a proxy
client - 2007-09-19

• DeveloperWorks - Message-level security with JAX-WS on WebSphere Application Server V7, Part 1: Using Rational Application Developer
V7.5.2 to build secure JAX-WS Web services – 2009-05-13

• DeveloperWorks - Message-level security with JAX-WS on WebSphere Application Server V7, Part 2: Integrating JEE authorization - 2010-
01-27

• DeveloperWorks - Message-level security with JAX-WS on WebSphere Application Server V7, Part 3: Programmatic client control using Web
Services Security APIs - 2010-08-31

• DeveloperWorks - Using WSS4J/Axis2 API, Part 1: Sending WS-Security Signature and Encryption Profiles to Axis2/Rampart Web service -
2009-11-24

• DeveloperWorks - Java Web services: The high cost of (WS-)Security – 2009-07-07

• DeveloperWorks - Achieving Web services interoperability between the WebSphere Web Services Feature Pack and Windows Communication
Foundation, Part 2: Configure and test WS-Security – 2007-04-03

• DeveloperWorks - Web Services Trust Language - 2007-10-04

• DeveloperWorks - Tackle WS-Security specification interoperability challenges, Part 4: Add a J2EE 1.3 provider endpoint to a J2EE 1.4 Web
service - 2007-09-13

• DeveloperWorks - Tackle WS-Security specification interoperability challenges, Part 3: Using the EJB proxy – 2007-09-04

• DeveloperWorks - Tackle WS-Security specification interoperability challenges, Part 2: Using the WebSphere Web Services Gateway feature -
2007-07-26

• DeveloperWorks - Tackle WS-Security specification interoperability challenges, Part 1: Problem overview and four available workarounds -
2007-05-03

• DeveloperWorks - Understanding web services specifications, Part 4: WS-Security – 2006-08-22

• DeveloperWorks - IBM WebSphere Developer Technical Journal: Web services security with WebSphere Application Server V6 -- Part 1 –
2006-04-19

• DeveloperWorks - IBM WebSphere Developer Technical Journal: Web services security with WebSphere Application Server V6 -- Part 2 –
2006-04-19

• DeveloperWorks - IBM WebSphere Developer Technical Journal: Web services security with WebSphere Application Server V6 -- Part 3 –
2006-05-30

Page 952

http://www.ibm.com/developerworks/websphere/techjournal/0606_singh/0606_singh.html
http://www.ibm.com/developerworks/websphere/techjournal/0604_singh/0604_singh.html
http://www.ibm.com/developerworks/websphere/techjournal/0603_cowan/0603_cowan.html
http://www.ibm.com/developerworks/webservices/tutorials/ws-understand-web-services4/
http://www.ibm.com/developerworks/webservices/library/ws-securityspec/
http://www.ibm.com/developerworks/webservices/library/ws-securityspec2/index.html
http://www.ibm.com/developerworks/webservices/library/ws-securityspec3/
http://www.ibm.com/developerworks/webservices/library/ws-securityspec4/
http://www.ibm.com/developerworks/webservices/library/ws-securityspec4/
http://www.ibm.com/developerworks/library/specification/ws-trust/
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_levay/0712_levay.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_levay/0712_levay.html
http://www.ibm.com/developerworks/java/library/j-jws6/index.html
http://www.ibm.com/developerworks/webservices/library/ws-Axis2/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1009_chung/1009_chung.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1009_chung/1009_chung.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1001_chung/1001_chung.html
http://www.ibm.com/developerworks/websphere/tutorials/0905_griffith/index.html
http://www.ibm.com/developerworks/websphere/tutorials/0905_griffith/index.html
https://www.ibm.com/developerworks/websphere/library/techarticles/0709_thaker/0709_thaker.html
https://www.ibm.com/developerworks/websphere/library/techarticles/0709_thaker/0709_thaker.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_thaker/0707_thaker.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_thaker/0707_thaker.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0911_rasmussen/0911_rasmussen.html
http://www.ibm.com/developerworks/java/library/j-jws17/
http://www.ibm.com/developerworks/websphere/tutorials/1101_nasser/index.html
http://www.redbooks.ibm.com/abstracts/sg247618.html?Open
http://www.redbooks.ibm.com/abstracts/sg247758.html?Open
http://www.redbooks.ibm.com/abstracts/sg247771.html?Open

• DeveloperWorks - IBM WebSphere Developer Technical Journal: Web services security with WebSphere Application Server V6 -- Part 4 –
2006-07-26

• DeveloperWorks - IBM WebSphere Developer Technical Journal: Web services security with WebSphere Application Server V6 -- Part 5 -
2006-12-06

• DeveloperWorks – Updated: Web Services Security Policy Language – 2005-07-13

• DeveloperWorks - Web Services Secure Conversation Language - 2005-02-01

• DeveloperWorks - IBM WebSphere Developer Technical Journal: Using Web Services Security in WebSphere Application Server - 2004-04-
14

• DeveloperWorks - Web Services Security - 2004-03-01

• DeveloperWorks – Implementing WS-Security – 2004-04-01

• DeveloperWorks - Best Practices for web services, Part 11: Web services security, Part 1 – 2004-03-26

• DeveloperWorks - Best Practices for web services, Part 12: Web services security, Part 2 - 2004-03-30

• DeveloperWorks - Web services security, Part I - 2003-02-25

• DeveloperWorks - Web Services Security: Moving up the stack - 2002-12-01

• DeveloperWorks - WS-Security Profile for XML-based Tokens – 2002-08-28

• DeveloperWorks - Security in a web services world: A proposed architecture and roadmap - 2002-04-01

Building a secure Web Service

When we wish to set up secure Web Service communications, we start by choosing a Policy Set and
associated bindings. These will then be attached to the Web Services. When creating a new Policy
Set, it is always recommended to start from one of the IBM supplied Policy Sets and copy that for
use.

To view the existing Policy Sets, we can use the WAS admin console from Services → Policy Sets:

Page 953

http://www.ibm.com/developerworks/library/specification/ws-secmap/
http://www.ibm.com/developerworks/library/specification/ws-sectoken/
http://www.ibm.com/developerworks/library/ws-secroad/
http://www.ibm.com/developerworks/webservices/library/ws-sec1/index.html
http://www.ibm.com/developerworks/webservices/library/ws-best12/
http://www.ibm.com/developerworks/webservices/library/ws-best11/
http://www.ibm.com/developerworks/webservices/library/ws-security.html
http://www.ibm.com/developerworks/library/specification/ws-secure/
http://www.ibm.com/developerworks/websphere/techjournal/0404_bose/0404_bose.html
http://www.ibm.com/developerworks/library/specification/ws-secon/
http://www.ibm.com/developerworks/library/specification/ws-secpol/
http://www.ibm.com/developerworks/websphere/techjournal/0612_cowan/0612_cowan.html
http://www.ibm.com/developerworks/websphere/techjournal/0607_desprets/0607_desprets.html

Testing Web Services security with TCP/Mon

It seems like a sensible idea to test with TCP/Mon to visualize the Web Services traffic flowing
between a service client and a service provider. In my testing I then placed TCP/Mon between the
two but started to get some new errors. Specifically, the following fault was returned:

<soapenv:Body xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Fault>
<faultcode>soapenv:FailedAuthentication</faultcode>
<faultstring>security.wssecurity.WSSContextImpl.s02:

com.ibm.websphere.security.WSSecurityException: Exception
org.apache.axis2.AxisFault: CWWSS6521E: The Login failed because of an
exception: javax.security.auth.login.LoginException: CWWSS7218E: SCT is not
valid for the webservice endpoint
"http://localhost:9082/ProviderWeb/sca/ProviderI2". SCT is issued for
"http://localhost:9999/ProviderWeb/sca/ProviderI2". ocurred while running
action:
com.ibm.ws.wssecurity.handler.WSSecurityConsumerHandler$1@21cb21cb</faultstring>

</soapenv:Fault>
</soapenv:Body>

In my testing, my client was running on port 9081, my server on port 9082 with TCP/Mon proxying
port 9999 to 9082. The client sent the request to 9999. At a guess, I'd say that the signature was
built for a target of 9999 (where the client thought it was sending the request) while when it arrived
at 9082 (the real target), the signature no longer matched. This seems to mean that we can't place

Page 954

TCP/Mon in the path of signatures.

JAX-WS
JAX-WS is the Java based way of either providing or invoking Web Services.

JAX-WS Java SE stand alone Service Provider

With JAX-WS it is quite straightforward to build a Web Service provider that is nothing more than
a stand-alone Java SE application. Here is a quick recipe.

Build a Java application that looks as follows:

package kolban;
import javax.jws.WebService;
import javax.xml.ws.Endpoint;

@WebService
public class CircleFunctions {

public static void main(String[] args) {

System.out.println("About to publish!");
Endpoint.publish(

"http://localhost:9998/WebServiceExample/circlefunctions",
new CircleFunctions());

System.out.println("Ending");

}
public double getArea(double r) {

return java.lang.Math.PI * (r * r);
}

public double getCircumference(double r) {
return 2 * java.lang.Math.PI * r;

}
}

The key things to note are that it is annotated as being a Web Service.

Parameters for exposed methods should also be annotated with the "@WebParam" tags. This
allows parameter names to be exposed to the callers. For example:

public void chargeCard(
@WebParam(name="billingDetails") BillingDetails_srv billingDetails,
@WebParam(name="chargeAmount") float chargeAmount)

See also:

• Introducing JAX-WS 2.0 With the Java SE 6 Platform, Part 1 - 2006-09

Page 955

http://java.sun.com/developer/technicalArticles/J2SE/jax_ws_2/

Business Space
Business Space is a web based end user interface portal for accessing applications hosted on IBPM
Advanced. It is accessed at the URL:

http://localhost:9060/BusinessSpace

The model of Business Space is that it contains Spaces where a space is a collection of pages and
each page can host one or more sections ("called widgets").

The widgets supplied by IBM are:

• Available Tasks

• Business Calendars

• Business Categories

• Business Category Information

• Business Rules

• Create Tasks

• Document

• Escalations

• Google Gadgets

• Human Workflow Diagram

• Mediation Policy Administration

• Module Administration

Page 956

http://localhost:9060/BusinessSpace

• Module Assembly

• Module Browser

• Module Health

• Module Properties

• My Tasks

• My Team's Tasks

• My Work Organizer

• Page Navigator

• Presentation

• Process Definitions

• Processes

• Proxy Gateway

• Script Adapter

• Security Roles

• Service Browser

• Service Monitor

• Spreadsheet

• Store and Forward

• Store and Forward Details

• System Health

• Task Definitions

• Task Information

• Tasks

• Tasks I created

• Team List

• Web Feed

• Web Site

• Work Basket Information

• Work Baskets

•

Page 957

Administering SCA Modules
SCA Modules are normally deployed to Process Servers as part of a Process Application. However,
these can be manually administered through the Admin Console.

Within the Admin Console we will find Applications > SCA modules.

From there we can perform a variety of tasks including un-installation.

Page 958

Exercises and Case Studies
As the book comes to a close, we will explore some exercises and case studies. The exercises are
sample business processes that are illustrative and you are encouraged to try and build them out
yourself or simply follow along with the possible solution described. The case studies are the
essence of real-world solutions seen in the wild. These processes have been sufficiently changed so
that no process secrets are exposed.

Exercise – Education class enrollment
You have undoubtedly attended vendor education classes in the past. Think about what has to go
on behind the scenes to host such a class. We will focus on a part of this process called student
enrollment. We can imagine that a class on a particular topic is going to be taught at a location on a
certain date. IBM education is going to teach the class and believes that there is sufficient demand
in the topic in that particular city. An instance of a class, in a city and on a particular date is called
a class offering. A few months before the class is to be delivered, the enrollment for the class
begins. Enrollment closes three days before the delivery date. Anytime between the class being
originally offered and two weeks prior to the delivery date, the class may be cancelled by the class
administrators.

Challenge – Design and implement the enrollment process

When we think about any new process that has been handed to us for design, it is good to walk
through the following generic questions:

• What is the purpose of the process?

• When does the process start?

• What is the input to the process?

• What are the possible completion states of the process?

• What is the output of the process?

• Who participates in the process?

Q: What is the purpose of the process?

This feels like one of those awkward questions but some reflection should show that we can't begin
to design a process if we can't articulate an answer to this question. We don't have to describe how
the process will achieve this task. After all, that is why we are going to design it because we don't
know how it will work but we must be able to describe what its purpose is. For this scenario our
process is to manage the enrollment of students for a class offering. And we should stop there. If
we attempt to say more, we are probably in design.

Q: When does the process start?

Our process starts after the decision to offer a class has been made. How that particular decision is
arrived at is not in scope and we can ignore it completely. We will assume that the class has been
advertised (somehow) and that enrollment should begin.

Q: What is the input to the process?

Most if not all processes have some initial input data supplied to them when they start. It is this

Page 959

input data that differentiates one process instance from another. Those processes which don't have
input data quickly solicit some as part of the process to allow them to distinguish themselves from
other processes. In our story, the input to this process is the details of a class offering. Here we
could go off and perform interview after interview to meticulously pin down all the details or we
could go to the other extreme and treat our input as a black box simply called a "class offering" and
do nothing more than that. As always, the correct answer is some happy medium. I suggest making
notes of the low hanging fruit. If we say that the process starts after a class is offered … then ask
about the attributes of an offered class. For our story, we will assume that a class offering is made
up of the following information.

• Name of the class/Subject being taught

• Location of the class

• Date on which the class will start

• Duration of the class

• Cost to attend the class

Are all of these attributes of a class pertinent to our process? Probably not. Will there be other
attributes that we will need to work with that haven't yet been captured? Almost certainly.
Determining the inputs to the process does not have to be a one-shot event. If it is later determined
that in order to initiate a new process instance more information than we thought we needed is
required then we can either negotiate to have those items supplied to the process when it starts or
else we can include steps in our process to explicitly source that information from within the
process itself.

Q: What are the possible completion states of the process?

Every process instance must eventually come to a conclusion. Determining when the process has
finished is a key consideration and one that if captured will guide the design. Reviewing our
process notion, we remember that it is the enrollment of students into a proposed class. Enrollment
ends three days before the class is to be taught or if the class is cancelled. In this last sentence, we
have the core of the process termination states. There are two of them. One is that the enrollment
process ends because the class is ready to be taught and the other is that the enrollment process ends
because the class has been cancelled.

Q: What is the output of the process?

Unlike inputs, not all processes have distinct outputs from an IT data perspective. If the process we
are following is that of making a cup of tea, there is no "data" at the end but is instead a sequence of
steps that a human being follows. In our process however, we do have new output data. If we think
about the purpose of the process, we will find that the output is a list of students enrolled for the
class.

Q: Who participates in the process?

Most IBPM based processes have an element of staff interaction where human beings perform some
role in the process. Identifying the roles of these people and how they interact can be key. The
participants usually come to light during the interviews.

Page 960

My first attempt at a solution was to use IBPM as a BPMN diagramming tool and I came up with
the following:

Let us walk through the story. It beings with a parallel gateway that splits the process into three
parallel tokens. The first (top) reaches a timer that puts that thread to sleep until 3 days before the
class is to start. The second (thread) waits for a Message Event that represents a request to cancel
the class. The third (thread) waits for a Message Event that represents a request to enroll a new
student. Notice that the new student event, once processed, returns back to waiting for another new
student event. This appears to be an unbreakable loop which might cause the process to never end.
Notice however that either a cancel event or a wake timer event will also occur. The result of these
is an exception or a terminate event either of which will cause the process to terminate in its
entirety. This process now looks pretty elegant … unfortunately, we have some problems.

BPMN semantics state that when a terminate event is reached, the process is immediately
terminated. This is what we expected. The BPMN semantics then go on to state that if the process
that is terminated is a child process, the parent process regains control and continues. This too is
goodness since we expect this process to be invoked as part of a larger process. Unfortunately,
IBPM doesn't adhere to the BPMN semantics when it comes to the terminate event. If a terminate
event is reached in IBPM, both the process and any parent chain that caused it to be reached are
terminated and this is not what we want.

There is another flaw with this process as it stands. The cancel exception throws an exception (as
per its design intent) but it does not pass any data (other than the nature of the exception) back to its
caller. What this means is that the knowledge of which students are already enrolled will not be
returned back to the caller in the event of a class cancellation and we said earlier that the outcome
of student enrollment will be the students currently enrolled … this should be true whether or not
the enrollment process ended because the class was cancelled or whether the class is ready to be
taught.

Now we approach our second level of refinement and after some thought, come up with the
following:

Page 961

Superficially, this process looks substantially different from our last attempt but actually follows the
same principles. The core of the story is the activity called "Wait for new Student" which we have
implemented as a sub-process. The process steps that it encapsulates looks as:

Ok … this is obviously going to need some explanation. The activity called "Wait for new Student"
will block until a new student event arrives. If one of these events arrives, we transition to "Record
Student" and then go back to waiting for a new enrollment. This we can understand easily enough.
Now notice the attached event handlers that are attached to the activity. There is one for a message
event and one for a timer event. The message event will wake up when a cancel class event is
received and the timer event will wake up when it is 3 days before the class. Either of these events
causes the termination of the activity to which they are attached. Since this activity is the sub-
process which is waiting for a new student, we have in effect found a way to break out of our loop.

Notice also that if the class is cancelled, we no longer throw an exception. Instead we now return
simple control to the caller but in the data returned, we flag that the class has been cancelled and
assume that the caller will handle that information appropriately.

Is this the only possible solution? Probably not … and that is where the artistry of BPM comes into
play. We have married together here a number of competing factors. We have attempted to capture
the functional intent of the process, we have attempted to make the process as readable and easily
understood as possible while and finally we have designed the process so that it can be actually
executed on the IBPM runtime. Ideally all three of these goals can be satisfied but as shown,
sometimes we have to pragmatically trade one for the other.

If we had used our first attempt at the process, we would have discovered the termination of all
levels of the process and have to rethink our design (which we actually did). Only experience and
diligent reading about (and experimentation with) the product will allow you to head-off such
situations. The cancellation situation would ideally have been caught early enough to negotiate
changes at the process level as a whole.

Now, back to the story … as student enrollments arrives, where are these student enrollments being
recorded? Ideally they are being recorded in a data store such as a database. Storing them within

Page 962

the process itself is normally not a good idea. In general. unless it is control data, process data
should be stored where other data normally lives and that is in a database or other external
application.

Having created a BPD and drawn it out in AE unfortunately the process is not yet ready to run.
Generally, less than 50% of the work has been accomplished in drawing the diagram till it is ready
to be executed. As they say, the devil is in the detail and each element on the BPD canvas can have
a lot of detail associated with it. A question of when the detail should be added arises. Should each
activity be fleshed out as it is added to the diagram or should the diagram as a whole be drawn and
then fleshed out with detail? There is nothing in the tool that forces you to work one way or
another and each have strengths and weaknesses. Personally, I like to draw out the whole diagram
and then go back and supply more details. One down side to this approach is to remember to
actually add the details after creating the diagram. Too many times I have created a diagram and
added the details I remembered to add only to find unexpected results during testing which were
caused by other omitted details. One solution to this is to change the color of the activities after
they have been implemented leaving their default colors to mean not implemented. Unfortunately
not all activities can be colored. If adding the details later has this flaw why not add details as we
go along? This itself can result in a different problem. It is very common to start building out a
process only to make dramatic changes as we go along. If we fleshed out every step as we progress,
we would be wasting effort discarding or dramatically changing much before the final process.

In our story, we have two event types. One for the cancellation of a process and one for the arrival
of a new student registration. These types of events are used to indicate to the process something
happening outside of the bounds of the process and for both of these, events are good models. We
don't know if or when a class will be cancelled and we don't know when students will register or
how many. Associated with an event is event payload data. This is information that travels with
the event. For a student enrolling, we will assume this to be the details of the student. In our first
pass at modeling, we don't have to pin down all the details of this data other than to know it exists.
In IBPM, events are associated with UCAs. Because there are two types of events, it makes sense
two define two UCAs.

Page 963

Looking for home ….
The following are sections that were written because I was working on that area at the time but
haven't yet been found a proper home in the document yet.

Page 964

Human Task Manager
See Also – Human Task Manager:
• DeveloperWorks - Using advanced human task patterns in WebSphere Process Server V7 - 2010-08-04

The Human Task Manager can be accessed through an API.

Work Baskets
With the release of Feature Pack 1 for WPS 7.0, we saw the arrival of a new capability called Work
Baskets. To understand Work Baskets, first let us review the nature of a standard human task.
When a Human Task definition is created, a set of IBM defined roles for that task exist. For each
role, the developer can define which users are to be associated with those roles. Let us consider the
most commonly used role which is called Potential Owner.

Imagine we have a task definition called TaskDefinition1. When that task definition is created, we
may assign Alice and Bob as potential owners. What this means is that when an instance of the task
is created from the definition, at runtime, either Alice or Bob can claim and work upon the task.
Charlie, who is not named in the task definition can not work on the task.

This is the basic model of Human Task authorization in WPS before the introduction of Work
Baskets. Even though Work Baskets now exist, the original model still holds true. Work Baskets is
an additional model that can be used if desired or, conversely, be completely ignored.

Let's use an analogy to understand Human Task Work Baskets. Imagine fictitious workers in an
office. Each worker sits at their desk to perform their job. When they are ready for some work to
do they stand up from their chair and walk to a communal area where there are "work baskets".

Each work basket has a "name" associated with it. This name describes the type of work that can be
found in the folders in that basket. Examples of work basket names at an office may be:

• Bills to be paid – Bills that the company has to pay

• Customer complaints – Concerns from customers that have to be addressed

• Sales leads – Potential new customers that the company should follow up upon

Page 965

http://www.ibm.com/developerworks/websphere/library/techarticles/1008_kaeckenmeister/1008_kaeckenmeister.html

Depending on the job role of a worker, the worker can take work from the appropriate basket. To
make the story more interesting, imagine that there is a security guard beside the work baskets. In
order for a worker to see work in a basket, he must tell the guard who he is. The guard then checks
the employee's name against a list of people who are authorized to take work from the basket.
Beside each basket there is a clipboard with names on it. If the worker's name is not in the list, he
doesn't get to work with the folders.

Work Basket Roles

• Reader – Role members can examine the definition of the work basket

• Opener – Role members can see the content of the work in the work basket

• Distributor – ??

• Transfer initiator – Role members can transfer work out of the work basket

• Appender – Role members can add tasks to the work basket

• Task reader – Members of this role can see the properties of a task but can't claim or complete
it

• Task editor – Role members can work on the content of the task but can't claim it or complete it

• Task potential owner – Role members can claim a task

• Task administrator – Role members can administer a task

Work Basket Business Space widgets

Work Baskets are created from the Work Baskets list widget. The Actions pull-down has a Create
option to create a new Work Basket.

When selected, the companion Business Space Widget called Work Basket Information will be
updated (via Widget to Widget events) to allow the user to define the settings for the new basket.

Page 966

The settings of a Work Basket are broken down into three categories:

General

• Identifier – An identifier for the work basket

• Name – A name for the work basket

• Description – A description of the work basket

• Type

◦ Individual

◦ Group

◦ Clearance

◦ Topic

• Owner – The owner of the work basket

• Task list – Unknown ???

Access

In the Access category, we get to name a set of users and groups and then associate the authorities
of this work basket against those entities. We can define two sets of attributes … those for the work
basket roles and those for the task roles.

Distribution Targets

Page 967

In the last category known as Distribution targets, we get to list the potential other work baskets to
which tasks in this work basket can be routed.

Human Task Definition for Work Baskets

In the Human Task template definition, the name of the work basket associated with the task can be
supplied. Either a hard-coded work basket name or a variable whose value will be the work basket
name can be supplied.

Technical Notes

The default Query Table for work baskets is called “WORK_BASKET”

Maybe IBM.DEFAULTALLWORKBASKETSLST

To obtain a list of all work baskets, the following REST request can be used:

Page 968

/rest/bpm/htm/v1/workBaskets/query

queryTableName=IBM.DEFAULTWORKBASLETSLST

admin=true

The attributes available in the response includes:

• DESCRIPTION

• NAME

• DISPLAY_NAME

• OWNER

• TYPE

• WBID

• WORK_BASKET.WBID

A new attribute has been added to a task instance called “workBasketName”

See Also – Work Baskets:
• InfoCenter - Using work baskets and business categories – WPS 7.0

• Documentation for Work Basket API (IBM Internal)

Business Categories
Human Tasks can have attributes associated with them called Business Categories. This allows
tasks to be categorized for efficient selection and filtering.

Parallel Tasks
When a Human Task is created, we normally think of that task as having one owner and it not
completing until that single owner completes it. In WPS 7 and beyond, a feature was added which
IBM called "Parallel Tasks". The idea behind this is that a Human Task can be created (just as
normal) but the Human Task is defined as being parallel in its template definition in WID. When
an instance is created, instead of just a single owner being able to claim it, all potential owners get
to claim the same task. Each potential owner sees their own copy of the task and get to work upon
it. When each potential owner completes the task then the original task is flagged as completed and
the caller of the task gets to move onwards. Although interesting, there are two more facets to this
feature that really bring it to life.

The first is that not all of the child parallel tasks need to be completed before the parent is allowed
to completed. An early completion configuration may be defined such that the parent task
completes when only some of the child tasks have been completed. If the parent is allowed to
complete and there are still other child tasks, these are immediately terminated.

The second important feature is how the configuration of the final response of the parent task is
determined. With a simple Human Task, the response from the sole user that claimed the task is the
final response but with parallel tasks, there are many different responses from many different users.
As such, the ultimate final response will be an aggregate (accumulation) of the responses from all
the different users. The decisions of how the aggregations are formed is under the control of the
Human Task template designer.

Page 969

http://ehngsa.ibm.com/~dkoenig/rest%20(7.0.0.2)/index.htm
http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/topic/com.ibm.websphere.wbpm.fep1.doc/doc/tfep_using_wb.html

During the creation of a new Human Task template, a panel is shown asking if this task is "single"
or "parallel". If single is selected, it is standard human task with one final owner. If Parallel is
selected, then the function described in this section becomes active.

Completion Selection

When a task is defined as parallel, when the Potential Owners selection is selected, the Properties
view contains a Completion tab. Within this area the attributes that define the completion criteria
for the parent task are defined. This is where we specify under what circumstances the parent can
complete before all the children have completed.

Completion can be configured based on either a time interval from when the parent task was created
or from examination of the child tasks that have completed. The later is the one that we will focus
on as it is most interesting.

The condition that causes completion of the parent task can be specified by either a custom XPath
expression or by using one of the templates supplied by IBM. The supplied IBM templates are:

• Percentage of workers – Completes if the number of completed children (of any outcome) has

Page 970

exceeded a supplied percentage. For example, if we only need 50% of the possible
respondents.

• One disapproval – If a single response signals disapproval (a vote) then if our logic says that
we need unanimous acceptance, then end the parent task and all its children. If one person
disapproves, there is no need to wait for the outcome of the other people.

• One approval – If a single response signals approval (a vote) then we can complete the parent
human task.

• Percentage of approvals – This template is used to complete the parent task if a percentage of
approvals has been exceeded.

• Majority reached – This template is used to complete the parent task if a majority of outcomes
has been reached.

Work Items
When a Human Task instance is created, a set of potential owners must be determined. This results
in a set of "work items" being created. A work item is a relationship between a person and a human
task to be worked upon. One way to think of a work item is that it has an attribute called "who"
which is the identity of the staff that can work on that item. The "who" attribute can take one of
three possible values:

• A named user

• A named group

• A flag that says everybody is eligible to work on that item

When the Human Task is created, a set of such work items are associated with the task. This means
that there could be more than one work item which gives us a result that a task can be associated
with a combination of users and/or a combination of groups.

Authorization and Staff Resolution
When a human task instance is created, we want to restrict the set of people who are allowed to
work on such a task. This means that we need to determine (resolve) a set of staff members who
will be granted the privilege of working upon or owning a task. This is termed staff resolution.

Let us now introduce a concept called "People Assignment Criteria". In previous versions of WPS
this was known as staff verbs. Imagine you fall sick and need some medical attention. You want
someone to look at you and make a diagnosis. The person that should perform this role can't be just
anyone … they must fulfill a requirement. Specifically, they should be doctors. If you fall ill on an
airplane, the flight attendants ask if there is a doctor on board. What they are doing is executing a
rule looking for the correct people to fulfill the task.

In WPS, this is implemented by parameterized queries that can be executed against staff
repositories that will return a set of userids that can perform a human task. Generically, executing a
staff query that results in a set of people is called a staff resolution. The staff query is executed
against a staff repository. In reality, the staff repository is commonly an LDAP directory.

Page 971

See Also:
• DeveloperWorks – IBM WebSphere Developer Technical Journal: Expand your user registry options with a federated repository in WebSphere

Application Server V6.1 – 2007-01-24

Staff Resolution Criteria (aka Verbs)
Each staff query has associated with it:

• name

• description

• set of parameters

•

WPS provides some pre-built staff queries:

• Everybody

• Users by user ID

• Users

• Group Members

• Group

• Person Search

• Group Search

• Native Query

• Manager of Employee

• Manager of Employee by user ID

• User Records by user ID

• Users by user ID without Named Users

• Group Members without Named Users

• Group Members without Filtered Users

• User Records by user ID without Named Users

• Department Members

• Role Members

• Nobody

Verb Descriptions

Group Search

This verb retrieves the members of a group where the group is identified by an attribute (not by a
name). The attributes of a group that can be matched are:

Page 972

http://www.ibm.com/developerworks/websphere/techjournal/0701_ilechko/0701_ilechko.html
http://www.ibm.com/developerworks/websphere/techjournal/0701_ilechko/0701_ilechko.html

• type

• industryType

• businessType

• geographicLocation

• affiliates

• displayName

• secretary

• assistant

• manager

• businessCategory

• parentCompany

Group Members

This verb queries a group and adds the set of all users in that group into the result set. It is
important to realize that this verb expands the group set into members when the query is executed.
This means that if the members of the group are subsequently changed by an administrator, the
result set will still consist of the original expanded group which may be different than what one
would expect if the group were expanded later. This query results in a work item for every possible
member of the group and hence if the group is large, it may not be the preferred solution. See the
group verb for maintaining a group name until the last possible moment.

GroupName The name of the group to query for members

AlternativeGroupName1 An optional group name to query for members that will be added to
the result set

AlternativeGroupName2 An optional group name to query for members that will be added to
the result set

IncludeSubgroups

For LDAP, the default implementation searches for objects of type groupOfNames and from these
returns their member attributes. Each member injects a new user into the result set. This object is
not the only possible grouping mechanism and groupOfUniqueNames may be desired in which case
the XSLT file should be modified.

<sldap:staffQueries threshold="$Threshold">
 <sldap:usersOfGroup groupDN='GroupName DN'>
 <sldap:resultObject objectclass='$DefaultGroupClass' />
 <sldap:resultAttribute name="$DefaultGroupClassMemberAttribute"
 destination="intermediate" />
 </sldap:resultObject>
 <sldap:resultObject>
 <sldap:resultAttribute name="$DefaultUserIdAttribute"
 destination="UserID"/>
 <sldap:resultObject>
 </sldap:usersOfGroup>

Page 973

</sldap:staffQueries>

Dynamic user selection

A BPEL process can programmatically assign a set of users to a Human Task. This is known as
dynamic user selection as the result is never a static definition but rather an algorithmically
generated user set dynamically selected at runtime.

One way to achieve this is to use the verb Users by user ID. This can take as a parameter a variable
which is of type array of Strings.

Staff Resolution plugins

Plugins for WPS are available that determine staff sets by contacting directory services. These
plugins are specific to the directory type they service.

When a developer builds a staff query, that query is described in abstract terms. For example,
"Members of a group". However, the execution of a request against a particular provider is
provider specific. The query to return members of a group is one thing for LDAP but another way
for VMM. The staff resolution plugins "even out" this disparity. However, the abstract staff query
request must be transformed into the correct parameters for the staff resolution plugin. What
happens is that the staff query is passed through an XSLT transform prior to being passed to the
staff resolution plugin.

See Also:
• DeveloperWorks - Building human tasks with the Virtual Member Manager and LDAP - 2010-11-03

Custom Human Task staff resolutions

Control files that define the verb sets available for a particular provider can be found in an IBM
supplied JAR file. In the directory C:\Program Files\IBM\SDPShared\plugins, a file can be
found called:

com.ibm.wbit.tel.ui_<version>.jar

This file can be opened with a ZIP editor. In the JAR file, a folder can be found at /xml. This
folder contains a series of XML files that describe the people assignment criteria available in the
WID editor.

Page 974

http://www.ibm.com/developerworks/websphere/library/techarticles/1011_ahuja/1011_ahuja.html

A copy of the XML file to be modified can be extracted from the ZIP. This XML file contains the
definitions of the people selection criteria available for use. To start working with a modified
version, add a copy of that file into your module that you are building. Once done, in WID, go to
the Windows > Preferences dialog and navigate to:

Business Integration > Human Task Editor > People Directory

Edit the people directory that you are working with and change the People Assignment Criteria
to point to the copy of the file:

This file contains a series of verb definitions where each verb is a people assignment criteria.

The format of an entry is as follows:

<vs:DefineVerb name='name'>

Page 975

 <vs:Description>description</vs:Description>
 <vs:Mandatory>
 <vs:Parameter>
 <vs:Name>name</vs:Name>
 <vs:type>type</vs:Type>
 <vs:hint>hint</vs:Hint>
…
 <vs:hint>hint</vs:Hint>
 </vs:Parameter>
 </vs:Mandatory>
 <vs:Optional>
 <vs:Parameter>
 <vs:Name>name</vs:Name>
 <vs:type>type</vs:Type>
 <vs:hint>hint</vs:Hint>
…
 <vs:hint>hint</vs:Hint>
 </vs:Parameter>
 </vs:Optional>
</vs:DefineVerb>

The DefineVerb tag has a name which is what is shown in the pull down list in the WID editor.
The following Description tag defines the text shown in the description area in WID.

The mandatory and optional sections defines zero or more parameters that can be supplied. A
parameter is described by its name and type. The type must be taken from one of the following
types:

• boolean

• date

• dateTime

• decimal

• double

• duration

• float

• gDay

• gMonth

• gMonthDay

• gYear

• gYearMonth

• xsd:integer

• xsd:string

• xsd:time

Optional hints for the parameters can also be defined. These hints are available using entry assist
and simply provide pre-entered values if desired.

Here is an example:

Page 976

This is generated from:

<vs:DefineVerb name='My New Verb'>
 <vs:Description>My Description.

My text for my New Verb goes here.
 </vs:Description>
 <vs:Mandatory>
 <vs:Parameter>
 <vs:Name>MyParm1</vs:Name>
 <vs:Type>xsd:string</vs:Type>
 <vs:Hint>XYZ</vs:Hint>
 <vs:Hint>ABC</vs:Hint>
 </vs:Parameter>
 </vs:Mandatory>
 <vs:Optional>
 <vs:Parameter>
 <vs:Name>MyParm2</vs:Name>
 <vs:Type>xsd:string</vs:Type>
 <vs:Hint>PQR</vs:Hint>
 <vs:Hint>MNO</vs:Hint>
 </vs:Parameter>
 </vs:Optional>
</vs:DefineVerb>

When a user has entered data in the WID editor, that data for the verb is saved in the Human Task
definition file (a .tel file). The format of the entry in this file is:

<staff:verb>
 <staff:name>name</staff:name>
 <staff:parameter id='parmName'>value</staff:parameter>
…
 <staff:parameter id='parmName'>value</staff:parameter>
</staff:verb>

The staff prefix is bound to the namespace:

xmlns:staff="http://www.ibm.com/schemas/workflow/wswf/plugins/staff"

In a ".tel" file, the prefix may be "tel" but the namespace is the same.

From this we see that the XML file that describes the verbs is a template that is used solely by the
WID editor to describe what the user can enter. Once entered, it becomes data for the Human Task.

During deployment, the human task entries must be mapped or converted to a format suitable for

Page 977

the staff resolution plugin. This is achieved with an XSLT mapping file. Creation of new verbs
requires new XSLT mapping files to accommodate the new verbs. The original files should never
be modified, instead new copies of these files should be taken and changed as needed.

Staff resolution plugin language – The Staff Query

At the conclusion of all of these shenanigans, a request is made to a staff resolution plugin to
determine the set of users that are to be allowed to work on the human task. That request is made
by sending an XML document. Loosely, this looks as follows:

<staff:staffQueries threshold="integer">
 staff query element *
</staff:staffQueries>

Here is a more complex example:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<sldap:staffQueries
 xmlns:sldap="http://www.ibm.com/schemas/workflow/wswf/plugins/staff/ldap"
 xmlns:staff="http://www.ibm.com/schemas/workflow/wswf/plugins/staff"
 xmlns:xalan="http://xml.apache.org/xslt" threshold="1000000">
 <sldap:usersOfGroup groupDN="cn=g1,cn=myRealm,o=k1" recursive="yes">
 <sldap:resultObject objectclass="groupOfNames" usage="recursive">
 <sldap:resultAttribute name="member" destination="intermediate" />
 </sldap:resultObject>
 <sldap:resultObject objectclass="inetOrgPerson" usage="simple">
 <sldap:resultAttribute name="uid" desatination="userID" />
 <sldap:resultAttribute name="mail" destination="eMailAddress" />
 <sldap:resultAttribute name="preferredLanguage"
 destination="preferredLocale" />
 </sldap:resultObject>
 </sldap:usersOfGroup>
</sldap:staffQueries>

With the exception of <everybody/>, <groupID/> and <nobody/> the staffQueries document
can contain a variety of children. Each child will add one or more users to the resulting set of users.

The staff query elements define the core rules. The defined rules are:

everybody

• groupID

• nobody

• remove

• userID

There are others but those are specific to the type of repository against which the request is being
made. Multiple queries can be executed within a single staff query and the resulting set of
authorized people is the union of all the individual queries.

Simple staff queries.

everybody

<staff:staffQueries>
 <staff:everybody/>
</staff:staffQueries>

Selects everybody. No other queries are allowed in conjunction with this request. This makes
sense as everybody really does mean everybody.

Page 978

groupID

<staff:staffQueries>
 <staff:groupID name="group name"/>
</staff:staffQueries>

Selects a named group.

nobody

<staff:staffQueries>
 <staff:nobody/>
</staff:staffQueries>

Selects nobody.

remove

<staff:staffQueries>
 <staff:remove value="user ID to remove"/>
</staff:staffQueries>

Removes a named userid from the unioned set of userids that have already been built.

userID

<staff:staffQueries>
 <staff:userID name="valid WebSphere user ID"/>
</staff:staffQueries>

A named userid.

User registry queries

<sur:user .../>

<sur:usersOfGroup .../>

<sur:search .../>

LDAP queries

When working with the LDAP staff resolution plugin, the following additional functions are
available:

• user

• usersOfGroup

• search

• intermediateResult

Page 979

user

<sldap:user dn="distinguished name of the user"
 attribute="attribute to evaluate"
 objectclass="LDAP objectclass of the queried object"/>

The user query is used to lookup an explicit LDAP entry by explicit DN. The "dn" attribute is
required and acts as the lookup key in the directory. The "objectclass" attribute is required and
names the class of object that is to be returned/found. The "attribute" attribute defines the LDAP
entry attribute who's value is to be used for the returned user identity.

usersOfGroup

<sldap:usersOfGroup groupDN="distinguished name of the group"
 recursive="yes"|"no">
 attribute evaluation specification 1+
</sldap:usersOfGroup>

search

<sldap:search baseDN="search root"
 filter="valid LDAP filter"
 searchScope="subtreeScope" | "onelevelScope" | "objectScope"
 recursive="yes"|"no">
 attribute evaluation specification 1+
</sldap:search>

The baseDN is an optional attribute that supplies an LDAP subtree for the start of the search. If
omitted, the baseDN of the plugin configuration will be use. The "filter" attribute is mandatory and
used to constrain the search results returned.

attribute

*** DEPRECATED *** - replaced by resultObject

As seen by the last two queries, LDAP entries can be returned. An LDAP entry is composed of a
variety of attributes. Somewhere we need to supply the information as to which of the entries
attributes should be used and for what purpose. This is where the next tag comes in to play.

<sldap:attribute
 name="attribute name"
 objectclass="LDAP object class"
 usage="simple|recursive" />

"name" is the required attribute that names the LDAP attribute to be used. "objectclass" is the
required attribute that names the object class associated with the entry.

resultObject

This is a replacement for the old <sldap:attribute> instruction.

<sldap:resultObject objectclass="LDAP object class" usage="simple|recursive">
 <sldap:resultAttribute
 name="attribute name"
 destination="userID|eMailAddress|preferredLocale|intermediate" />*
</sldap:resultObect>

What this does is look for results that match the LDAP object and, extracts the named attribute
value and sets that to be either the userid, email address or locale for that result. If the usage type is

Page 980

recursive, then the destination can be intermediate. What this seems to mean is that the results are
DNs that are themselves retrieved and the rules re-applied.

intermediateResult

<sldap:intermediateResult name="variable name"
 threshold="positive nonzero integer number"
 query of type user, usersOfGroup or search
</sldap:intermediateResult>

"name" is a mandatory parameter and is a variable name. It will be used to temporarily hold the
results of the query. This variable can then be used in subsequent queries.

intersect

<sldap:intersect value="variable name">
</sldap:intersect>

This processing instruction expects a variable as input. The variable contains a list of
users/identities. When the instruction is reached, an intersection set operation is performed against
the identities in the variable and the identities built so far by previous instructions (the result set).
The set produced from this intersection becomes the new current result set.

Examples

LDAP group lookup

<sldap:staffQueries
xmlns:sldap="http://www.ibm.com/schemas/workflow/wswf/plugins/staff/ldap"
xmlns:staff="http://www.ibm.com/schemas/workflow/wswf/plugins/staff"
xmlns:xalan="http://xml.apache.org/xslt">

 <sldap:usersOfGroup groupDN="cn=nurses,cn=myRealm,o=k1"
 recursive="no">

 <sldap:resultObject objectclass="groupOfNames" usage="recursive">
 <sldap:resultAttribute destination="intermediate" name="member" />
 </sldap:resultObject>

 <sldap:resultObject objectclass="inetOrgPerson" usage="simple">
 <sldap:resultAttribute destination="userID" name="uid" />
 <sldap:resultAttribute destination="eMailAddress" name="mail" />
 <sldap:resultAttribute destination="preferredLocale"
 name="preferredLanguage" />
 </sldap:resultObject>
 </sldap:usersOfGroup>
</sldap:staffQueries>

XSLT Mapping to Staff Resolution plugin language

If you have followed the story so far you will have found that when a staff query is entered in WID,
it is transformed into a verb format in the human task .tel file that looks as follows:

<staff:verb>
 <staff:name>name</staff:name>
 <staff:parameter id='parmName'>value</staff:parameter>
…
 <staff:parameter id='parmName'>value</staff:parameter>
</staff:verb>

Page 981

This encoding of the staff query is generic. It is not the encoding expected by any one of the IBM
supplied staff resolution plugins. During deployment, this format of XML has to be
transformed/mapped into the staff resolution plugin language which is also an XML document.
WPS does this by executing an XSLT transformation against the verb format XML using an XSLT
file that is specific to the Staff Resolution plugin.

These XSLT files can be found in the directory:

<WPS Install>/ProcessChoreographer/Staff

The files currently supplied include:

• EverybodyTransformation.xsl

• LDAPTransformation.xsl

• SystemTransformation.xsl

• UserRegistryTransformation.xsl

• VMMTransformation.xsl

Testing of these XSL files can be performed in WID. We can run an XML document through an
XSLT and view the resulting output XML.

Here is an example of a transformed query. First, the original verb XML file:

<?xml version="1.0" encoding="UTF-8"?>
<staff:verb xmlns:staff="http://www.ibm.com/schemas/workflow/wswf/plugins/staff"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <staff:name>Group Members</staff:name>
 <staff:parameter id="GroupName">cn=g1,cn=myRealm,o=k1</staff:parameter>
 <staff:parameter id="IncludeSubgroups">true</staff:parameter>
</staff:verb>

and the result after having been passed through an XSLT transform:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<sldap:staffQueries
 xmlns:sldap="http://www.ibm.com/schemas/workflow/wswf/plugins/staff/ldap"
 xmlns:staff="http://www.ibm.com/schemas/workflow/wswf/plugins/staff"
 xmlns:xalan="http://xml.apache.org/xslt" threshold="1000000">
 <sldap:usersOfGroup groupDN="cn=g1,cn=myRealm,o=k1" recursive="yes">
 <sldap:resultObject objectclass="groupOfNames" usage="recursive">
 <sldap:resultAttribute name="member" destination="intermediate" />
 </sldap:resultObject>
 <sldap:resultObject objectclass="inetOrgPerson" usage="simple">
 <sldap:resultAttribute name="uid" desatination="userID" />
 <sldap:resultAttribute name="mail" destination="eMailAddress" />
 <sldap:resultAttribute name="preferredLanguage"
 destination="preferredLocale" />
 </sldap:resultObject>

Page 982

 </sldap:usersOfGroup>
</sldap:staffQueries>

If a new verb is introduced, the XSLT must be changed to accommodate that new verb. This means
the designer must have skills to code and test XSLT as well as knowledge of the design of the
existing XSLT program.

The design of IBM's supplied XSLT is roughly as follows.

A template is provided which matches of "/staff:verb". This will find the <verb> elements in
the input XML document. The name child element of the verb is saved in a variable called $verb.

Next there is a large <xsl:choose> block which is a switch on the name of the verb. For each verb,
there is a call to a template.

For example, if we have defined a new verb called "Supervisors", then an example verb XML
might look like:

<staff:verb>
 <staff:name>Supervisors</staff:name>
 <staff:parameter id='parmName'>value</staff:parameter>
…
 <staff:parameter id='parmName'>value</staff:parameter>
</staff:verb>

In the master template of the XSLT, we might then add the following:

<xsl:choose>
…
 <xsl:when test="$verb='Supervisors'">
 <xsl:call-template name="Supervisors" />
 </xsl:when>
…
</xsl:choose>

A matching template must also be added to the file.

<xsl:template name="Supervisors">
 <sldap:staffQueries>
...
 </sldap:staffQueries>
</xsl:template>

The addition of a completely new staff resolution entry can be done as follows:

Launch the WAS admin console. Navigate to Resources > People Directory.

Select the type of directory provider to be enhanced (eg. LDAP People Directory Provider).

Page 983

Page 984

The output of the transformation can be seen in WAS trace with the trace flag:

com.ibm.ws.staffsupport.*=all

Page 985

It should be remembered that the XSLT transformation happens once during deployment. The
result of the transformation is then kept by the WPS runtime. This means that we don't have to
perform an expensive XSLT transformation every time we need a staff resolution. It is tempting to
place conditional logic in the XSLT that we think will execute at runtime for every task but this is
not how the architecture works and will lead to unexpected results. Please keep in mind that the
XSL transform happens only during application deployment and at no other time.

Programming tips

If the value of a Verb parameter determines whether or not to perform processing, consider the
following recipe:

<xsl:variable name="ParmName">
 <xsl:value-of select="staff:parameter[@id='ParmName']"/>
</xsl:variable>
<xsl:if test="$ParmName != ''">
 <!-- Do something -->
</xsl:if>

When testing/developing, always test the transformations using the WID XSLT engine. Do not try
an debug an XSLT in place in the Human Task engine. It may not report XSLT errors.

After having changed an XSLT file, re-start the WPS server. It appears that is required in order for
the resolution to be tried again.

Caching of staff resolutions

When a staff resolution is executed, its results are cached such that if a subsequent query is made,
the relatively expensive LDAP lookup need not occur again and the previous result reused.
Obviously this can result in stale data being used. HTM provides the ability to clear that cache
either manually (immediately) through the admin console or at periodic scheduled times through a
component known as the refresh demon.

Through the admin console, the path is:

Servers > WebSphere Application Servers > server > "Business Integration" >
"Business Process Choreographer" > Human Task Manager

The runtime tab contains an option to refresh

Tracing Staff resolution

Switching on the WAS trace flag com.ibm.task.*=all will produce Human Task trace in the trace
output data. An additional trace flag that might also be useful is

com.ibm.ws.staffsupport.*=all

This results in a combined trace flag of:

com.ibm.ws.staffsupport.*=all:com.ibm.task.*=all

Looking for trace records that start:

[5/24/10 14:59:45:603 CDT] 00000040 TraceHTM >
com.ibm.task.staff.StaffQueryManager.getStaffResult(StaffQueryManager.java:1662) ENTRY
StaffQuery =

will show the XML passed as input to the XSLT transform for the staff resolution plugin.

Page 986

If the staff resolution system is LDAP, then it can occasionally be useful to examine the requests
and responses flowing to and from the LDAP server. TDS has a an audit log where one can see
requests being sent to it but there is no obvious way to see the responses being returned. In
addition, other LDAP providers may be used that you are not familiar with. A solution to tracing
the LDAP flows is to use the package called SLAMD. As part of this package, a tool called ldap-
decoder is provided. This tool acts as a proxy/interceptor between an LDAP client and an LDAP
server and displays LDAP queries and responses.

Here is a quick cheat sheet on using ldap-decoder. First, understand that it is a DOS command
window tool and hence must be run from the DOS prompt. It sits between a real LDAP provider
and a client (such as WPS) that is making LDAP requests. When WPS makes a query against
LDAP, it is really making the request to ldap-provider. Ldap-decoder then forwards the request to
the real LDAP provider which in turn sends a response back to the ldap-decoder tool. This in turn
sends the response back to WPS. This means that ldap-decoder sees both the requests to LDAP and
the responses returned from LDAP. Ldap-decoder knows how to parse the LDAP data stream
(which is binary) and displays the requests and corresponding responses in the DOS console
window.

The ldap-decoder tool can be found in the tools sub folder of the slamd installation directory.
Before starting the tool, edit the file called set-java-home.bat and change the JAVA_HOME
environment variable to point to a Java runtime.

To run ldap-decoder, execute the following:

ldap-decoder -h LDAPProviderHostname -p LDAPProviderPort -L LocalListenPort

Ldap-decoder will then start listening on the LocalListenPort and when it receives a request, it
will be forwarded to the LDAPProviderHostname at port LDAPProviderPort. With ldap-decoder
running, got to human task provider properties and change the URL where the LDAP provider goes
to perform lookups. Point this to the ldap-decoder tool's port.

See Also – Custom staff resolution:
• DeveloperWorks - Authorization and staff resolution in Business Process Choreographer: Part 1: Understanding the concepts and components

of staff resolution

• DeveloperWorks - Authorization and staff resolution in Business Process Choreographer: Part 2: Understanding the programming model for
staff resolution

• DeveloperWorks - Authorization and staff resolution in Business Process Choreographer: Part 3: Customization options for staff resolution

• DeveloperWorks - Authorization and staff resolution in Business Process Choreographer: Part 4: Staff resolution specifications and reference
guide

• DeveloperWorks – WebSphere Application Server Enterprise Process Choreographer: Staff Resolution Architecture – 2003-04-16

• DeveloperWorks – WebSphere Application Server Enterprise Process Choreographer: Staff Resolution Parameter Reference – 2003-02-21

• Using set intersection operations in people assignment criteria

Worked Examples

This section contains some detailed worked examples illustrating how to create custom verbs.

Group and User List intersection

Consider a group that defines the set of all building inspectors in Dallas. Now consider a list of all
inspectors in Texas that are certified to work on high-rise buildings. This list will include
inspectors in Houston and San Antonio. If we want to assign work to a a building inspector in
Dallas that is certified to work on high-rise buildings, we need a staff resolution expression that can

Page 987

http://www-01.ibm.com/support/docview.wss?uid=swg21331029
http://www.ibm.com/developerworks/websphere/library/techarticles/wasid/WPCStaffReference.html
http://www.ibm.com/developerworks/websphere/library/techarticles/wasid/WPC_StaffArch/WPC_StaffArch.html
http://www.ibm.com/developerworks/websphere/techjournal/0801_lind/0801_lind.html
http://www.ibm.com/developerworks/websphere/techjournal/0801_lind/0801_lind.html
http://www.ibm.com/developerworks/websphere/techjournal/0712_lind/0712_lind.html
http://www.ibm.com/developerworks/websphere/techjournal/0711_lind/0711_lind.html
http://www.ibm.com/developerworks/websphere/techjournal/0711_lind/0711_lind.html
http://www.ibm.com/developerworks/websphere/techjournal/0710_lind/0710_lind.html
http://www.ibm.com/developerworks/websphere/techjournal/0710_lind/0710_lind.html
http://www.slamd.com/

build the intersection between a named group of users and a supplied list of users.

When we design such a solution, first we give some thought to how it would appear to an end user.
It would show up in WID in the Human Task editor as a new type of selectable Verb for staff
resolution.

We decide to call the new verb "Group an Users Intersection".

For most verbs, there are defined parameters and this is no exception. We see that we need two
parameters:

• Group Name – The name of a group a users

• Users – A list of named users passed as input

With our knowledge of what must be done to achieve this task, we build an XML fragment that is
to be made known to WID to allow us select the verb. A suitable XML fragment would be as
follows:

<vs:DefineVerb name="Group and Users Intersection">
 <vs:Description>Result set is the intersection between named users and a
group</vs:Description>
 <vs:Mandatory>
 <vs:Parameter>
 <vs:Name>GroupName</vs:Name>
 <vs:Type>xsd:string</vs:Type>
 <vs:Hint></vs:Hint>
 </vs:Parameter>
 <vs:Parameter>
 <vs:Name>Users</vs:Name>
 <vs:Type>xsd:string</vs:Type>
 <vs:Hint></vs:Hint>
 </vs:Parameter>
 </vs:Mandatory>
 <vs:Optional></vs:Optional>
</vs:DefineVerb>

This says that there is a new verb called Group and Users Intersection which has two mandatory
parameters called GroupName and Users both of data type string.

This XML fragment should be added to the existing XML for the other verbs and made known to
WID.

The next thing to do is to modify the XSLT file used to build the staff query language.

<xsl:template name="GroupAndUsersIntersection">
 <xsl:variable name="Users">
 <xsl:value-of select="staff:parameter[@id='Users']"/>
 </xsl:variable>
 <sldap:staffQueries>
 <sldap:usersOfGroup recursive="no">
 <xsl:attribute name="groupDN">
 <xsl:value-of select="staff:parameter[@id='GroupName']"/>
 </xsl:attribute>
 <!-- the object class can be either groupOfNames or groupOfUniqueNames -->
 <sldap:resultObject objectclass="groupOfUniqueNames" usage="recursive">
 <!-- The name must be either member or uniqueMember depending on the
Object Class being used -->
 <sldap:resultAttribute destination="intermediate"
 name="uniqueMember" />
 </sldap:resultObject>

Page 988

 <sldap:resultObject objectclass="inetOrgPerson" usage="simple">
 <sldap:resultAttribute destination="userID" name="uid" />
 <sldap:resultAttribute destination="eMailAddress" name="mail" />
 <sldap:resultAttribute destination="preferredLocale"
 name="preferredLanguage" />
 </sldap:resultObject>
 </sldap:usersOfGroup>
 <sldap:intersect>
 <xsl:attribute name="value">
 <xsl:value-of select="$Users"/>
 </xsl:attribute>
 </sldap:intersect>
 </sldap:staffQueries>
</xsl:template>

Group and Group intersection

In this example we are going to create a verb for group and group intersection. The result set will
be the set of users in both groups.

The WID definition looks as follows:

<vs:DefineVerb name="Multiple Group Intersection">
 <vs:Description>Result set is the intersection between multiple
groups</vs:Description>
 <vs:Mandatory>
 <vs:Parameter>
 <vs:Name>FirstGroupName</vs:Name>
 <vs:Type>xsd:string</vs:Type>
 <vs:Hint></vs:Hint>
 </vs:Parameter>
 <vs:Parameter>
 <vs:Name>SecondGroupName</vs:Name>
 <vs:Type>xsd:string</vs:Type>
 <vs:Hint></vs:Hint>
 </vs:Parameter>
 </vs:Mandatory>
 <vs:Optional></vs:Optional>
</vs:DefineVerb>

The corresponding XSLT looks as follows:

<xsl:template name="MultipleGroupIntersection">
 <xsl:variable name="Group1">
 <xsl:value-of select="staff:parameter[@id='FirstGroupName']"/>
 </xsl:variable>
 <xsl:variable name="Group2">
 <xsl:value-of select="staff:parameter[@id='SecondGroupName']"/>
 </xsl:variable>
 <sldap:staffQueries>
 <sldap:usersOfGroup recursive="no">
 <xsl:attribute name="groupDN">
 <xsl:value-of select="$Group1"/>
 </xsl:attribute>
 <!-- the object class can be either groupOfNames or groupOfUniqueNames →
 <sldap:resultObject objectclass="groupOfUniqueNames" usage="recursive">
 <!-- The name must be either member or uniqueMember depending on the
Object Class being used →
 <sldap:resultAttribute destination="intermediate"
 name="uniqueMember" />
 </sldap:resultObject>
 <sldap:resultObject objectclass="inetOrgPerson" usage="simple">

Page 989

 <sldap:resultAttribute destination="userID" name="uid" />
 <sldap:resultAttribute destination="eMailAddress" name="mail" />
 <sldap:resultAttribute destination="preferredLocale"
 name="preferredLanguage" />
 </sldap:resultObject>
 </sldap:usersOfGroup>
 <sldap:intermediateResult>
 <xsl:attribute name="name">group2Users</xsl:attribute>
 <sldap:usersOfGroup recursive="no">
 <xsl:attribute name="groupDN">
 <xsl:value-of select="$Group2"/>
 </xsl:attribute>
 <!-- the object class can be either groupOfNames or groupOfUniqueNames →
 <sldap:resultObject objectclass="groupOfUniqueNames"
usage="recursive">
 <!-- The name must be either member or uniqueMember depending on the
Object Class being used →
 <sldap:resultAttribute destination="intermediate"
 name="uniqueMember" />
 </sldap:resultObject>
 <sldap:resultObject objectclass="inetOrgPerson" usage="simple">
 <sldap:resultAttribute destination="intermediate" name="uid" />
 </sldap:resultObject>
 </sldap:usersOfGroup>
 </sldap:intermediateResult>
 <sldap:intersect value="%group2Users%">
 </sldap:intersect>
 </sldap:staffQueries>
</xsl:template>

See also – Staff Resolution:
• DeveloperWorks - Concurrent human task assignment in WebSphere Process Server V7 - 2010-06-30

StaffQueryResultPostProcessorPlugin
When a Human Task is reach and a set of users for a task is determined, the resulting set of users is
known as a Staff Query Result. When the query for the users is completed but before the result is
used, a custom user exit can be called which is supplied the result set that will be used. This exit
can modify the result set to add or remove users. This means that the user set can be completely
controlled by application logic.

Before we discuss the plugin and its interface, let us first examine the StaffQueryResult interface.

This object represents a result from a staff query. The result can be one of four possible types:

• Everybody – Everyone is authorized in this result

• Nobody – No-one is authorized in this result

• Group – The members of a named group (only 1 group may be named) is authorized

• Userids – A collection of named users is authorized

An instance of a StaffQueryResult can hold data for one of these types. A StaffQueryResult can
not name a group and a set of users. To determine what type of StaffQueryResult is present, the
method called getResultType() is available. This returns one off:

• StaffQueryResult.RESULT_TYPE_EVERYBODY

• StaffQueryResult.RESULT_TYPE_GROUPIDS

• StaffQueryResult.RESULT_TYPE_NOBODY

Page 990

http://www.ibm.com/developerworks/websphere/library/techarticles/1006_vanzyl/1006_vanzyl.html

• StaffQueryResult.RESULT_TYPE_USERIDS

If the type is Userids, then the userid data can be retrieved from the StaffQueryResult with one of
either of the two methods:

• Collection getUserData()

• Map getUserDataMap()

Which ever one is called first prevents the other from being used (odd semantics that). The returned
data structures (the Collection or the Map) can be modified and will reflect changes to the
StaffQueryResult. Another way of saying this is that the returned data structures are references to
the real data represented by the StaffQueryResult. The entries in these data collections are of type
UserData which is a wrapper of three fields: The UserName, the Locale and the EmailAddress.

Instances of UserData objects and StaffQueryResult objects are created from a
StaffQueryResultFactory instance.

See Also – Post Processing Plugins:
• DeveloperWorks – Authorization and staff resolution in Business Process Choreographer: Part 3: Customization options for staff resolution –

2007-12-12

Replacement Expressions
At runtime, parameters to verbs can be taken from the context in which the process is running. This
allows variables to be named in the verb definitions and the content of those variables will be used
to supply data to the verb evaluations.

Here are some simple examples:

• The visual description of a human task instance can be set as a function of a parameter in the
call to that task

• The potential owner for a task can be set to be the owner of a previously completed task

• The allowable set of expressions vary depending on whether the task is in-line or stand-alone.

Stand-alone Expressions

The following table lists all expressions, that are available for stand-alone human tasks (i.e. tasks
that are not embedded inline in a process). These expressions can be used inside descriptions as
well as staff assignments. The expressions must be enclosed in '%' characters.

htm:task.originator task originator name

htm:task.owner task owner name

htm:task.starter task starter name

htm:task.administrators list of task administrators

htm:task.potentialOwners list of potential task owners

htm:task.editors list of task editors

Page 991

http://www.ibm.com/developerworks/websphere/techjournal/0712_lind/0712_lind.html

htm:task.readers list of task readers

htm:task.potentialStarters list of potential task starters

Staff Variables

htm:property.CustomProp value of task's custom property 'CustomProp'

htm:task.displayName default task display name

htm:task.description default task description

htm:task.instanceID task instance id

htm:task.BPCExplorerURL BPC Explorer URL to task/escalation details

htm:input.[part][\XPath] data from task's input message

htm:output.[part][\XPath] data from task's output message

The htm:input notation may be difficult to get right at the first try. If you open the Interface in the
WSDL editor (not the usual Interface editor) then you can find all the pieces of the expression

(click for full size)

The corresponding replacement expression is then:

%htm:input.requestContentCommentParameters\request/user%

Note that the syntax here is easy to mistype. The XPath expression can be arbitrarily complex. We
have seen reports that for some styles of wrapped data it is easiest to do a tree search by beginning
the XPath expression with '//', so this expression is usable instead of previous example:

%htm:input.requestContentCommentParameters\//request/user%

Another, and possible simpler recipe seems to be:

%htm:input.<operationName>Parameters\<operationParameterName>/<fieldName>%

Page 992

 Escalation variables

htm:escalation.description default escalation description

htm:escalation.expectedTaskState escalation's expected task state

htm:escalation.instanceID escalation instance id

htm:escalation(escalationName).receivers escalation receivers

Inline expressions

The following tables illustrate the expressions available to in-line human tasks.

Process variables

wf:variable.VariableName.[part][\XPath] 'VariableName[part][\XPath]' is passed to BFM
to resolve the variable/expression. Note: Recent
testing seems to be showing that this syntax may
no longer be valid. It seems that simply naming
the variable in % characters is all this required.
For example %myStringVar% or
%myBO\myfield% works.

wf:property.customPropertyName The 'customPropertyName' is passed to the BFM
to resolve the custom property.

Inline staff variables

wf:process.starter The starter of the process.

wf:process.administrators The administrators of the process.

wf:process.readers The readers of the process.

wf:activity(activityName).potentialOwners The potential owners of either the current
activity or the activity named in brackets

wf:activity(activityName).owner The owner of either the activity named in

Page 993

brackets

wf:activity(activityName).editors The editors of either the current activity or the
activity named in brackets

wf:activity(activityName).readers The readers of either the current activity or the
activity named in brackets

Note that inline staff variables which refer to sibling activities can only be resolved, if the referred
activity is also an inline human task and is already started at the point in time when the staff
resolution happens.

Getting data from Tasks

The replacement expressions allow data to be set into tasks, but what about getting data from tasks?
The solution to this is the realization that even when a Human Task completes, but before the end of
a process, the data associated with that task is not deleted and is available through API. Within a
Java Snippet within a BPEL process, the following code can be used:

ActivityInstanceData aid = activityInstance("ActivityName");

From the ActivityInstanceData object, various properties can be retrieved such as the owner of the
activity with the getOwner() method.

See Also – Replacement Expression:
• DeveloperWorks – Dynamic configuration of the Human Task Manager in WebSphere Process Server – 2007-08-22

Human Task User Interfaces
See Also:
• TechNote - How to embed a custom client type into the human task editor - 2006-10-18

Human Task API Event Handlers
WPS provides extensions that can be used to implement Human Task functionality.

An interface called APIEventHandlerPlugin5 can be implemented. A default version is already
implemented called APIEventHandler which can be used to merely over-ride the functions
desired.

The interface provides two methods of each function. These are prefixed with pre and post (for
example: preCallTask and postCallTask). The following table lists the functions available to be
caught.

Function When Called

CallTask CALL TASK

CancelClaim CANCEL CLAIM

Claim CLAIM

Page 994

http://www-01.ibm.com/support/docview.wss?uid=swg27006853
http://www.ibm.com/developerworks/websphere/library/techarticles/0708_gadiyar/0708_gadiyar.html

Complete COMPLETE

CompleteWithFollowOnTask COMPLETE WITH FOLLOW-ON TASK

CompleteWithNewFollowOnTask COMPLETE WITH NEW FOLLOW-ON TASK

CreateAndCallTask CREATE AND CALL TASK

CreateAndStartTask CREATE AND START TASK

CreateAndStartTaskAsSubTask CREATE AND START TASK AS SUBTASK

CreateTask CREATE TASK

CreateWorkItem CREATE WORKITEM

DeleteTask DELETE TASK

DeleteWorkItem DELETE WORKITEM

GetTaskAndMarkRead GET TASK AND MARK READ

ReplaceWorkItem REPLACE WORKITEM

RestartTask RESTART TASK

ResumeTask RESUME TASK

SetBinaryCustomProperty SET BINARY CUSTOM PROPERTY

SetCustomProperty SET CUSTOM PROPERTY

SetFaultMessage SET FAULT MESSAGE

SetInputMessage SET INPUT MESSAGE

SetOutputMessage SET OUTPUT MESSAGE

SetTaskRead SET TASK READ

StartTask START TASK

StartTaskAsSubTask START TASK AS SUBTASK

SuspendTask SUSPEND TASK

SuspendTaskUntil SUSPEND TASK UNTIL

SuspendTaskWithCancelClaim SUSPEND TASK WITH CANCEL CLAIM

TerminateTask TERMINATE TASK

TransferToWorkBasket TRANSFER TO WORK BASKET

TransferWorkItem TRANSFER WORKITEM

Page 995

TriggerEscalation TRIGGER ESCALATION

UpdateInactiveTask UPDATE INACTIVE TASK

UpdateTask UPDATE TASK

Experimentation seems to show that if the plugin JAR is added to the TaskContainer application as
opposed to the system class path then if the TaskContainer is bounced, a new version of the plugin
will be loaded. This can be useful during development.

WebSphere Process Server (WPS) provides Human Task Management through the HTM functions.
When a Human Task is created, a set of eligible users is chosen for being potential owners of that
task and for other roles also related to the task. This set of users is defined in the Task Template
during development time in WID. At runtime, we have the option of changing the set of selected
users through the concept of a custom plugin written in Java. This plugin is executed during the
processing of the operation and can change the result.

To assist with the creation of such a plugin, a sample WID 6.2 Project Interchange has been written
which is a skeleton/placeholder for the functions. It is provided as a companion to this document.

Once the plugin has been implemented, it must be installed into the WPS server. The InfoCenter
documentation on this is vague and assumes some prerequisite knowledge on the part of the reader.
The following illustrates the steps required to install a plugin.

After building the plugin and exporting it as a JAR file, this JAR needs to be registered as a WAS
shared library. From within the Admin Console of WAS, create a new shared library.

Create a new shared library entry.

Page 996

Give the new shared library a logical name and set the Classpath attribute to point to the absolute
location on the local file system of the exported Plugin JAR file.

Page 997

Next we need to tell the WPS provided Human Task Manager component to include the newly
defined shared library in its own classpath. Again from the Admin Console, drill down to the
Human Task Manager application.

Page 998

Select the Human Task Manager application which has a name which starts with
TaskContainer.....

In the References section, click on Shared library references.

Select the complete application (not the modules) by checking the box and then click the
Reference shared libraries button.

Page 999

In the list of available shared libraries, select the library we added earlier and add it to the list of
libraries associated with the application.

The result will be that the application now references the shared library. Press OK to complete the
task.

Page 1000

The shared library has now been associated with the task and we can complete this step with the OK
button.

We have one last step ahead of us and this is to tell the Human Task Manager to use the plugin
during its runtime processing. From the Admin Console, select the Application Server details and
in the Business Integration > Business Process Choreographer section, select Human Task
Manager.

Page 1001

Select Custom Properties.

Page 1002

In the Custom Properties for the Human Task Manager application, click on the property called
Staff.PostProcessorPlugin. This will allow us to edit/change/set the value of this property.

Page 1003

Set the value of this property to be the logical name of the plugin. Note that this need not be the
same name as the Java class that implements the plugin so take care here.

Page 1004

We have now completed all the necessary setup and can save all our changes.

The changes will not be visible to WPS until the next server restart so go ahead and restart the
server.

Page 1005

Query Tables
Query Table Editor
The query table editor is provided as part of a Support Pac called

PA71: WebSphere Process Server - Query Table Builder

This can be found at the following URL:

http://www-01.ibm.com/support/docview.wss?uid=swg24021440

There is detailed documentation associated with using query tables that can be found with the
Support Pac.

Installation of Query Table Editor

Download the pa71_<version>.zip file to a directory on the same machine as WID and extract its
content. Start WID.

Page 1006

http://www-01.ibm.com/support/docview.wss?uid=swg24021440

Page 1007

Page 1008

Query Table programming
The query tables can be accessed via REST interfaces. These include:

Task Instance Query Tables Resource

This request retrieves a list of the query tables and their attributes. The general syntax for this
request is:

GET /rest/bpm/htm/v1/tasks/queryTables

Task Instance Entity List Resource

This request retrieves instances of rows in the query tables. The general syntax for this request is:

GET /rest/bpm/htm/v1/tasks/query

A mandatory parameter called queryTableName is needed. This is the name of the table that is to
be queried.

Additional parameters include queryFilter. This is a HTM standard query that can be used to locate
a subset of entries. The default it to return all entries.

An example REST request might be:

Page 1009

/rest/bpm/htm/v1/tasks/query?queryTable=MYTABLE.MYDATA&queryFilter=KIND
%3DKIND_PARTICIPATING AND STATE%3DSTATE_READY

Note the escape characater sequence of %3D which is '='.

Using Query Tables with Business Space
As part of the WPS 6.2 Feature Pack that was made available in July 2009, a new set of Business
Space widgets were included. Amongst the new collection is widget called Tasks List. It presents
lists of Human Tasks in various states. From these tasks, a user can select a task and work upon it.

The basic view of a task in the Tasks List widget looks as follows:

Although this looks fine. We can do better than this. New for the Tasks List widget is the ability to
configure in great detail what is shown on a per task basis. Importantly, the columns shown for a
task can include data that can allow the user to see into that task without having to open it up.

By way of a trivial example, consider a Business Process that looks like this:

The process includes a human task that is used to present some data to a user. Now assume that the
data includes the following Business Object definition:

Page 1010

In the Environment section of the Human Task, a couple of custom properties have been defined:

Wouldn't it be wonderful if the Business Space Tasks List could also display information relating to
the task on the list of tasks? It might look something like this:

Notice that the task list contains application data (Customer Name and Balance) that came

Page 1011

from custom properties values.

The remainder of this paper will show you exactly how to achieve this effect.

The first thing we need to do is to create a Query Table associated with the data that we want to
display for this type of task. A detailed description of Query Tables is beyond the scope of this
document. However, the document does assume that the PA71 - Support Pac called WebSphere
Process Server – Query Table Builder has been installed. See:

http://www-01.ibm.com/support/docview.wss?uid=swg24021440

Switch the view to Physical resources

In the Business Integration view, click on Physical Resources.

Create a new Query Table for Business Space

Create a new artifact. In the wizard list, expand Business Process Choreographer and select
“Composite Query Table Definition for Business Space”.

Page 1012

http://www-01.ibm.com/support/docview.wss?uid=swg24021440

Give the query table a name

Each query table must be given a name. We will call ours “BANK.ACCOUNT”.

Page 1013

Described the type of Query Table

There are multiple types of query table that can be built. The Query Table we want is to be used to
show task lists so we select the Tasks List entry from the set of available query tables.

Page 1014

Open the Query Table builder

When prompted to open the Query Tables perspective, select Yes.

Add the TASK_DESC table

In the result, we want the description of the task to be included so we add the TASK_DESC table as
a related table. Drag it from the Human Task predefined tables and drop it on the canvas.

Page 1015

Add the DESCRIPTION into the resulting query table

Drag the DESCRIPTION field from the TASK_DESC table into the BANK.ACCOUNT set of
columns. This will allow DESCRIPTION to be shown in the query result set.

Page 1016

Add two TASK_CPROP tables

In our sample, we have two properties associated with a task (Customer Name and Balance).
We want these included in the BANK.ACCOUNT query table. Drag two instances of the
TASK_CPROP table into the canvas. One will be used for the Customer Name property and the
other used for the Balance property.

Configure the Customer Name

Rename the table's short name to be CUSTOMERNAME. Although not required, this aids in
readability. In the filter expression used to select the vales, change the filter so that NAME matches
'CustomerName' which is the name of the property.

Page 1017

Configure the Balance

Similar to the previous step, we rename the short name of the table to be BALANCE and set the filter
used to select values to be 'Balance' which is the name of the property.

Add CUSTOMERNAME and BALANCE columns to the BANK.ACCOUNT table

Drag and drop the field called STRING_VALUE from both the TASK_CPROP tables into the
BANK.ACCOUNT description. This will now include this data in the resulting query.

Examine the completed BANK.ACCOUNT query table

The final BANK.ACCOUNT query table looks as follows. It is a combination of data from a number
of different sources and includes the additional data that we want to display.

Click on the white space in the diagram. In the Properties view, click on the Description tab. Enter
Bank Account in the Display Name.

This will give a human readable name to the Query Table when we select it in Business Space at a
later step.

Page 1018

Repeat this for the columns

When the Tasks List widget displays the data, it uses the column names to display the heading for
those columns. These aren't very readable. For each of the columns we want to display, select that
column and change its Display Name to be a better value. The following columns should be
modified.

Description

Owner

Customer Name

Balance

Open up the Query Table testing tool

Save the query table that we have just built and then right click upon it to open up the context menu.
From the context menu, select “Test on local WebSphere Process Server”.

Page 1019

Complete the details for deployment

The testing tool allows us to deploy the query table definition to the running WPS server. Complete
the form and then Deploy. Make sure that the check box to deploy the additional properties files is
also selected.

Page 1020

Open and configure the Tasks List widget

In Business Space, add a Tasks List widget to the page. Open the configuration panel for the
widget.

View the available query tables

In the Content tab, notice that there is now a list of query tables. If we pull down the task list to
display, we see that a new one is present called “Bank Account”. Here we can select which
columns and their order that should be displayed in the Tasks List.

Page 1021

Change the view of the Tasks List

In the Tasks List widget, pull down the view (currently set to All tasks) and select “Bank Account”.
The widget will then change to show the Bank Account view.

Review the result.

Now we see the final result. It is a list of tasks with the data for those tasks taken from the query
table that we just built.

Business Objects
Business Objects are the data abstractions used in WPS. When data is received or sent between
components or services, if the data is anything other than simple data, it is treated as a Business
Object. Think of the Business Object as a logical container of fields where each field has a name

Page 1022

and a data type. The data type can be a simple data type such as String or Integer or can itself be
another Business Object.

SDO Programming Model v1.0
Business Objects are SDO. The in memory representation of a business object is a 1.0 Service Data
Object. The programming model is the SDO 1.0 programming model as a base with the Business
Object Framework Services providing incremental services in addition to what is available in SDO
1.0. It is recommended that you leveragethe 1.0 Java Doc for reference. It is available for download
from developerWorks here:

• Commonj-SDO-Specification (pdf)

• SDO API documentation (JavaDoc)

SDO Programming Model v2.0
The WPS Business Object Framework is not based on this version but you can access the published
2.0 doc at this address.

• SDO API documentation (JavaDoc)

Recording changes
One of the primary functions of SDO has been for the 'disconnected data source' pattern. This
model is the idea that a data owning system can provide a copy of an instance of data that it owns
and that data is contained within the SDO. The application that requested the data can now work
against the SDO copy of the data. At some time in the future, the SDO DataObject can be supplied
back to the data owning system and, if possible, only the changed data items need to be updated by
that system. This disconnected data model allows a consumer of data to get a copy, be
disconnected from the originating data system, do work against that data and then have the resulting
changes pushed back into the data owning system. SDO attempted to provide this function through
a mechanism it called a DataGraph. The reality of the situation after years of SDO availability and
practice is that this capability is never used.

Splitting namespaces across projects
Be very very careful when splitting namespaces across projects. The following won't work (by
design)

MyLibrary contains BO1 in namespace http://com.test.types

MyModule contains Iface1 and BO2 in namespace http://com.test.types

BO1 will not be visible to Iface1 or BO2 (or anything else in MyModule with namespace
http://com.test.types). From the editor - you will not even be able to create an attribute in BO2 of
type BO1. Nor an input/output parameter of type BO1 in Iface1.

Best practice: do not split namespaces across projects.

What you should be aware of: This applies to null namespaces.

Page 1023

http://www.osoa.org/display/Main/Service+Data+Objects+Specifications
ftp://www6.software.ibm.com/software/developer/library/j-commonj-sdowmt/Commonj-SDO-Javadoc-v1.0.zip
ftp://www6.software.ibm.com/software/developer/library/j-commonj-sdowmt/Commonj-SDO-Specification-v1.0.pdf

Business Object Programming
This section describes some of the issues and concepts relating to Business Object programming in
Java.

SDO Representation of XML Schema Types

SDO Representation of XML Schema Types

Arrays

When a Business Object field is flagged as an Array, the DataObject getter and setter is getList()
and setList() which interact with the java.util.List class.

Note that getList() will always return a List object, never null. The returned List can track changes
to the Business Object (it is not just an ArrayList or LinkedList), which is important for Business
Objects that use an internal Sequence (see below).

Similarly setList() does not replace the internal List, it replaces the contents (according to the SDO
1.0 spec, it is equivalent to clear() followed by addAll().

The List interface has a size() method that can be used to determine the number of elements in the
list (and hence the number of elements in the array).

Sequenced Objects

When a Business Object represents complex content (for example, nested, repeating sequences in
XML Schema), the object maintains an internal sequence. As properties are set, or values added to
Array properties (Java List interface), the internal sequence is updated automatically. For these
complex cases, it is the responsibility of the programmer to set / add values in an order that matches
the schema.

Nested BOs

BOs typically can contain other BOs as fields resulting in a tree or hierachical structure. To create a
child BO, one could use the BOFactory and create an appropriately typed BO and then add it but
there is an easier way. The DataObject contains a method called createDataObject that takes a
parameter a property name and returns a DataObject of the appropriate type for the named property
contained in the parent DataObject.

For example if a BO called "A" contains:

• Name Type

• LastName String

• Age int

• Billing Address

• OrderValue double

Page 1024

then if we have a reference to an "A" DataObject calling the A.createDataObject("Billing") method
will return a DataObject of type Address.

BOFactory: createByElement or create?

In WPS 6.0.1+ there are two methods on the BOFactory you will get to know well. They are
createByElement and create. Use create when the Business Object xsd definition is contained in a
<xsd:complexType> tag. Use createByElement when the Business Object xsd definition is
contained in a <xsd:element> tag. If you created your Business Object in WID, then it generated an
xsd that via the complexType tag and you will use the create(..) method.

BOs of 'any' type

Firstly, there are (at least) 3 cases to be aware of:

• BOs using inheritance (or extension, in schema terminology)

• BOs using xsd:anyType (a named element, but unspecified type)

• BOs using xsd:any (any sequence of mixed content)

In the first case, a BO can specify the base type for a property, and at runtime a BO inheriting from
the base can be used. This is supported in the runtime and the BO editor.

In the second case, the corresponding property will have a type of Object (not DataObject) at
runtime. The BO editor will let you specify this, however it could cause problems at runtime (where
components assume that they will get a DataObject, not an Object).

In the third case, this is a schema feature and shouldn't be used in BOs, but may occur where an
external schema is imported (e.g. Web Services). SDO supports this for parsing XML / reading
from the DataObject, but not when creating a DataObject. See technote 1250444 'Problems
associated with using xsd:any' for a workaround.

WSDL files and externally referenced XSDs

WID

When dealing with remote business objects, the current situation (PMR 90542-999-000) requires
you to import the XSDs into WID. You can do this by

 * File > Import... > HTTP & then specify the source & the target locations.

By importing the XSDs, the other editors are able to use them.

WPS

Page 1025

If you currently want to reference a "remote BO," defined as one which has the schemaLocation
attribute pointing to a URI that contains the XSD, the runtime will load it. If you cannot load your
"remote" BO, check that the schemaLocation attribute is set properly (for example, you are able to
load get the XSD from the URI you specified) and then open a PMR. In some future release of
WPS, there may be truely "remote" BOs in which you do not need to hardcode the schema location.

OpenSource SDO Utilities and Classes

As we build SDO based projects, we will find that we generate code artifacts that do interesting
things (such as dump the contents of a DataObject). To capture such artifacts, an Open Source (but
internal to IBM) repository has been created that is built on a CVS server. This allows you to
immediately import useful function directly into WID. You can also update the code or add new
assets and post them back to the repository. There are more details available on the OpenSource
repository.

Business Object Inheritance
A Business Object can inherit from another business object when it is defined. This allows one BO
to be a superset of another. The superset BO contains all of the fields of the subset BO plus
additional fields. In an interface, a subset BO specified as a parameter can be passed a superset BO
as an actual parameter.

The following shows the creation of a new Business Object called BO2. We want this to inherit
from BO1 and select BO1 in the "Inherit from" area.

The result is a new BO called BO2 that is a superset of BO1.

Page 1026

Application Specific Information (ASI)
Business Objects can have meta data associated with them and the fields contained within them.
This meta data is called "Application Specific Information" or "ASI". Unfortunately, there does not
appear to be any SDO API to retrieve (or set) this information. Fortunately IBM has provided a
class called AdapterBOUtil that is supplied with the Adapter Foundation Class
(CWYBS_AdapterFoundation.jar. There are a number of methods for working with the ASI
information including:

• getMetaDataForObject()

• getMetaDataForProperty()

• getMetaDataForOperation()

See Also:
DeveloperWorks – Validating business objects in Websphere Process Server – 2009-07-29

SDO Programming
The Service Data Object (SDO) has a rich set of programming APIs. JavaDoc for the APIs (v2.4.2)
is available as well as more general documentation.

This section shows some illustrative techniques when working with the SDO API.

Walking a DataObject

Walking or iterating through a DataObject can be achieved through the following code fragment.

DataObject myDO;
…
Type myType = myDO.getType();

Page 1027

http://www.ibm.com/developerworks/websphere/library/techarticles/0907_xie/0907_xie.html

List propertiesList = myType.getProperties();
Iterator i = propertiesList.iterator();
while(i.hasNext())
{
 Property currentProperty = (Property)i.next();
 …
 Object value = myDo.get(currentProperty);
}

The code works by retrieving the Type of the DataObject. The type contains details of all the
different properties contained within. A Java list of those properties is obtained. Next, the list is
iterated and something done with each of the properties within.

Create and Populate a DataObject

This method creates a DataObject of the named type. An optional (specify null if not needed) map
is supplied containing name/value pairs. For each name, a field in the DataObject is expected to
exist that can be set to the supplied value.

public DataObject createDataObjectWithContent(
 String namespace,
 String name,
 HashMap<String, Object> map) {

 BOFactory boFactory = (BOFactory) ServiceManager.INSTANCE
 .locateService("com/ibm/websphere/bo/BOFactory");
 DataObject dataObj = boFactory.create(namespace, name);
 if (dataObj == null) {
 return null;
 }
 if (map == null)
 {
 return dataObj;
 }
 Set<String> keySet = map.keySet();
 Iterator<String> i = keySet.iterator();
 while (i.hasNext()) {
 String key = i.next();
 Object value = map.get(key);
 dataObj.set(key, value);
 }
 return dataObj;
}

IBM DataObjectUtils

IBM provides a class called com.ibm.bpc.clientcore.DataObjectUtils which parses a
DataObject and populates a HashMap with the content of that DataObject. The keys to the
hashmap are the XPath strings that would be used to access a field. The values of map are the
contents of the object. In addition to parsing an object, the map can also be re-written into the
object.

This class was designed for JSF usage and can be located in the JAR:

<WPS>/ProcessChoreographer/client/bpcjsfcomponents.jar

Testing seems to show that the class only works in a JSF environment which is a pity because it
seems generically useful.

Page 1028

SCA Business Objects

Creating an SCA Business Object

A Business Object represents a structured piece of data. The Business Object can be created in an
SCA application through a Java class called the BOFactory. This factory must be retrieved from a
named SCA location:

BOFactory boFactory =
(BOFactory)ServiceManager.INSTANCE.locateService("com/ibm/websphere/bo/BOFactory
");

The BOFactory is part of the com.ibm.websphere.bo package and is fully documented along with
the other related classes. At the simplest level, to create a new Business Object, we can use:

DataObject dataObj = boFactory.create("targetNameSpace", "complexTypeName");

As you will notice, the DataObject is created from the factory through the combination of target
namespace and type name. The BOFactory appears to scan its current class path looking for XML
or XSD documents that match these requirements and, from these values, then creates the
associated DataObject. What this means is that if you need to create a DataObject in an arbitrary
class, then the BO (.xsd file describing it) needs to be included as a dependency in the project in
which the calling class is contained.

Here is an example of creating a DataObject. If you have a WPS Library called "Lib" that contains
a BO definition called "Customer" in namespace "http://mybiz", then if you want to create a
DataObject instance of that type you would need to call:

DataObject myObject = boFactory.create("http://mybiz", "Customer");

If the code that creates the BO is in a WPS Module, then "Lib" must be flagged on that Module as a
dependency.

If the code that creates the BO is a J2EE App, then the JAR file representing "Lib" must be added
as a dependency to the J2EE Deployment Descriptor.

Converting to/from XML

WPS provides a utility class to convert a DataObject to/from a specific formatted XML document.
The class implementing this function is called BOXMLSerializer. An instance of this class can be
retrieved through:

BOXMLSerializer mySerializer =
 (BOXMLSerializer)
ServiceManager.INSTANCE.locateService("com/ibm/websphere/bo/BOXMLSerializer");

Some of the methods of this class expect a rootElementName. To determine the root of a current
DataObject, use the following:

dataObject.getType().getName()

Some of the methods of this call expect a namespace. To determine the namespace of the current
DataObject, use the following:

dataObject.getType().getURI();

The following example illustrates turning a BO into an XML document:

BOXMLSerializer mySerializer =
(BOXMLSerializer)

Page 1029

ServiceManager.INSTANCE.locateService("com/ibm/websphere/bo/BOXMLSerializer");
String rootElementName = dataObject.getType().getName();
String targetNamespace = dataObject.getType().getURI();
ByteArrayOutputStream baos = new ByteArrayOutputStream();
mySerializer.writeDataObject(dataObject,
 targetNamespace, rootElementName, baos);
String xmlText = new String(baos.toString());

To convert an XML string to a DataObject, the following code may be utilized:

String xmlText = "<XML to become a BO>";
…
BOXMLSerializer mySerializer =
(BOXMLSerializer)
ServiceManager.INSTANCE.locateService("com/ibm/websphere/bo/BOXMLSerializer");
ByteArrayInputStream bais = new ByteArrayInputStream(xmlText.getBytes());
BOXMLDocument document = mySerializer.readXMLDocument(bais);
DataObject dataObject = document.getDataObject();

XML documents with no namespace

It is common to find XML documents that have no namespace information associated with them. In
order to be able to support this kind of document, the corresponding Business Object should also be
set to have no namespace associated with it.

When WPS is supplied an XML document to be turned into a Business Object, it examines that
document and provides a fully qualified name of the format {Namespace}Name. This is used to then
find the corresponding Business Object definition.

When an XML document with no namespace is presented, then the result is {}Name. In order to
find a matching Business Object definition, the BO must also appear as {}Name and this is
achieved through nulling out the namespace for the BO. This will result in a WID based warning
but this may be safely ignored.

Here is an example. Consider a Business Object called BO1 (no namespace) that has three fields.
Converting this to its XML representation results in:

<?xml version="1.0" encoding="UTF-8"?>
<BO1 xsi:type="BO1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <f1>1</f1>
 <f2>2</f2>
 <f3>3</f3>
</BO1>

SCA
Asynchronous processing
See Also
• DeveloperWorks – Asynchronous processing in WebSphere Process Server – 2009-04-29

• DeveloperWorks – WebSphere Process Server invocation styles – 2008-10-29

SCA Import and Export protocol bindings
When we spoke about SCA Import and SCA Export components, we found that there are protocol
bindings associated with them. These protocol bindings describe how communication inbound (for
exports) and outbound (for imports) are achieved. There are a variety of options for protocol
bindings. The following sections drill down into each one. The choice include:

Page 1030

http://www.ibm.com/developerworks/websphere/library/techarticles/0811_chacko/0811_chacko.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0904_fong/0904_fong.html

• Web Services

• JMS

• MQ

• EJB

• <others>

Web Services

SOAP/HTTP

The SCA bindings for SOAP/HTTP leverage the underlying WAS Web services capabilities.

SOAP/JMS

SOAP over JMS is the idea that a service caller and service provider will interact with each other by
the service caller building a SOAP request message and depositing that message on a JMS queue.
The service provider will be monitoring that queue and when a message arrives on it, the provider
will retrieve the message and process it sending back a response as needed. The usage of JMS as
opposed to the much more common HTTP protocol is a consumer's choice.

To illustrate how SOAP/JMS works, we will start with a simple story. Consider the following
simple SCA module that shows an unbound SCA Export connected to a component. The
component will simply log the fact that it has been called. The interface is a simple one-way
operation was a simple Business Object as input.

When we select the generate bindings for Export1 and then Select Web Services Binding as shown
next:

Page 1031

We have the opportunity to build a SOAP/JMS inbound listener.

The next page of the wizard looks as follows:

Page 1032

As we can see, this is a pretty sparse wizard. When the binding has been built, the result looks like
a standard Web Services binding:

However, if we look at the binding details we find that the transport type is defined as SOAP/JMS.

With SOAP/HTTP transport of Web Services, the Address corresponds to a standard URL, however
for SOAP/JMS, the format is different. Examining the format, we find it to be:

Page 1033

jms:/queue?destination=<jndi queue>&connectionFactory=<jndi
connectionFactory>&targetService=<service port>

We see that there are two properties that pertain directly to JMS. One is the JNDI name of a
connection factory for forming connections to the JMS provider and the other is a JNDI name for a
JMS queue resource that will be monitored for incoming SOAP messages.

Experimentation has thrown up some useful nuggets of information:

• The connectionFactory entry must be a queue connection factory and not a generic JMS
connection factory.

By using an Import component and writing a test message to a JMS queue, we can see what an
example JMS message contains. We find that the JMS message type is a BytesMessage and a
typical content is as shown next:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header/>
 <soapenv:Body>
 <i1:operation1 xmlns:i1="http://SOAPJMS/I1">
 <input1>
 <f1>1</f1>
 <f2>2</f2>
 <f3>3</f3>
 </input1>
 </i1:operation1>
 </soapenv:Body>
</soapenv:Envelope>

Looking at the JMS headers on the message, we find a header called targetService. It appears that
this is used to correlate the message with the service associated with that message.

For an Export component, it appears that the JNDI connectionFactory and JNDI queue name
resources are created automatically as part of the application deployment. This is rather unusual as
other bindings for SCA components seem to offer us the choice of binding to administratively
defined resources as opposed to the deployment creating them for us.

For example, if we deploy a module with an SCA Export with SOAP/JMS bindings, the following
resources were found to have been automatically created:

• Activation spec: jms/Export1AS against bus SCA.System.*.Bus and queue
jms/Export1

• Queue: jms/Export1 against bus SCA.System.*.Bus

• Queue Connection Factory: jms/Export1QCF against bus SCA.System.*.Bus

Notice that we are going against the SCA System Bus. It is not clear if we can change these
resource definitions and have them made permanent.

See also:

• DeveloperWorks - Develop a SOAP/JMS JAX-WS Web services application with WebSphere Application Server V7 and Rational Application
Developer V7.5 – 2009-03-18

• DeveloperWorks - Building a JMS Web service using SOAP over JMS and WebSphere Studio – 2004-02-01

Page 1034

http://www.ibm.com/developerworks/websphere/library/techarticles/0402_du/0402_du.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0903_adams/index.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0903_adams/index.html

• W3 – SOAP over JMS Working Group

• W3 - SOAP over Java Message Service 1.0 (Spec)

JMS

SCA modules support JMS for both inbound and outbound requests. A JMS Import looks as
follows on the SCA assembly diagram:

If the interface is defined as one-way, then the message will be put to the queue and that will be the
end of the story. However, if the interface is defined as two-way, then the message will be put to
the queue and then wait for a response on the reply queue.

When configuring a JMS Import, we provide settings for the JMS Connection factory, the JMS
Send Destination and for two-way requests, the Receive Destination.

When using a JMS Import being called by a mediation flow and the mediation flow expects a reply,
make sure that the Asynchronous invocation quality is set to "Call" as opposed to the default of
"Commit". When set to "Call", the mediation flow work is committed before the send of the
message.

See Also
• DeveloperWorks - How to use additional JMS providers with WebSphere Process Server and WebSphere Enterprise Service Bus Version 6.02

- 2007-02-28

HTTP

See Also
• DeveloperWorks - Integrating RESTful web services into a business application in IBM Business Process Manager - 2013-12-11

• DeveloperWorks – Implementing your WebSphere Process Server 6.1 business module the RESTful way – 2009-07-15

• DeveloperWorks – Developing a PHP client using the REST API in WebSphere Process Server 6.2 – 2009-04-01

• DeveloperWorks – Configuring SCA HTTP binding to enable real-life scenarios – 2008-03-26

MQ

SCA supports WebSphere MQ as a source and target of messages. This means that we can have an
SCA Export bound to an MQ queue such that when a message arrives on that queue, an SCA
module will be triggered. Conversely, an SCA Import can be bound to an MQ queue such that
when the Import is reached, a new message is delivered to a queue.

The message sent via an Import has to be serialized into a physical data stream in order to be placed
on the queue. For an Export, the incoming message has to be parsed from its physical format and a
Business Object built.

When working with an Import component, the MQ bindings can be selected from the list of
available bindings:

Page 1035

http://www.ibm.com/developerworks/websphere/library/techarticles/0803_kharlamov/0803_kharlamov.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0904_vanzyl/0904_vanzyl.html
http://www.ibm.com/developerworks/websphere/tutorials/0907_voet/index.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1312_hyakuna/1312_hyakuna.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0702_barker/0702_barker.html
http://www.w3.org/TR/soapjms/
http://www.w3.org/2002/ws/soapjms/

The selection of a binding for an Import brings up a wizard page show next:

Page 1036

In order to connect to an MQ queue manager we must supply some connection details. SCA can
connect to a queue manager using either client or bindings mode (these are MQ terms). In client
mode, a network connection is made to a remote queue manager. In bindings mode, the queue
manager must be co-located on the same machine as IBPM.

MQ Correlation messages

When sending a request MQ message through an SCA Import component and a response is
expected it is common to use an MQ correlation ID. This allows the request and response messages
to be correlated together. In the Properties > Binding > Message Configuration section of
an MQ bound SCA Import, there are settings that describe how the request message and response
message should be related.

There are three choices:

Correlation ID copy from Request Message ID – The matching response message
will have a Correlation ID value equal to the Message ID in the request message.

Response Message ID copy from Request Message ID – The matching response
message will have a Message ID value equal to the Message ID in the request message.

Correlation ID copy from Request Correlation ID – The matching response
message will have a Correlation ID value equal to the Correlation ID in the request message.

When a message is sent by SCA, a new Message ID is generated. For some MQ applications, the
Correlation ID in the request message is used for the matching response message. This can pose a
problem as the default Correlation ID sent by an SCA Import is a value of all zeros … which is
useless for a correlation value. Although MQ has an option at the MQ layer to generate a unique
Correlation ID, that ability is not surfaced in the WPS product. To achieve what we want, we need
a different technique.

First, we need to ensure that the SMO has an MQHeader in its structure. We do this by using the
MQHeaderSetter primitive. Setting a dummy value in it.

Next comes a CustomMediation which allows us to code some logic in Java. Here is an example

Page 1037

for setting the Correlation ID to a unique value:

MQMD myMQMD;
UUID uuid = UUID.randomUUID();
myMQMD = smo.getHeaders().getMQHeader().getMd();
ByteArrayOutputStream bos = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(bos);
try {
 dos.writeLong(uuid.getLeastSignificantBits());
 dos.writeLong(uuid.getMostSignificantBits());
 dos.writeLong((long)0);
 dos.flush();
} catch (Exception e) {
 e.printStackTrace();
}
byte[] data = bos.toByteArray();
myMQMD.setCorrelId(data);
out.fire(smo);

Note that MQMD class is com.ibm.websphere.sca.mq.structures.MQMD.

What this code does is get the MQMD from the SMO and then turn an instance of a Java UUID into
an array of bytes. These bytes are then set to the Correlation ID in the MQMD in the SMO
MQHeader. Note: It is very important that the data array for the Correlation ID be 24 bytes and not
less.

Testing MQ bindings

The IBM Support Pac known as IH03 provides a wealth of MQ testing tools that can be used with
great effect for WPS testing. Included in that package is the great RFHUTIL GUI tool for
examining messages.

For testing request/response handling, the utility known as mqreply may be used. Its general syntax
is not clear from the documentation but the following has been shown to work well:

mqreply -f parms.txt -r data.txt -m <queue manager name> -q <request queue name>

The parms.txt file may be empty.

The data.txt is the data to be sent back in n the reply. The request message replyToQ will be
used.

MQ messages and XML

When a message is put to a queue, the message is placed there as a sequence of bytes. It is not
uncommon to place a message on the queue which is a string representation of an XML document.
Conversely, we also want the ability to retrieve messages from a queue which are also XML based.
It is here that the XML Data Handler comes into play.

See Also:

• Converting to/from XML

See Also
• DeveloperWorks - Message binding enhancements in WebSphere Process Server V7.0, Part 1: Developing integration components that interact

with WebSphere MQ and other messaging providers - 2011-04-13

• DeveloperWorks - Using WebSphere MQ bindings in WebSphere ESB, Part 1: Manipulating MQ headers in WebSphere ESB using the XSL
transformation primitive and WebSphere Integration Developer – 2010-03-03

• DeveloperWorks – Using the MQ binding plug-in for WebSphere Integration Developer 6.0.2 – 2009-10-07

Page 1038

http://www.ibm.com/developerworks/websphere/library/techarticles/0910_bhowmik/0910_bhowmik.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0901_norton1/0901_norton1.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0901_norton1/0901_norton1.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1104_madgula/1104_madgula.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1104_madgula/1104_madgula.html

• DeveloperWorks - Using WebSphere MQ bindings in WebSphere ESB, Part 2: Creating MQ headers using the WebSphere ESB MQ Structures
API – 2009-01-21

• DeveloperWorks - Using WebSphere MQ bindings in WebSphere ESB, Part 3: Using custom WebSphere MQ headers with WebSphere ESB -
2009-01-28

• DeveloperWorks - Enabling SCA-MQ integration via MQ bindings – 2008-02-06

EJB SCA Bindings

Within an SCA module we can couple together the relationship between a wide variety of
components. This can include stateless session EJBs.

Within the ID tooling, we can open an Assembly Diagram and then drag/drop an EJB onto the
canvas which will create an import that is bound to the EJB.

The icon for the import also shows that it is an EJB binding:

The source of the drag for the drag/drop is the EJB icon in the Project Explorer view in the J2EE
perspective. This is usually found under:

EJB Projects > EJB Project Name > Deployment Descriptor > Session Beans > Bean Name

Once imported, an interface that can be used within SCA can be found. Unfortunately, the interface
generated is a pure Java interface and can not be directly used in the majority of cases because
WSDL is the norm.

Auto-generated WSDL to Java Bridge Component

When dropping the EJB onto the canvas you'll be asked if you want to have a facade map
component (Bridge) generated. This will generate a WSDL version of the interface along with a
Java component that maps the wsdl operations to java methods.

Currently if you have any overloaded methods on your EJB the generator will not work and you
will have to perform the steps as if you were in version 6.0.1.

In 6.0.1 manually construct a WSDL version of the interface and create a Java Component that has
the WSDL interface and the Java reference.

One way to achieve this is to manually create an Interface with the same operations as the EJB. The
resulting interface will be WSDL typed. Next create a Java Component on the assembly diagram
and give the component the newly created WSDL typed interface and also give it a reference of the
interface for the EJB. Generate the code for the Java Component and, for each operation contained
within the Java code, invoke the EJB operation.

The generated code assists with this technique. If the reference on the Java Component is called
XYZReference then a method is created in the Java Code called:

public XYZInterface locateService_XYZReference();

where the return type is a Java Interface that corresponds to the operations available on the EJB
itself.

See Also
• RedBook – Developing Enterprise JavaBeans Applications – REDP-4885-00 - 2012-07-31

• DeveloperWorks - Consuming Java artifacts made easy with WebSphere Process Server and WebSphere Integration Developer - 2007-06-13

Page 1039

http://www.ibm.com/developerworks/websphere/techjournal/0706_xu/0706_xu.html
http://www.redbooks.ibm.com/abstracts/redp4885.html?Open
http://www.ibm.com/developerworks/websphere/library/techarticles/0802_fernandes/0802_fernandes.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0901_norton3/0901_norton3.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0901_norton2/0901_norton2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0901_norton2/0901_norton2.html

• DeveloperWorks - Using BPEL and EJBs with WebSphere Process Server and WebSphere Integration Developer - 2006-08-09

• DeveloperWorks - Integrate EJB services with WebSphere Process Server, Part 2: Advanced scenarios for integrating EJBs running on
WebSphere Process Server and WebSphere Application Server - 2006-05-03

• DeveloperWorks - Integrate EJB Services with WebSphere Process Server - 2006-02-02

DataHandlers
For many of the SCA Imports and Exports, incoming data has to be parsed to construct Business
Object while outbound data has to be serialized to a stream of bytes. The Import and Export SCA
components, during their operation, invoke the services of a logical function called a DataHandler.
A DataHandler is responsible for either parsing an input stream to construct a Business Object or
serializing a Business Object into a data stream. Because there can be many different physical data
structures (XML, comma delimited, fixed width etc), one DataHandler is not sufficient for all uses.
To resolve this problem, IBM has created a Java Interface that describes the purpose of a
DataHandler. During development, a developer defines which DataHandler to use for the task at
hand. A DataHandler is no more and no less than a Java class implemented to conform to an IBM
described Java interface that provides the DataHandler contract.

IBM supplies a set of pre-built DataHandlers that apply to many common formats.

Name Class

Atom feed Data Handler unknown

Delimited Data Handler com.ibm.wbiserver.datahandler.delimited.DelimitedDataHandler

FixedWidth Data Handler com.ibm.wbiserver.datahandler.fixedwidth.FixedWidthDataHandl
er

JSON Data Handler com.ibm.wbiserver.datahandler.json.JSONDataHandler

WTX Invoker Data Handler com.ibm.wbiserver.datahandler.wtx.WTXInvokerDataHandler

WTX MapSelection Data
Handler

com.ibm.wbiserver.datahandler.wtx.WTXMapSelectionDataHand
ler

XML Data Handler com.ibm.wbiserver.datahandler.xml.XMLDataHandler

XML Data Handler

Unlike other DataHandler's, the XML DataHandler holds a special place in SCA and needs a little
more explanation than some of the others. Let us start with the basics of an XML DataHandler.

Like other DataHandlers, the XML DataHandler is responsible to taking raw data and creating a
Business Object and for taking a Business Object and creating raw data. For the instance of a
XML DataHandler, the raw data's encoding is the industry standard known as XML. XML
continually seems to hold a special place in the hearts and minds of customers and programmers.
Many people make a big thing of data being in XML format and think that is the end of the task. In
reality, an interesting thing is found. When an XML document is received by an application, almost
invariably the first thing that happens is the parsing of that XML document into a machine internal
representation ... whether that is a DOM tree, Java Objects or something else ... the XML physical
encoding is removed. Similarly when generating an XML document, the generator usually holds

Page 1040

http://www.ibm.com/developerworks/websphere/library/techarticles/0602_xu2/0602_xu2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0605_xu/0605_xu.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0605_xu/0605_xu.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0608_kagan/0608_kagan.html

the data that will eventually become an XML document in some internal format. With this in mind,
what we find is that the XML is actually used as an encoding between transmission at one end and
reception at another. If the sender and receiver are the same, then XML becomes a common storage
encoding for data.

As mentioned, the SCA XML DataHandler is responsible for taking in an XML document and
building a Business Object and for taking a Business Object and building an XML document. But
here comes an interesting concept. Business Objects, as we know, are created from templates. An
instance of a Business Object can't simply contain any fields that it chooses, instead those fields
have to conform to the rules laid down by the designer of that Business Object. The Business
Object designer uses an ID supplied tool called the Business Object editor to create and edit the
Business Object template definitions. We also find that Business Object templates are created for
us when we perform tasks such as importing WSDL definitions or running adapter creation wizards.
We are comfortable with this model.

If we ask ourselves, what is the nature of a Business Object template, we will quickly find that it is
a named container that is able to describe a set of fields.

We also find that the container has a namespace associated with it that allows it to be uniquely
identified even if there are other Business Object containers having the same name. If we now ask
"Is there an existing encoding language that can be used to describe a container with fields and
namespaces?" ... a language that can be used to describe Business Objects ... we find that such a
language already exists and there is no need for IBM to create a new one. The name of that
language is XML Schema Definition (XSD).

Although originally designed for describing the validity of well formed XML documents, XSD can
serve the double duty of being used as a description language for what is to be logically considered
a correct instance of a Business Object. With reference to the image of the Customer Business
Object above, the following is an example of XSD that is an equivalent encoding of the Business
Object:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://Kolban_Module">
 <xsd:complexType name="Customer">
 <xsd:sequence>
 <xsd:element minOccurs="0" name="customerID" type="xsd:string" />
 <xsd:element minOccurs="0" name="name" type="xsd:string" />
 <xsd:element minOccurs="0" name="age" type="xsd:int" />
 <xsd:element minOccurs="0" name="balance" type="xsd:double" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Very quickly we can map the constructs in XSD to the equivalent ideas in the Business Object.
Thankfully, the Business Object editor and the rest of WID and WPS usage allows us to hide the
"gorpy" details of the XSD encoding from the nice, high-level, representation of the Business

Page 1041

Object allowing us to consider the Business Object at a much higher and abstract level.

Under the covers, ID and SCA actually use XSD as the encoding/description of Business Objects.
In theory, some other encoding could have been used but IBM development leveraged the existing
XSD description language to good effect. The fact that XSD is mechanically used to describe the
encoding of Business Objects is mostly hidden from the end users through the Business Object
editor, BPEL editor, BO mapper and other techniques ... but the fact that XSD still remains under
the covers is a truism.

Now let us turn our attention back to the original discussion which is that of an XML DataHandler.
Our goal is to turn an XML document into a Business Object and turn a Business Object into an
XML document. Since a Business Object's description implementation is encoded via XSD, can
this then be used to describe an XML document? The answer to this is yes and this is in fact
exactly how the XML DataHandler works. The core principle here is that EVERY valid XML
document can be described via an XSD. So if we want to produce or consume a valid XML
document, then there has to be an XSD that can be used to describe it. Take care here to realize that
this is being qualified by a valid XML. If the data desired to be produced or consumed is not a real
XML document but is instead something that may on first glance "look" like XML, it may not be
able to be XSD described.

The XML DataHandler can take an instance of a Business Object and using its XSD template of
that Business Object can produce an XML encoding of the content of an instance of that Business
Object.

Conversely, the XML DataHandler can take an XML document, and using the XSD template for
the desired Business Object, create an instance of that Business Object from the XML document.

Page 1042

Default XML Data Handler serialization

Let us now look at default XML Data Handler serialization. We will do this with an example.
Consider the following interface. This interface shows a one-way operation that takes a Business
Object as a parameter.

With the following Business Object definition.

If we use the out of the box XML Data Handler, we see the following generated:

<?xml version="1.0" encoding="UTF-8"?>
<way:operation1 xmlns:way="http://MQTests/OneWay">
 <input1>
 <a>aVal
 bVal

Page 1043

 <c>cVal</c>
 </input1>
</way:operation1>

It is obviously XML but where did the encoding come from? The answer is that WPS encoded the
request in a form that WPS will be able to decode using the same DataHandler. Notice that the
encoding is of the form:

<Operation Name>
 <Parameter Name>
 <Parameter values …>
 <Parameter values …>
 </Parameter Name>
 <Parameter Name>
 <Parameter values …>
 <Parameter values …>
 </Parameter Name>
</Operation Name>

Again, this encoding is great assuming that receiver also wants to apply this encoding. But what is
the receiver already exists and expects different data?

The properties for the XML Data Handler allow us to provide an alternate Document root name. In
this example, we set the value to XYZ. Re-running the previous test, we now find that the output is
as follows:

<?xml version="1.0" encoding="UTF-8"?>
<XYZ xsi:type="bo1:BO1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:bo1="http://BO1">
 <a>aVal
 bVal
 <c>cVal</c>
</XYZ>

As we can see, this is quite radically different. Now we have a general format of:

<Document Root>
 <Parameter Values ...>
 <Parameter Values ...>
</Document Root>

One special characteristic of note here is the introduction of the xsi:type attribute on the
document root element. This attribute is key to SCA operation. It allows SCA to know which type
of Business Object to create when presented with such an instance of an XML document.

Unfortunately, things change again if there is more than one parameter to the request. Examining
the following interface, we see that it now has two formal parameters.

Page 1044

The generated XML looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<MyRoot xsi:type="way2:operation1_._type"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:way2="http://MQTests/OneWay2">
 <input1>
 <a>a
 b
 <c>c</c>
 </input1>
 <input2>
 <x>x</x>
 <y>y</y>
 <z>z</z>
 </input2>
</MyRoot>

As we can see, the parameter names have now been introduced into the output as children of the
document root.

XML Documents that are different from Business Objects

One potential problem with the scheme outlined above is the notion that the XML document
provided may not match the Business Object we want to use. Looking again at the Business Object
template that we may want to use in our solution:

If we have an XML document that is coming into us looking like:

<AccountHolder id='12345'>
 <DateOfBirth>1964-07-11</DateOfBirth>
 <FirstName>Neil</FirstName>
 <LastName>Kolban</LastName>
 <Balance>1234.56</Balance>
 <LastTransaction>2008-07-21</LastTransaction>
</AccountHolder>

Page 1045

We can quickly see that this doesn't match the Business Object. What we have to do in this case is
to find or create a XSD that describes the XML document. When we add this XSD to WID, it
"appears" as a new Business Object (because to WID, a BO is described under the covers by an
XSD). Now we have two Business Object definitions. One which matches the XML document and
one which is the template for the Business Object we want to use in our solution. What we can now
do is to employ a Mediation Flow to map from our our Business Business Object to our Data
Business Object for generation of XML and map from our Data Business Object to our Business
Business Object for incoming processing of XML.

Fixed Width DataHandler

IBPM provides a processor for "Fixed Width" data. It is supplied in two forms. One is a
DataBinding for MQ or HTTP and the other is a DataHandler implementation.

The first step required is the creation of a DataBinding Resource Configuration.

When the Fixed Width handler is specified, a configuration panel is displayed to input the
properties for the parsing and construction.

This panel is also later editable when looking at the Binding Resources for the defined Data
Binding.

Like other DataBinding/DataHandler functions, the purpose of the FixedWidth processor it two

Page 1046

fold. One part is to take raw physical data as input and populate a Business Object while the second
part is to take a Business Object and serialize it to a physical representation. For the Fixed Width
handler, the format of the data is expected to conform to the notion of it being a series of fields
where each field is of some pre-defined (or fixed) size (or width).

Consider a logical purchase order whose Business Object might look as follows:

There are many ways that this data could be physically represented outside of the context of WPS
or WESB but in this article, we care about Fixed Width representation. Fixed Width declares that
each field in the data is contained within a fixed width of data.

For example, a Purchase Order that has the following:

Field Value Size

name John Doe 15

amount 3 3

cost 1234.99 8

item Flat Screen TV 15

May have a physical representation of:

| | | |

12345678901234512312345678123456789012345

John Doe~~~~~~~~~3~1234.99Flat Screen TV~

When we look at this format, we can see that there are "rules" that govern its format. These rules
have to be configured against the Fixed Width data handler.

• Pad Character Numeric - This is the padding character for numeric data. If a field in
the Business Object is numeric then this padding can apply. If the data is less that field size
then the physical data must be padded with some value. The character value for padding is
supplied here. Typical values here would be a space or '0'.

• Pad Character Non numeric - This is the padding character for non-numeric data. If a
field in the Business Object is not numeric then this padding can apply. If the data is less that
field size then the physical data must be padded with some value. The character value for
padding is supplied here. A typical here would be a space.

• Field width - a list of field widths, one for each field in the data. The number of items here
must match exactly the number of items in the data. If these don't match, an exception will be
thrown at runtime. For example:

commonj.connector.runtime.DataHandlerException: The input data has more elements
than <x> which is the number of entries in the field width property

• Alignment Numeric - When a BO field is less than size of the fixed width field and is to
be padded, this field defines whether the padding will occur on the left or the right. This setting

Page 1047

applies to numeric fields only.

• Alignment Non numeric - When a BO field is less than size of the fixed width field and
is to be padded, this field defines whether the padding will occur on the left or the right. This
setting applies to non-numeric fields only.

• Truncate - During outbound processing when a Business Object is serialized, the length of
the data in a field may be larger than the expected field in the output. If this flag is checked,
then the data will be truncated to fit exactly within the field. If the flag is not checked the an
exception will be thrown. For example:

commonj.connector.runtime.DataHandlerException: CWLAP0300E: The 16 token is
larger than the 15 field width; the token length cannot be truncated.

• Encoding - The incoming textual data may be physically encoded in a variety of character
encodings. This field defines the encoding format. For example, IBM-037 is EBCDIC.

• Header Present - The first line of the incoming data may be used to represent a header.
The header contains the name of the fields expected. If this field is enabled, a header is
generated on output and expected in input. If the field name of the header does not fit within the
field width, it is truncated. For our example, the header may be:

| | | |

12345678901234512312345678123456789012345

name~~~~~~~~~~~amo~~~~costitem~~~~~~~~~~~

• End of record type - A single record can be identified either by size or by a delimiter.
By size means that the record is exactly the sum of each of the fixed width fields. In our
example, the size would be 15+3+8+15 = 41 bytes. If the end of record is by delimiter, the
delimiter is appended at the end of the record. The choices for this parameter are by delimier or
by size.

• End of record delimiter - If the end of record type, this property defines the end of
record delimiter. This can be entered as a string or the special EOL may be used to specify an
End Of Line character(s) should be used.

• Value of null - See TechNote 21306337

• OutputType - This value can be either bytes or characters. This property is on the data
binding and not on the data handler. This property is available for MQ and JMS only. Since
JMS also has the concept of JMS BytesMesage and JMS TextMessage. If the type is bytes, then
a JMS BytesMessage is produced. If the type is characters, a JMS TextMessage is produced.
For MQ, if the output type is bytes, the message is written exactly as it is but if characters, the
message is encoded into the character set for the MQ message.

Custom DataHandlers

The DataHandler is a protocol neutral transformation scheme. It can be called by a DataBinding!!

Let us consider the idea of character delimited data as an example. Imagine the physical data
"A,B,C". This logically represents three data fields delimited by commas. Now let us think about
how this data may arrive at IBPM. It could come in through a JMS queue, an MQ queue, an HTTP
connection or read from a flat file. These are only some of the physical deliveries, there could
easily be others and even more to come. Each one of these physical deliveries has its own
associated DataBinding concept. Each DataBinding implementation concerns itself with converting
the physical data to the logical data. But ... and here is the key point ... each DataBinding type is

Page 1048

http://www-01.ibm.com/support/docview.wss?uid=swg21306337

specific to the physical transport. There is a DataBinding type for MQ, a DataBinding type for
JMS, a DataBinding type for HTTP and so on. The DataBinding is responsible for both the
physical format of the data as well as responsible for creating/parsing Business Objects. A
DataBinding for MQ has to concern itself with MQMD headers, a DataBinding for HTTP has to
concern itself with HTTP headers. But if we pause for a second, we realize that there is
commonality between all these DataBindings. Each one is still responsible for parsing physical
data to construct a BO and constructing physical data from a BO and this is beyond the protocol
specific nature.

This is where the concept of the DataHandler comes into play. A DataHandler takes a stream of
physical data and converts that to a Business Object and conversely can take a Business Object and
convert that into a stream of data. Although this superficially sounds just like a DataBinding, the
DataHandler does NOT see any of the protocol specific header or transport information. An
instance of a DataHandler is agnostic. What this means is that if we have a DataBinding for a
specific protocol, that DataBinding can invoke a protocol neutral DataHandler to perform the core
of the transformation work. And this is where the benefit lies ... the same DataHandler can be used
by different DataBindings. So a DataHandler that knows how to work with delimited data could be
used by an MQ DataBinding, a JMS DataBinding, an HTTP Databining and so on.

The DataHandler technology is part of the commonj.connector.runtime story and has a
defined Interface called DataHandler.

The signature of the Interface looks as follows:

package commonj.connector.runtime;
public interface DataHandler extends commonj.connector.runtime.BindingContext
{
 public Object transform(Object source,
 Class targetClass,
 Object options) throws DataHandlerException;

 public void transformInto(Object source,
 Object target,
 Object options) throws DataHandlerException;
}

Both of these methods are called to transform data from one format to another. They differ in that
the first one is expected to create and return an object while the second is supplied an object that is
to be populated. When a DataHandler is called to externalize data from IBPM, the source will
usually be a DataObject. When IBPM is receiving data from an external source, then the target will
usually be a DataObject.

The source parameter is the source of the data to be transformed. It is commonly one of the
following:

java.io.StringReader

The targetClass parameter describes the nature of the target data. It is an instance of this class
that should be returned from the function call.

The DataHandlers supplied by IBM can be found in the JAR called
com.ibm.wbicmn.system_version.jar. These are useful to look at with a decompiler to
see how IBM implemented certain functions.

During development, it is a good idea to provide some debugging of the parameters passed into the
transform and tranformInto methods. For example:

System.out.println("tranformInto called: source is " +
source.getClass().toString() + ", target is " + target.getClass().toString() + "

Page 1049

and options value is " + options);

Even if a custom DataHandler has no custom properties of its own, it appears that a properties class
as described in the following section is required for it to be seen/used as part of the IBM Integration
Designer tooling.

DataHandler/DataBinding properties

But what of the configuration information for the DataHandler? This comes in two parts. One part
is the build time and the other is the runtime. At build time, the properties need a way to be entered
into the tooling. The description of the available properties is achieved through the creation of a
JavaBean that is a companion class to the Data Handler implementation.

A JavaBean is created by the DataHandler developer that is highly name sensitive. If the Java class
that implements the DataHandler is called com.sample.MyDataHandler then the Java Bean
must be called com.sample.MyDataHandlerProperties. Any Java Bean properties
exposed become parameters to the configuration of the Data Handler.

Example:

public class MyDataHandlerProperties implements Serializable {
 private String xyz;

 public String getXyz() {
 return xyz;
 }

 public void setXyz(String xyz) {
 this.xyz = xyz;
 }
}

The supported property types are:

• int, Integer

• long, Long

• byte, Byte

• short, Short

• float, Float

• double, Double

• boolean, Boolean

• char, Character

• String

• JavaBean

• BindingTypeBeanProperty

Of these types, all but BindingTypeBeanProperty are self explanatory. The
BindingTypeBeanProperty needs some clarification. The purpose of this property is to be able to
select a DataBinding, DataHandler or FunctionSelector. When this property is defined in the
JavaBean properties for the DataHandler, DataBinding or FunctionSelector, WID provides a
mechanism to allow user selection. Consider the following code fragment:

Page 1050

public class MyMQDataBindingProperties {
 private BindingTypeBeanProperty dataHandler;

 public MyMQDataBindingProperties() {
 dataHandler = new BindingTypeBeanProperty();
 dataHandler.setTags(new String[] {BindingTags.BINDING_KIND_DATAHANDLER});
 }MyD

 public BindingTypeBeanProperty getDataHandler() {
 return dataHandler;
 }

 public void setDataHandler(BindingTypeBeanProperty dataHandler) {
 this.dataHandler = dataHandler;
 }
}

When a DataBinding of this type is created, a Property page will be displayed as follows:

From here, a DataHandler can be selected from a selection window. At runtime, the DataBinding
implementation can query its dataHandler property to determine the DataHandler configuration
selected by the user. The BindingTypeBeanProperty has a method on it called getValue that
returns a QName. It is this QName that names the DataHandler to be used.

The next question becomes that of how does the DataBinding, DataHandler or Function selector
actually obtain the Java Bean that contains the properties during runtime execution? The answer to
this will be fully explained in the BindingContext section but for now assume that there is a getter
that can be used to retrieve the configured Java Bean at run time.

The presentation of the properties in the WID tooling is generated by introspection of the Java Bean
for the properties. If the setting of the properties in the WID UI needs to be more advanced, this
can be achieved by providing another helper class. This class is given the name
<<BaseClass>>Configuration. For example, if the Java class that implements the DataHandler is
called com.sample.MyDataHandler then the Java Bean must be called
com.sample.MyDataHandlerConfiguration. This class must implement the
BindingConfigurationEdit class.

BindingContext

The DataHandler interface itself extends BindingContext which is an interface with the following
signature:

public void setBindingContext(Map context)

A common implementation of this method saves the map supplied for later use. The DataHandler
interface extends BindingContext. It is interesting to note that neither DataBinding nor

Page 1051

FunctionSelector extend this interface.

The binding context map provides some runtime properties to the DataBinding, DataHandler or
FunctionSelector. These properties can be retrieved from the map using architected keys into the
map. The keys of interest to us are:

• BindingContext.BINDING_CONFIGURATION

• BindingContext.EXPECTED_TYPE

The BindingContext.BINDING_CONFIGURATION key returns the corresponding Java Bean that
contains the properties.

For example:

MyMQDataBindingProperties myProperties;
myProperties =
(MyMQDataBindingProperties)context.get(BindingContext.BINDING_CONFIGURATION);

could be used to retrieve the properties Java Bean.

The BindingContext.EXPECTED_TYPE key will be discussed in the context of creating Business
Objects.

Creating a Business Object

When a DataHandler needs to create a Business Object, we seem to have a problem. A Business
Object is characterized by the pair of name and namespace, together called a QName. In order to
create a new Business Object, we need to be able to obtain the expected QName. This is where one
of the context mapping values comes into play. The map value for the key
BindingContext.EXPECTED_TYPE returns a QName instance of the expected Business Object type.

QName expectedType = (QName)context.get(BindingContext.EXPECTED_TYPE);

The Binding Registry

When a DataHandler needs to be used, it has to be created. The architected mechanism is a lookup
in something called the "Binding Registry". The lookup key for a DataHandler is a QName which
matches the DataHandler defined in WID.

QName qName= new QName("http://lib",
 "MyDataHandler");
BindingRegistry bindingRegistry = BindingRegistryFactory.getInstance();
DataHandler dataHandler =
 (DataHandler) bindingRegistry.locateBinding(qName, bindingContext);

It is not clear what it means to pass in a bindingContext to the locateBinding method. Experience
has shown that passing in null is sufficient. This causes the setBindingContext() method on
the DataHandler instance to be called with a BindingContext that contains the necessary
information including the Data Handler Properties object. The Binding Registry can be used within
a Java Component or Java Snippet to obtain a DataHandler outside the context of a DataBinding.
This can be extremely useful as DataHandlers can thus be invoked during other forms of
processing.

Calling a DataHandler from a DataBinding

A DataBinding is a concrete mapping that is protocol/technology specific. When it is invoked, it has
to transform data. This is where a DataHandler can come into play. As illustrated in the Binding
Registry section, a DataHandler object can be retrieved from the registry by name. Once the

Page 1052

DataHandler has been obtained, either its transform or transformInto methods can be
called to achieve the actual transformation. Although the name of the DataHandler can be hard
coded into the DataBinding implementation, this is probably not a good idea. Instead, the selection
of the DataHandler to be used can be supplied on the properties bean of the DataBinding. If a
DataBinding implementation class is called MyDataBinding then the properties bean will be called
MyDataBindingProperties. Refer back to the DataBinding properties section. If a property of type
BindingTypeBeanProperty is created on the properties bean then selection of a DataHandler can be
made much easier through the use of a search dialog. The result from the
BindingTypeBeanProperty will be a QName that can be supplied to the Binding Registry to retrieve
the desired DataHandler.

More details on DataHandlers, DataBinding and FunctionSelectors can be found in the EMD 1.1
specification.

Creating a UI Configuration class

When a DataHandler is configured in ID, its properties are normally displayed on a best effort basis.
This can be dramatically improved by the creation of a companion class for the DataHandler that
provides instructions to the ID tooling on how to display and enter the configuration properties.

Let us start with a review of the goal. The goal is to display configuration information for the user
of the DataHandler. The configuration for the data handler is held in a Java Bean with the type
<DataHandler>Properties. Each property exposed by the bean is supposed to be able to be
modified by the end user.

A Java class called PropertyDescriptor is used to describe each property. So if the DataHandler is
to show three properties, there will be three instances of a Property Descriptor. Property
Descriptors are owned by another Java class called a PropertyGroup. It is an instance of a
PropertyGroup that is returned by the <DataHandlerName>Configuration class when the
createProperties() method is invoked.

The PropertyDescriptor looks as follows:

• getDisplayName() returns the string used to provider a label or other indicator associated with
the property.

• getDescription() returns a string that is used to provider a description of this property. This
might be used in a tooltip or other help information.

• getName() returns the name of the property. This must be unique within all the properties
within the property group. This name is used internally within the framework and should never
be exposed to the end users.

• getID() returns another unique name for the property. It is not known how this is used by the
framework. An implementation might simply return getName().

Page 1053

• isEnabled() returns a boolean value to say whether or not this property is enabled (workable)
or not. This could be used to gray-out a field.

The PropertyGroup looks as follows:

A PropertyGroup inherits from a PropertyDescriptor.

getProperties() returns an array of PropertyDescriptor. This is the set of properties to be shown to
the end user.

getProperty(String) returns a single PropertyDescriptor that is keyed by the name of the property.

The PropertyType looks as follows:

• getType() returns the Class object for the type that this property represents

• isHidden() returns a boolean that indicates whether or not the property should be hidden from
the user

• isReadOnly() returns a boolean that indicates whether or not the property can be edited

• isExpert() returns a boolean that indicates that this is an expert property (or not)

• isPrimitive() returns whether or not the data type is one of the primitive types

• isSensitive() returns whether or not the content of the field should be hidden such as for a
password field.

• isRequired() returns a boolean to indicate that the field must have a value.

The name of this class must be <DataHandlerName>Configuration.

It must implement the Java interfaces called EditableType and BindingConfigurationEdit.
This causes the following methods to be injected that must themselves be implemented:

PropertyGroup createProperties()

Page 1054

void synchronizeFromBeanToPropertyGroup(...)

void synchronizeFromPropertyGroupToBean(...)

EditableType getEditableType()

boolean isOptional()

void setType(...)

Let us take these apart. The first method of interest is called createProperties(). This returns a
PropertyGroup object. It is the responsibility of the DataHandler provider to implement this. The
PropertyGroup interface itself has a bunch of methods that must be implemented. These are:

• convertToString

• getProperties

• getProperty

• populateFromString

• addPropertyChangeListener

• getDescription

• getDisplayName

• getID

• getName

• isEnabled

• removePropertyChangeListener

• clone

To explain these, getProperties() returns an array of PropertyDescriptor objects. Each
property descriptor is a property to be shown to the user. Here is an example implementation of this
method:

public class XSLTDataHandlerConfiguration implements
 EditableType,
 BindingConfigurationEdit {
...
 public PropertyGroup createProperties() {
 return new MyPropertyGroup();
 }
...
}

public class MyPropertyGroup implements PropertyGroup {
...
 public PropertyDescriptor[] getProperties() {
 PropertyDescriptor pd[] = new MyPropertyDescriptor[1];
 pd[0] = new FileProperty1();
 return pd;

}
...

Page 1055

}

Each of the properties returned in the getProperties() array describes a visual property that is shown
to the user. IBM supplies some helpers for these.

Property Types – TableProperty

This property adds some new methods that need implemented:

• createNewRow

• deleteRow

• getCellProperty

• getColumns

• getRowProperties

• getRowCount

• other PropertyDescriptor methods

Property Types – FileProperty

The FileProperty PropertyType.getType() must be a java.io.File

HTTP DataBinding

An HTTP DataBinding implements the HTTPStreamDataBinding interface. Creating an
instance of this interface will result in a number of methods that need implementing and also an
implied life cycle. For inbound processing (data coming into IBPM) … the following methods are
executed:

• setControlParameters

• setHeaders – A list of headers (HTTPHeader) where each header contains a name and a
value

• convertFromNativeData

• isBusinessException

• getDataObject

• getControlParameters

• getHeaders

References

• DeveloperWorks - Implementing custom databinding and custom function selectors in IBM WebSphere Adapters – 2006-06-14

• DeveloperWorks - IBM WebSphere Developer Technical Journal: Building a powerful, reliable SOA with JMS and WebSphere ESB -- Part 3
– 2006-04-19

• DeveloperWorks - Creating custom data bindings in WebSphere Process Server without coding – 2007-10-31

• DeveloperWorks - Using WebSphere Integration Developer and WebSphere Flat File Adapter with custom data bindings - 2007-10-10

• EMD Specification

Page 1056

http://www.ibm.com/developerworks/library/specification/j-emd/
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_johnson/0710_johnson.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0711_fasbinder/0710_fasbinder.html
http://www.ibm.com/developerworks/websphere/techjournal/0604_tost/0604_tost.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0606_mishra/0606_mishra.html

DataObjects
IBM's DataObjects provides a number of utility functions for programming

Creating an SCA Business Object

A Business Object represents a structured piece of data. The Business Object can be created in an
SCA application through a Java class called the BOFactory. This factory must be retrieved from a
named SCA location:

BOFactory boFactory =
(BOFactory)ServiceManager.INSTANCE.locateService("com/ibm/websphere/bo/BOFactory
");

The BOFactory is part of the com.ibm.websphere.bo package and is fully documented along with
the other related classes. At the simplest level, to create a new Business Object, we can use:

DataObject dataObj = boFactory.create("targetNameSpace", "complexTypeName");

As you will notice, the DataObject is created from the factory through the combination of target
name-space and type name. The BOFactory appears to scan its current class path looking for XML
or XSD documents that match these requirements and, from these values, then creates the
associated DataObject. What this means is that if you need to create a DataObject in an arbitrary
class, then the BO (.xsd file describing it) needs to be included as a dependency in the project in
which the calling class is contained.

Here is an example. If you have a Library called "Lib" that contains a BO definition called
"Customer" in name-space "http://mybiz", then if you want to create a DataObject instance
of that type you would need to call:

boFactory.create("http://mybiz", "Customer");

If the code that creates the BO is in a Module, then "Lib" must be flagged on that Module as a
dependency.

If the code that creates the BO is a JavaEE App, then the JAR file representing "Lib" must be added
as a dependency to the JavaEE Deployment Descriptor.

Converting to/from XML

IBPM provides a utility class to convert a DataObject to/from a specific formatted XML document.
The class implementing this function is called BOXMLSerializer. An instance of this class can be
retrieved through

BOXMLSerializer mySerializer = (BOXMLSerializer)
ServiceManager.INSTANCE.locateService("com/ibm/websphere/bo/BOXMLSerializer");

Some of the methods of this class expect a rootElementName. To determine the root of a
current DataObject, use the following:

dataObject.getType().getName()

Some of the methods of this call expect a namespace. To determine the namespace of the current
DataObject, use the following:

dataObject.getType().getURI();

The following example illustrates turning a BO into an XML document:

BOXMLSerializer mySerializer = (BOXMLSerializer)

Page 1057

ServiceManager.INSTANCE.locateService("com/ibm/websphere/bo/BOXMLSerializer");
String rootElementName = dataObject.getType().getName();
String targetNamespace = dataObject.getType().getURI();
ByteArrayOutputStream baos = new ByteArrayOutputStream();
mySerializer.writeDataObject(dataObject, targetNamespace, rootElementName,
baos);
String xmlText = new String(baos.toString());

To convert an XML string to a DataObject, the following code may be utilized:

String xmlText = "<XML to become a BO>";
…
BOXMLSerializer mySerializer =
(BOXMLSerializer)
ServiceManager.INSTANCE.locateService("com/ibm/websphere/bo/BOXMLSerializer");
ByteArrayInputStream bais = new ByteArrayInputStream(xmlText.getBytes());
BOXMLDocument document = mySerializer.readXMLDocument(bais);
DataObject dataObject = document.getDataObject();

XML documents with no namespace

It is common to find XML documents that have no namespace information associated with them. In
order to be able to support this kind of document, the corresponding Business Object should also be
set to have no namespace associated with it.

When IBPM is supplied an XML document to be turned into a Business Object, it examines that
document and provides a fully qualified name of the format {Namespace}Name. This is used to
then find the corresponding Business Object definition.

When an XML document with no name-space is presented, then the result is {}Name. In order to
find a matching Business Object definition, the BO must also appear as {}Name and this is
achieved through nulling out the name-space for the BO. This will result in an ID based warning
but this may be safely ignored.

Here is an example. Consider a Business Object called BO1 (no namespace) that has three fields.
Converting this to its XML representation results in:

<?xml version="1.0" encoding="UTF-8"?>
<BO1 xsi:type="BO1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <f1>1</f1>
 <f2>2</f2>
 <f3>3</f3>
</BO1>

Advanced BPEL

Variable initialization

When a variable is declared in a BPEL process, it has no value until one is assigned to it. From
within a Java Snippet, extra care must be taken as the variable will appear as a null-valued reference
when accessed before assignment. If you need to assign a value to a variable for the 1st time in a
Snippet, create an instance of the typed object. You can use the BOFactory to create a BO.

Page 1058

Scope

WBI-SF, the predecessor to WPS, only supported a subset of BPEL. One of the items that was
noticeably missing was the concept of Scope. Variables have a strong relationship to Scope. By
default, all variables in BPEL have Global scope. This means that they can be used and accessed
throughout the lifetime of the process anywhere in the process. This sounds good until you realize
that variables may transiently hold large amounts of data and you don't want to have to worry about
managing the size of that data throughout the whole process. In addition, a variable used in one
section of your process may have no use or effect in others and you don't want to clutter the whole
solution with irrelevant variables floating around.

Scope assists with these problems by allowing you to define a variable that exists only within a
scope. This is similar to local variables in programming terms. Creating a variable in a scope means
that it can only be accessed by activities in the same scope or lower.

BPEL - Java Mapping

The simple variable types in BPEL map to XML Schema types which map to Java. The following
are the more interesting:

• xsd:dateTime – java.util.Date

• xsd:date – String

• xsd:time - String

The format for the date/time Strings can be read about at the XSD page.

Variable Properties

Consider a data structure called Order that has three fields in it ...

• amount – int

• customerId – String

• product - String

Consider a second data structure called Purchase that has three fields in it ...

• size – int

• currency – String

• custNum - String

Both data structures have a logical field that is used to hold the identity of a customer. In the Order
data structure, it is the field called customerId. In the Purchase data structure, it is the field called
custNum. In both cases, this field is the logical identity of the customer but in each case, it is
named differently (presumably by the different data designers). If we write a BPEL process that
uses either Order or Purchase and wishes to refer to the identity of the customer, the process is

Page 1059

going to be tightly bound to the name of the field in the data structure.

BPEL provides a concept that they call variable properties. A property is a named entity with
associated data type. So a property could be created called customerIdentity with data type String.
In a BPEL process, instead of referring to a specific named field in a variable, the property name
can be used instead. In order for this to work, there must be a mapping or alias that relates the
named property to the name of the field within the data structure.

Logically we can then create the following (note that this is not BPEL syntax):

Define: propertyName = "customerIdentity", type="String"

we can then create aliases:

Define: alias propertyName = "customerIdentity", data="Order->customerId"

Define: alias propertyName = "customerIdentity", data="Purchase->custNum"

Once these are defined, we can then get the customer identity by:

getVariableProperty("Order", "customerIdentity") will return Order->customerId

getVariableProperty("Purchase", "customerIdentity") will return Purchase->custNum

Endpoint References
In BPEL, a partner link is a place holder for both how the process appears to others and how the
BPEL process sees partners that it may call. Associated with the logical partner link are the actual
endpoints or bindings that, when used, serve as the actual endpoints for the service calls. These
endpoints can be both queried and set within a BPEL process. There are two different types of
endpoints. These are the endpoints that the process itself exposes or appears as (MY ROLE) and
the endpoints at which the partners exist (PARTNER ROLE). Both can be queried but only the
partner role endpoints may be set. It doesn't make any sense to dynamically change the location at
which the process is actually listening.

Within either a JavaSnippet or an Assign activity, the endpoint values may be obtained or set.

Name Description

Service The name of the referenced service.

Address The address of the endpoint. This may be a logical value as opposed to a TCP/IP
address or hostname.

PortType The WSDL port type being accessed. Think of it like the name of an interface in
Java.

Port A binding to the endpoint at the target service.

The Address object contains a field called value. This can be set to the target of the Partner Link.
For a component in the same module, this can be <ModuleName>/<ComponentName>.

BPEL Endpoint Reference variable type

A BPEL variable can be used to hold an endpoint reference. The data type used to contain such an
entity is the ServiceRefType. This is described a series of XSD schema files that can also be used
as Business Objects. The XSDs that described these data types can be automatically generated. By

Page 1060

opening the project's dependencies and select the WS-Addressing Schema Files from the Predefined
Resources section, a set of additional XSDs are added into the project.

The two primary ones of interest are:

• ServiceRefType

• EndpointReferenceType

If we create a BPEL variable called 'myRef' and make it of type ServiceRefType, then we can use a
BPEL Assign activity to set a partner reference to the variable.

JavaSnippet access

getServiceRefFromPartnerLink

commonj.sdo.DataObject getServiceRefFromPartnerLink(
String partnerLinkName,
int role);

This method is used to retrieve the Service destination at the end of the named partner link. The role
value must be one of:

• PARTNER_LINK_PARTNER_ROLE

• PARTNER_LINK_MY_ROLE

What is returned is a DataObject that contains an EndpointReference object retrieved with the name
"EndpointReference".

Example:

Here is a java fragment retrieving a PartnerLink binding called RequestReply

DataObject myDo = getServiceRefFromPartnerLink("RequestReply",
PARTNER_LINK_PARTNER_ROLE);
EndpointReference ref = (EndpointReference)myDo.get("EndpointReference");
System.out.println("Address: " + ref.getAddress());
System.out.println("Port: " + ref.getPort());
System.out.println("Service: " + ref.getService().toString());

If the wired target is an Import of a Web Service, then the values are that of a Web Service. If the
wired target is any other SCA component, then the only meaningful value is the Address field
which contains the module and component which is the target. For example Module/Component.

Query Properties
Consider a BPEL process template. This is used to instantiate process instances. Now imagine that
you want to find a particular instance of a process. Maybe the process model handles orders and
when a customer submits an on-line order, an instance of the process gets generated and the
customer is given an orderid. How do you find the specific process instance that has a specific
order-id?

The answer to these questions is through the capability called query properties. A Query Property is

Page 1061

basically a property (or attribute) that can be associated with an instance of a process. While the
process is running, a query can be executed to return a list of processes where the property has a
specific value or, conversely given a process, to retrieve the current value of the property.

As multiple BPEL process instances execute, what differentiates one from another is the state of
data maintained within the context of that process. The value of the query property is mapped from
the value of a BPEL variable.

During the design of a BPEL process, one or more query properties can be created. They are created
in the properties view in WID associated with variables. When the BPEL process executes,
whatever is the current value of the variable in the Process will be the current value of the query
property associated with the process instance.

Implementation

The implementation of query properties appears to be through the creation of additional tables in
the BPEDB database. The tables identified as being associated with query properties are:

QUERYABLE_VARIABLE_INSTANCE_T

Performance

When a variable's value changes within the BPEL process and that variable is associated with a
query property, then the value must be updated in the query properties table. This means an extra
SQL update for each modification of a query property associated variable.

Activities
Activities described:

Inline Human Tasks

Invoke

JavaSnippet

Inline Human Tasks

The majority of Human Task information can be found in the Human Task section. This section
covers the BPEL specific in-line Human Task.

In-line Human Tasks are IBM additions to the BPEL implementation that create Tasks in the
Human Task manager within the context of the BPEL process. This allows additional or overriding
information to be supplied to the human task.

Previous task owners

In a BPEL process, an in-line Human Task can be performed and then in subsequent BPEL
activities, the owner of that task may wish to be known. The previous owner of the task can be
retrieved within the process using the following recipe.

In a Java Snippet (psuedo code):

ActivityInstanceData aid = bfm.getActivityInstance(
 PIID piid,

Page 1062

 java.lang.String activityTemplateName);
TKIID tkid = aid.getTaskID();
Task task = htm.getTask(TKIID tkiid);
String owner = task.getOwner();

where:

bfm = The handle to the Business Flow Manager

htm = The handle to the Human Task Manager

Invoke

Arguably, the Invoke Activity is the single most important construct in BPEL. Invoke is used to
invoke the services of some other component outside of the BPEL process. Within nothing more
than a set of Invoke activities, we can choreograph a set of services together.

Expiration

IBM has extended the BPEL specification with an Expiration option. Understand that this is not
standard BPEL. The semantics of Expiration is that for asynchronously implemented service calls,
we can abandon the wait for a response. This also means that expiration does not apply to short
running process definitions. This basically means that if we send a request to a target service over
JMS and wait for a response, we can timeout after a period of time before the response comes back.
The expiration can be supplied as either an absolute date/time (an expiration) or a relative time to
wait (a duration) specified in seconds. If no response is received before the expiration triggers, a
timeout fault is automatically raised.

note: Experimentation and observation seems to show that the expiration is the minimum amount of
time to wait, don't expect the process to instantly see the fault after the expiration period, it can
possibly take some time for the system to realize that it shouldn't wait any more.

The timeout value for the expiration can be specified as either:

Java code

Xpath

An absolute value (using a CRON calendar)

A relative value (using a Simple calendar)

Through either Java code or XPath, access to the variables in the process can be achieved and thus
the expiration can be a dynamic value based on a variable's value.

The following image illustrates setting the Expiration values.

Page 1063

When a Timeout fires, the Timeout fault can be caught in a fault handler:

If you want to add an expiration timeout in a short running process definition, consider placing a
mediation flow component between the reference terminal in the BPEL SCA component and the
SCA Import to the target service. In the mediation flow component, have the interface and
reference both defined as the same interface type which is that of both the BPEL process reference
and the SCA Import.

In the mediation flow component, wire both the request and responses directly from their inputs to
their outputs. In the Request callout node, set the a timeout value to be the required timeout and set
the invocation style to be Async.

Page 1064

If no response has arrived within the timeout interval, the Response flow will fire on the fail
terminal which can be used to signal a failure to the original caller.

JavaSnippet

By and large BPEL allows you to perform all the tasks you might want to achieve for process
choreography. IBM has extended BPEL with the concept of Snippets which can be expressed in the
Java programming language. Within the Java Snippet you have access to all the variables in the
process and can both set and get their values. The snippet can also be coded in the Visual Snippet
language.

Working with variables

Variables inside the BPEL Java Snippet are really Business Objects which are actually SDO
DataObjects or they are boxed simple types (eg. Integer()). The recipe to create a new DataObject is
documented in the SCA section of the Wiki.

Methods available in a Java Snippet

A series of method calls are also available to you. These are:

getServiceRefFromPartnerLink

DataObject getServiceRefFromPartnerLink(String partnerLinkName, int role);

See Endpoint References for information.

setServiceRefToPartnerLink

void setServiceRefToPartnerLink(String partnerLinkName, DataObject serviceRef);

getVariableProperty

These methods either specify or return the value of a process variable's property. If either the
property or the variable do not exist, a StandardFaultException of kind "selection failure" is thrown.
If the value is not compatible to the type of the property, a StandardFaultException of kind
"mismatch assignment failure" is thrown.

setVariableProperty

These methods either specify or return the value of a process variable's property. If either the
property or the variable do not exist, a StandardFaultException of kind "selection failure" is thrown.
If the value is not compatible to the type of the property, a StandardFaultException of kind

Page 1065

"mismatch assignment failure" is thrown.

getCorrelationSetProperty

This method can be used to retrieve the properties of correlation sets that are declared at the process
level. If either the property with name propertyName or the correlation set with name
correlationSetName do not exist, a StandardFaultException of kind "selection failure" is thrown.

getProcessCustomProperty

String getProcessCustomProperty(String propertyName)

Use these methods to access or define custom properties at the process level.

setProcessCustomProperty

void setProcessCustomProperty(String propertyName, String propertyValue);

Use these methods to access or define custom properties at the process level.

getActivityCustomProperty

Use these methods to access or define custom properties at the activity level. If the activity does not
exist, or activityName does not uniquely qualify an activity, a StandardFaultException of kind
"selection failure" is thrown. If the value exceeds 254 bytes, an InvalidLengthException is thrown.

setActivityCustomProperty

Use these methods to access or define custom properties at the activity level. If the activity does not
exist, or activityName does not uniquely qualify an activity, a StandardFaultException of kind
"selection failure" is thrown. If the value exceeds 254 bytes, an InvalidLengthException is thrown.

getLinkStatus

This method can be used in join conditions to access the state of the incoming links.

activityInstance

Use this method to return the current activity or a named activity as an object in order to access its
content. The object type returned is an ActivityInstanceData. For example, assume that a
preceding activity in a BPEL process was an in-line Human Task called "MyTask". Assume that it
was previously executed. To obtain the user that owned that task the following code could be used:

ActivityInstanceData ai = activityInstance("MyTask");
String owner = ai.getOwner();

Page 1066

System.out.println("Owner = " + owner);

processInstance

ProcessInstanceData processInstance();

This method retrieves the PIID object (ProcessInstanceData) for the callers process. This object
holds a wealth of information relating to the current instance of the process. Some possible uses
include:

Getting a unique name for the process. The getID() method returns a PIID. This can then have its
toString() method called to retrieve a string representation of the process id that is unique to this
instance. This could possibly be used as a correlation value or other unique id string.

raiseFault

Use this method to raise a fault in the surrounding process.

forceRollback

Use this to cause the compensation of the microflow. This method will not work with long running
processes.

getCurrentFaultAsException

com.ibm.bpe.api.BpelException getCurrentFaultAsException()

Retrieve the current fault in a fault handler as a Java object.

Standard Functions

Arrays

Converter

Date

current date and time

Returns a java.util.Date that represents the current time.

format locale date to string using pattern

Inputs java.util.Date – The date to be formatted
String – The pattern to be applied to the date. The pattern is a pattern string as
supplied to java.text.SimpleDateFormat.

Outputs String – A string representation of the formatted date

Description Returns a string representation of an input date that has been formatted to a
pattern.

Page 1067

http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Custom Properties

References

• DeveloperWorks – Setting custom properties for new query requirements in WebSphere Process Server – 2010-06-02

• DeveloperWorks – Selecting a human task with custom properties using WebSphere Process Server – 2010-03-26

BPEL Process Migration

References

• DeveloperWorks - Migrating process instances in WebSphere Process Server V7 – 2010-08-11

Versioning
Here are notes on versioning SCA and BPEL components.

See also:

• DeveloperWorks - Versioning and dynamicity: Part 1: Creating multiple versions of a business process with WebSphere Process Server –
2008-02-06

• DeveloperWorks - Versioning and dynamicity: Part 2: Applying versioning and process dynamicity using WebSphere Process Server V6.1
– 2008-03-05

• DeveloperWorks: Designing and versioning compatible Web services – 2007-03-28

• DeveloperWorks - Versioning business processes and human tasks in WebSphere Process Server – 2008-08-13

• DeveloperWorks - Versioning and dynamicity with WebSphere Process Server – 2006-02-22

• DeveloperWorks - Migrating process instances in WebSphere Process Server V7 - 2008-08-11

Page 1068

http://www.ibm.com/developerworks/websphere/library/techarticles/1008_xie/1008_xie.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0602_brown/0602_brown.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0808_smolny/0808_smolny.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0705_narayan/0705_narayan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0803_fasbinder/0803_fasbinder.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0802_fasbinder/0802_fasbinder.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1008_xie/1008_xie.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0803_kolban/0803_kolban.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1006_cheng/1006_cheng.html

User Interfaces
Business Space
Business Space is a UI framework designed for end users to interact with BPM functions. Business
Space is a specialization of the IBM Lotus Mashups technologies. Business Space is built from a
set of one or more "spaces". Each space contains one or more pages. Each page contains one or
more widgets that are laid out on the page.

Each BPM product installed adds one or more Business Space widgets to the catalog of available
widgets.

Events

Widgets can communicate with each other through the publish/subscribe of events between them.
When a widget is registered with Business Space, its registration describes which events it can
publish to and which events it can subscribe upon. When a widget is added to a page, it can then be
wired to other widgets. One widget will act as the publisher of the event, and the other act as the
subscriber. Two widgets can only be wired together if they support the same type of event.

See Also – Business Space
Flex Custom Widgets in Business Space - Using Flex within Business Space

References – Business Space
• DeveloperWorks - Developing a custom tree iWidget for WebSphere Business Space that retrieves data from a REST service using Apache

Wink - 2011-07-13

• DeveloperWorks - Using the Java Persistence API to initialize HTML-Dojo forms for WebSphere Business Space - 2010-09-08

• DeveloperWorks – Using Business Space to manage business process applications – 2010-03-24

• DeveloperWorks – Customizing WebSphere Business Space V6.2 Human Management widgets – 2010-02-24

• DeveloperWorks – Customizing HTML-Dojo forms for Business Space powered by WebSphere – 2009-04-09

• DeveloperWorks – Customize your BPM user interfaces with business spaces – 2008-12-04

• RedBook - Building IBM Business Process Management Solutions Using WebSphere V7 and Business Space – 2010-06-10

Custom Widgets

The widgets provided by IBM for business space are not the only widgets possible. You can create
and use your own widgets to augment the existing functions. There are a number of steps and
piece-parts required to build a new widget.

A widget is configured to Business Space by providing an XML configuration file that corresponds
to the iWidget specification. Contained within this file are a number of properties that are used by
the Business Space runtime to control how the widget behaves and is displayed.

In addition to the visual characteristics of the widget, we should realize that a widget can send
events to other widgets as well as received events from other widgets. This is a form of publish and
subscribe. The XML document also holds the information on what a widget can send to other
widgets and can receive from other widgets.

An example iWidget XML control file may look as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<iw:iwidget id="iWidgetEditorTests1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:iw="http://www.ibm.com/xmlns/prod/iWidget"
 supportedModes="view"

Page 1069

http://www.redbooks.ibm.com/redpieces/abstracts/sg247861.html?Open
http://www.ibm.com/developerworks/websphere/bpmjournal/0812_fasbinder2/0812_fasbinder2.html
http://www.ibm.com/developerworks/websphere/techjournal/0810_kreis/0810_kreis.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1002_rodriguez/1002_rodriguez.html
http://www.ibm.com/developerworks/websphere/tutorials/1003_madassery/index.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1009_griffith/1009_griffith.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1107_yadavalli/1107_yadavalli.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1107_yadavalli/1107_yadavalli.html

 mode="view"
 lang="en"
 name="Hello">
 <iw:content mode="view">
 <![CDATA[
 <div>Hello World</div>
]]>
 </iw:content>
</iw:iwidget>

A deep understanding is recommend of the structure and semantics of this control file. IBM
provides a rich function GUI editor that hides the majority of the details allowing values to be
entered in a much more pleasing manner. See iWidget editor.

In addition to the iWidget XML control file, there is a second file which is a Business Space
specific Catalog XML file. The purpose of this file is to tell Business Space about the nature of the
widget so that Business Space can present this widget in its catalogs of available widgets.

Finally there is one more XML file of importance to us when building custom Business Space
widgets. This file is the Endpoint Registration XML file. The purpose of this file is to provide
information to the widget about where it should connect to at runtime in order to communicate with
a WPS server instance. Business Space widgets typically make REST style communication calls to
the WPS server.

iWidget Mode

One of the core concepts of an iWidget is its mode. Think of the mode of a widget as being a
"state" that the widget as a whole may be in. Depending on the value of the mode, the widget can
render itself in different ways. For example, if a widget is in view mode, then it might be
displaying business data. If the same widget is in configuration mode, it might be displaying
configuration data for itself such as which database to read data from.

A widget can be told its mode ... which is another way of saying how the widget is to represent
itself for a particular task. As an example, setting its mode to:

• view - The widget shows itself "normally"

• edit - The widget shows itself in a fashion that allows the user to customize its attributes

• help - The widget shows itself in a fashion that allows the user to learn how to use it

Business space defines these three modes of operation.

iWidget Structure

The iWidgets supplied for Process Server can be found in the directory
<ProcessServer>/BusinessSpace/widgets. These serve as a useful source of reference and
should be examined to see how IBM has built its own widgets.

What follows next is a breakdown on the logical content of the iWidget XML documents. Note that
these conform to the iWidget specification v2.0 which is very different from the previous version
that was used in previous product releases.

The XML control file begins with an

• <iw:iWidget> element which may contain the following child elements

• <iw:content>

Page 1070

• <iw:resource>

• <iw:eventDescription>

• <iw:event>

iwidget

The <iw:iwidget> element is the root container in the document used to describe the iWidget. It
has many possible attributes for its configuration.

Attributes:

• id

• allowInstanceContent

• supportedModes

A space separated list of supported widget modes. There must be a corresponding content
element with corresponding mode attribute for every mode listed. The allowable value set can
contain:

• view

• edit

• help

• For every mode defined, there must be a corresponding <iw:content mode="xxx"> section.

• iScope

The name of a JavaScript Dijit widget that implements the code. The JavaScript for this widget
should include a dojo.provide and a dojo.declare. The JavaScript file containing the
widget should be named in an <iw:resource> tag.

• name

• lang

Example

<iw:iwidget xmlns:iw="http://www.ibm.com/xmlns/prod/iWidget"
 iScope="com.kolban.AppStarter"
 id="appStarter"
 name="appStarter"
 supportedModes="view">

resource

<iw:resource id="{resourceName}" src="{uri}" version="{version}"
mimeType="{mimeType}" callback=""/>

Attributes:

• id

• src

• version

Page 1071

• mimeType

• callback

Example

<iw:resource src="appStarter.js" />

eventDescription

Attributes:

• id

• lang

• payloadType

event

• Attributes:

• eventDescName

• id

• published

content

This tag contains the content that will be displayed/loaded in the Widget. This is usually HTML.
The <iw:content> element is a child of the <iw:iwidget> element.

Attributes:

• mode

The mode to which this content applies. There must be a content element with associated mode
for each entry listed in the supportedModes attribute of the iWidget element.

iWidget Modules/Data Structures

• ItemSet

• ManagedItemSet - Data which the widget manages (saves)

• ItemSetDescription

• ItemDescription

• iContext - Context data for the widget

• iEvents - Events processing

• iEventDescription

• iEvent

• IO data for the widget.

Page 1072

Managed Item Set

The ManagedItemSet is part of the iWidget specification. It defines data that is managed by the
widget itself. This includes saving the data for later retrieval. This can be used for setting the
configuration/properties of the widget so that later it can be restored.

The ManagedItemSet for an iWidget can be retrieved from the widget's iContext using the
getiWidgetAttributes() function.

ManagedItemSet getiWidgetAttributes();

For example,

var myAttributes = this.iContext.getiWidgetAttributes();

Although the iWidget spec shows that the setItemValue function can take an object to save, reality
is that there is a limitation of the iWidget container. To help with this, we should encode the object
that we want to save as a string and save the string value as the attribute. In JavaScript, we can
employ the JSON encoding and leverage the dojo.toJson function to encode a JavaScript object.
When we retrieve the value, we can use the dojo.fromJson function to get the JavaScript object
back again.

For example:

var x = new Object();
x.a = "Hello";
x.b = "World";

var myAttributes = this.iContext.getiWidgetAttributes();
myAttributes.setItemValue("test", dojo.toJson(x), false);
myAttributes.save();

// Retrieve …
var y = dojo.fromJson(myAttributes.getItemValue("test"));

Also note that saving attributes is recommended when the widget is in 'edit' mode. The actual
persisting of these attributes back to the server only occurs when the widget goes from the edit
mode back to view mode.

Functions on ManagedItemSet

ManagedItemSet setItemValue(in String itemName,
 in Object value,
 in boolean readOnly /*optional*/);
Object getItemValue(in String itemName);
ManagedItemSet removeItem(in String itemName);
String[] getAllNames();
boolean isReadOnly(in String itemName);
null save(in Function callbackFn /*optional*/);
boolean addListener(in Function listener);
boolean removeListener(in Function listener);
ManagedItemSet clone();

• setItemValue

This method sets an item within the ManagedItemSet, creating or replacing an existing entry as
needed. Since only one value is allowed for any one name, the supplied value replaces any
existing value for the supplied name. Note that while an arbitrary Object can be specified for

Page 1073

the value, the iContext will only persist data fields and therefore any functions defined on the
Object will be lost. It is also likely that any specific type used will also be lost across the
persistence operation. Optionally marking an item as readOnly indicates to the iContext that
while this item may be shared with other components on the page, the access of those
components SHOULD not include changing or removing the item. When successful, this
method MUST return a handle to the ManagedItemSet. On failure, it MUST return null.

• getItemValue

This method returns the value for the named item from the set. On failure, this method MUST
return null.

• removeItem

This method removes the named item from the set. When successful, this method MUST return
a handle to the ManagedItemSet. On failure, it MUST return null.

• getAllNames

This method returns an array of strings, providing the name each item currently in the set. If
the set contains no items, this method MUST return null.

• isReadOnly

This method returns a boolean indicating whether or not the item specified by the supplied
name can be modified by the user (or code acting on their behalf).

• save

This method requests the iContext save the current state of the ManagedItemSet. The
iContext MAY also choose to save the ManagedItemSet at times other than when iWidgets
request a save. This method MAY operate asynchronously. The iContext MUST invoke any
supplied callbackFn upon completion of the save attempt. The signature for the function is:

function(in String managedItemSetName, in boolean success);

addListener

This method returns a boolean indicating whether or not the request to add a listener to changes in
iWidget v1.0 Specification the ItemSet was successful. Note that the signature for such a listener
is:

module
{
 null listener(in iEvent ev);
}

removeListener

This method returns a boolean indicating whether or not the request to remove a listener was
successful.

clone

This method returns a new ManagedItemSet that is a duplicate of the current ManagedItemSet.
While this method does provide for cloning all the values within the ManagedItemSet, in general
this will only clone the data fields for complex Objects, both type information and any embedded
logic will most likely be lost.

Page 1074

 iWidget iContext

ManagedItemSet getiWidgetAttributes();
ManagedItemSet getUserProfile();
ManagedItemSet getiDescriptor();
ItemSet getItemSet(in String name, in Boolean private);
Object iScope();
String processMarkup(in String markup);

null processiWidgets(in DOMNode node);
Element getElementById(in String id);
Element[] getElementByClass(in String className);
Element getRootElement();
null requires(in String requiredItem,
 in String version /*optional*/,
 in String uri,
 in Function callbackFn /*optional*/);
iEvents iEvents;
IO io;
xml xml;
String widgetId;

• getiWidgetAttributes

This method returns the ManagedItemSet that provides access to the iWidget's customization
attributes. If there is no ManagedItemSet related to the iWidget's customization attributes, this
method MUST create an empty set and return it.

• getUserProfile

This method returns the ManagedItemSet that provides access to the user's profile data. If there
is no ManagedItemSet related to the user's profile, this method creates an empty set and returns
it. If access to the user's profile is denied, this method returns null. While it is a matter left to
the iContext's policy, it is likely that most items within the user profile will be marked as
"readOnly". Among the properties returned in this ManagedItemSet there are:

◦ j2ee_principalname

◦ principalName

◦ uid

• getiDescriptor

This method returns the ManagedItemSet that provides access to attributes that both the
iContext and the iWidget need to understand. If there is no ManagedItemSet related to the
iWidget's descriptive items, this method MUST create an empty set and return it.

• getItemSet

This method returns an ItemSet corresponding to the requested name. If it does not already
exist, an ItemSet will be created and associated with the supplied name. If a new ItemSet is
created, the "private" parameter controls whether or not the ItemSet can be exposed to other
components. If the ItemSet already exists, the "private" parameter is ignored. If access to the
desired ItemSet is denied or the ItemSet cannot be created, null is returned.

• iScope

This method returns an instance of type Object that was initialized prior to the loading of the
iWidget (either as a generic Object or an instance of the encapsulation Object referenced by
declarative means. Its purpose is to support proper encapsulation of the iWidget's assets
(variables and methods) such that multiple instances of the iWidget can be loaded into a single

Page 1075

page's DOM without stepping on each other.

• processMarkup

This method requests the iContext to process the markup such that it can be inserted into the
iWidget's markup and properly interact with the page (that is, logically extends the processing
related to loading the page). Where, when, and how the markup is inserted into the page is the
responsibility of the iWidget. On success, this method MUST return the processed markup.
On failure, it MUST return null.

• processiWidgets

This method requests the iContext to process the subtree under the supplied node for the
purpose of resolving and instantiating any referenced iWidgets.

• getElementById

This method provides the same semantics as the DOM method by the same name with the
distinction that this method will restrict the search to the iWidget's markup rather than the
entire page. This is an extremely important function. It is not uncommon for a widget to want
to replace (add/delete) content in the DOM to update the widget's appearance. If instead of
using this function, one used the "normal" element finders for DOM one may very well find a
different element in some either unrelated widget or else in a different instance of the same
widget. Either way, this resolves the problems.

• getElementByClass

This method returns an array of Elements within the iWidget's markup that have the supplied
value as one of those specified by the Element's "class" attribute.

• getRootElement

This method returns the root element of the iWidget such that the iWidget can easily do things
such as searching its own markup. This also means the root element can be a convenient
location to place items that the iWidget wishes to access later.

• requires

This method provides the means for an iWidget to declare dependency on a set of non-required
items. For these items, no URI should be specified as the iContext is responsible for loading
any dynamic portions of itself. In addition, sharable resources (for example "dojo.js") can be
loaded just once for all iWidgets using the resource via this method. As there may be issues
with having mulitple versions of such resources loaded at the same time, this method includes a
version parameter to inform the iContext of any version dependency. If no value is supplied
for the required version, the iWidget author in indicating that any version is acceptable. As
iContexts are likely to do such dynamic loads in an asynchronous manner, the callbackFn
provides a means for the iWidget to become aware that the required resource is available. It
should be noted that the callbackFn may be invoked prior to the return from this request,
especially for those resources already loaded. The callbackFn signature is of the form:

 function(requiredItem, uri, resourceHandle /* when appropriate */)

 The following names refer to optional functionality defined here:

 io

xml

iEvents

This field contains an object that provides access to event services in a manner allowing the
iWidgets on the page to interact in a loosely coupled manner while also providing control to
whomever is defining the overall page/application. Types related to eventing are defined in a

Page 1076

separate section below.

io

This optional field contains an object that provides access to io services in a manner allowing the
page as a whole to remain consistent, particularly in the face of server-side coordination between
related application components. See also: iWidget IO.

xml

This optional field is a placeholder for future definitions providing explicit support for XML-
oriented processing. This version of the specification provides no such definitions, but they are
expected in future versions. Extensions supported by more advanced iContexts SHOULD follow
the pattern used for the iEvents and IO portions of these definitions. This allows iWidgets to
determine the support for a "foo" extension defined by a group named "bar" using a construct of the
form:

 var fooSupported = (iContext._bar & iContext._bar.foo);

widgetId

This field appears to be the Dojo Dijit ID for the Dijit Widget

Constants

iContext.constants.mode.VIEW = "view"
iContext.constants.mode.EDIT = "edit"
iContext.constants.mode.HELP = "help"
iContext.constants.ATTRIBUTES = "attributes"
iContext.constants.IDESCRIPTOR = "idescriptor"
iContext.constants.USERPROFILE = "userprofile"
iContext.constants.keys.SHIFT = 1
iContext.constants.keys.ALT = 2
iContext.constants.keys.CTRL = 4
iContext.constants.keys.META = 8
iContext.constants.keys.CAPSLOCK = 16

• iContext.constants.mode.VIEW

The generated markup fragment(s) should reflect normal interaction with the iWidget.

• iContext.constants.mode.EDIT

The generated markup fragment(s) should reflect iWidget interactions for editing iWidget
attributes.

• iContext.constants.mode.HELP

The iWidget should generate markup fragment(s) to assist the user with interacting with the
iWidget.

• iContext.constants.ATTRIBUTES

Name for the ManagedItemSet holding the customization attributes.

• iContext.constants.IDESCRIPTOR

Name for the ManagedItemSet holding the items describing the iWidget.

• iContext.constants.USERPROFILE

Name for the ManagedItemSet holding data about the user.

Page 1077

iEvents

module iEvents
{
 null publishedEvents(in iEventDescription eventDesc[]);
 null handledEvents(in iEventDescription eventDesc[]);
 null fireEvent(
 in String name, /* event name, preferrably a serialized QName */
 in String type, /* optional reference to type,
 preferrably a serialized QName */
 in Object payload /* optional ... the event's data */);
}

• publishedEvents

This method informs the iContext of events that the iWidget might originate.

• handledEvents

This method informs the iContext of events that the iWidget is capable of handling.

• fireEvent

This method informs the iContext that distributing an event of the type described by the
parameters is appropriate. Whether of not such an event will actually be created and distributed
will depend on whether the iContext has any handlers for that event.

io

XMLHttpRequest XMLHttpRequest();
URI rewriteURI(in URI uri);
XMLHttpRequest request(in requestVerb,
 in URI uri,
 in Function callbackFn,
 in String message /*optional*/,
 in [{headerName, value}] requestHeader /*optional*/);

• XMLHttpRequest

This object wraps the native XMLHttpRequest support to provide a consistent page in the face
of asynchronous updates, especially those that may cause server-side coordination between the
server-side components related to multiple iWidgets on the page. Note that the need to proxy
URIs to domains outside the domain that sourced the page MAY also need the iContext to
modify the specified URI prior to supplying it to the native XMLHttpRequest implementation.
Note that either the iContext or proxy implementation MAY refuse to activate the requested
URI due to security or policy reasons. All of the semantics/syntax of the native support apply
with the exceptions/additions noted below:

• None at this time.

• rewriteURI

This method takes a URI as a parameter and returns a URI that the browser can resolve for
accessing the supplied URI. Examples of usage include resolving a relative URI against the
source of the iWidget's definition and resolving other URIs to address any intermediate
gateways, such as a proxy server.

• request

This convenience method creates a new XMLHttpRequest, registers any supplied callbackFn,
sets it to asynchronous only if a callbackFn is provided, sets any supplied request headers and
sends the supplied message as the request body if the requestVerb is "post" or "put" and
executes the supplied requestVerb against the supplied URI. If the requestVerb is not one of
"get", "post", "put" or "delete," then "get" is used.

Page 1078

Notes

Getting the URL for the widget

The URL for the widget can be obtained using:

var rootString = io.rewriteURL("");

Misc

After changing the Business Space Registry, much of the documentation says to execute an
expensive restart of the server. Experience so far seems to be showing that simply stopping and
then restarting the application called IBM_BSPACE_WIDGETS appears to be sufficient.

iWidget editor

In the latest versions of ID and RAD, there is a an iWidget editor built into the development
tooling. The iWidget editor is documented in the RAD InfoCenter. This editor visualizes the
iWidget XML description file in a custom editor that is designed to show the values of an iWidget.
In addition, an iWidget control file can be created as a new artifact. To create a new iWidget, select
New from a Web project. You must be in the Web Perspective. In the list of available artifacts, the
iWidget entry can be found:

Page 1079

If the entry does not show up in the list, choose it from the New artifact list. It can be found in the
Web folder.

This launches a wizard in which details of the new iWidget can be entered:

Page 1080

In the editor, the iWidget has a drop-down selection for the type of iWidget. The selections
available are:

• Simple Widget – A simple Hello World widget

• Event Publisher Widget – An iWidget instance which includes an event to send data

• Event Subscriber Widget – An iWidget instance which includes an event to receive data

Once created, a new XML artifact appears in the project. To open this file in the iWidget editor,
select Open With → Other and select iWidget Editor

Here is an example of an iWidget file opened in the editor with some data entered:

Page 1081

BSpaceWidgetRegistry

getWidgetRegistry()

Returns the business space registry for the widget that contains the instance of this class.

getWidgetRegistryServiceURI()

Returns the service URI that returns all the widget registries.

getWidgetRootURI()

Returns the URI to the location of the widget definition XML.

getWidgetInfoByWidgetId(widgetId)

Undocumented.

getServiceEndpoint(key)

Returns the endpoint that matches the given key.

getServiceURLRoot()

Returns the service URI root of the business space.

isInBSpace()

Returns true if this widget is hosted in business space. False otherwise.

getDefinitionXMLPath()

Returns the path to this widget's definition XML.

Page 1082

BSpaceGeneralHelper

• getCurrentSpaceId()

Returns the current business space id. If no id is found then the DEFAULT_SPACE_ID is
returned.

• getCurrentPageId()

Returns the current page id. If no id is found then null is returned.

• createWidgetMenuItem(caption, action, iconClass)

Create a menu item for itself under BSpace platform. No effect in other platforms.

• setWidgetMenuItemEnabled(action, booleanEnabled)

Enable/disable a menu item for itself under BSpace platform. No effect in other platforms.

• setCreateTaskMenuItemEnabled(booleanEnabled)

Enable/disable the widget create attachment task (send widget) menu item

• removeIWidget()

This method allows the iWidget to close itself

• isSpaceOwner(spaceid)

This method returns true if the current user is owner of a specific space.

• isCurrentUser(userid)

This method returns true if the userid is current user .

• isSuperuser()

This method returns true if the current user is a superuser in BSpace.

• showiWidgetRequiresConfiguration(container)

This method shows a message informing the user that the iWidget requires to be configured
before use.

• createIEventObject(eventName, payloadType, payload)

This handy utility method create an iEvent object for you from the information you passed in as
parameter.

• fireSwitchSpacePageEvent(spaceId, pageId, iEventArray)

This method allows widget to fire event with known space id and page id and result in
switching to that specific space and page. Once this method is called, it will switch to the space
and page specified and boardcast the event to all widgets.

• retrieveIEventFromEventHolder()

This method allows widget to retrieve any waiting event in the global event holder queue. The
method will return an array of all waiting iWidget iEvent if there is any.

• getPageIdFromResourceType(resourceType)

Returns the hidden linked page id from resource type. If no id is found then the null is returned.

• safeHandleCallback(callbackContext, callbackFunction)

Provide a safe way for handling async call callback. This will check to see if the
iWidgetContainer still has the iWidget before proceeding with the real callback function.

• printDebug(debugString)

General debug method so that only printing debug statement if isDebug in djConfig is true.

Page 1083

• handleException(className, method , errorMessage ,exception)

This function allows the caller to display an error caught from a widget.

Registering Widgets

In WPS 7.0, a new wsadmin task was introduced that performs the installation actions more
elegantly than previous releases. The command is called
AdminTask.installBusinessSpaceWidgets.

The syntax for the new WSAdmin task is as follows:

AdminTask.installBusinessSpaceWidgets('[
 -nodeName nodeName
 -serverName serverName
 -widgets pathToWidgetZipFile]')

The input to this file is a manually created ZIP file. To create the ZIP file, first create a new folder.
In that folder, create the following sub-folders:

ear

Contains the EAR file for the Widget Web Project. This EAR contains the iWidget XML file and
the JavaScript amongst possible others.

catalog

Contains the catalog_nameOfWidget.xml file. The structure and content of this file is described at
The Catalog File.

endpoints

Contains the endpoint XML file

help (optional)

Once done, ZIP up the data so that these folders are the immediate children in the ZIP. This is the
ZIP file to be passed to the installBusinessSpaceWidgets script in the -widgets parameter.

The effect of running this command will be to install the EAR contained within the ZIP as well as
register the new Business Space widget. Experience shows that although the EAR application is
installed, it is not automatically started. It must be started before the widget can be used in Business
Space.

An almost identical command is available to remove (un-install) a previously installed widget. Like
the install script, the un-install script takes the ZIP file as input.

AdminTask.uninstallBusinessSpaceWidgets('[
 -nodeName nodeName

Page 1084

 -serverName serverName
 -widgets pathToWidgetZipFile]')

Updating the information about the widget in WPS can also be achieved through scripting:

AdminTask.updateBusinessSpaceWidgets('[
 -nodeName nodeName
 -serverName serverName
 -catalogs pathToCatalogXMLFile]')

The same command can be used to update the endpoints XML file:

AdminTask.updateBusinessSpaceWidgets('[
 -nodeName nodeName
 -serverName serverName
 -endpoints pathToEndpointsXMLFile]')

After installing or updating a widget (at least in test), restart the server.

When installing a widget, the catalog file is copied into:

<Profile>/BusinessSpace/Node/Server/mm.runtime.prof/config

Deleting the file from this location will also delete the widget. The file called catalog_default.xml
should also be edited to remove the associated includes.

Similarly, a directory called:

<Profile>/BusinessSpace/Node/Server/mm.runtime.prof/endpoints

contains the endpoint files.

The Catalog File

The XML Catalog file that is used to register a widget does not appear to be any known industry
standard. It appears to be IBM specific and very technical in nature at that. No publicly understood
documentation is known to exist that describes this mysterious content. By examination (and
guesswork), the Catalog XML file seems to contain the following information.

In WPS v7.0, a new catalog structure was designed that differs from that of previous releases. The
name of the XML file should be:

catalog_nameOfWidget.xml

Documentation on this is currently poor. Its general structure appears to be:

<catalog id="???">
 <resource-type>Catalog</resource-type>
 <category name="???">
 <title>Text</title>
 <description>Text</description>
 <entry id="{namespace}name" unique-name="{namespace}name">
 <title>Text</title>
 <description>Text</description>
 <definition>Path???</definition>
 <preview>Path???</preview>
 <icon>Path???</icon>
 <previewThumbnail>Path???</previewThumbnail>
 <shortDescription>Text</shortDescription>
 <metadata name="com.ibm.bspace.version">1.0.0.0</metadata>
 <metadata name="com.ibm.bspace.owner">IBM</metadata>
 <metadata name="com.ibm.bspace.serviceEndpointRefs">
 [{

Page 1085

 "name": "serviceUrlRoot",
 "required": "false",
 "refId": "endpoint://{namespace}name",
 "refVersion": "1.0.0.0"
 }]
 </metadata>
 </entry>
 <category>
</catalog>

The text entries in the XML Catalog can be NLS encoded using the following format:

<nls-string lang="en">Human Readable Text</nls-string>

The fields in the Catalog structure are as follows:

• catalog/@id

The name of the widget seems to work fine here. It is not known how this property is used.

• catalog/resource-type

Examples seem to show this to be the constant called Catalog.

• catalog/category/@name

The category is the "folder" or "group" in which this Business Space widget will appear and be
housed.

• catalog/category/title

This is the text that is shown in the Category selection.

• catalog/category/description

It is not known where this description shown up in Business Space.

• catalog/category/entry/@id

This entry should be a namespace/name (eg. {MyNameSpace}MyName) formatted entry. It
is not known how this is used.

• catalog/category/entry/@unique-name

Page 1086

This attribute seems to hold the same value as catalog/category/entry/@id

• catalog/category/entry/title

This attribute is used to set the initial title of an instance of the Widget when created in
Business Space.

It is also used in the category selection in a couple of places:

and

catalog/category/entry/description

The description shows up in the category selection

Page 1087

catalog/category/entry/definition

This entry points to the path of the iWidget XML file available from a URL. This links together
the Catalog data and the iWidget XML description data. It is from here that the runtime can obtain
the iWidget XML description document.

• catalog/category/entry/preview

This is a web path to an image that will be used as a preview of what the widget will look like
in a page. Link to a 160x125 pixel sized image.

• catalog/category/entry/icon

This is a web path to an image that will be used as an icon for the new widget. Link to a 20x20
pixel sized image.

• catalog/category/entry/previewThumbnail

This is similar to the previous preview image but smaller. Link to a 64x48 pixel sized image.

• catalog/category/entry/shortDescription

• catalog/category/entry/metatdata/@name="com.ibm.bspace.version"

It is not known how this attribute is used.

• catalog/category/entry/metatdata/@name="com.ibm.bspace.owner"

It is not known how this attribute is used.

• catalog/category/entry/metatdata/@name="com.ibm.bspace.serviceEndpointRefs"

Examples seem to show this to be a piece of encoded JSON objects with fields that include:

• name

• required

• refId
This appears to be a string of the format:
 endpoint://{???}???

• refVersion

Registry Endpoints XML

The endpoint registry XML example looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<BusinessSpaceRegistry
 xmlns="http://com.ibm.bspace/BusinessSpaceRegistry"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://com.ibm.bspace/BusinessSpaceRegistry
BusinessSpaceRegistry.xsd ">
 <Endpoint>

Page 1088

 <id>{namespace}name</id>
 <type>{namespace}name</type>
 <version>1.0.0.0</version>
 <url>/WebPath/</url>
 <description>Description</description>
 </Endpoint>
</BusinessSpaceRegistry>

BusinessSpaceRegistry/Endpoint/id

The ID of this endpoint information. This is what is references in the Registry Widget XML in the
tag serviceEndpointRef/refId.

• BusinessSpaceRegistry/Endpoint/type

Examination has shown that the type element and id element should be set to the same value.

• BusinessSpaceRegistry/Endpoint/version

It is not known how the version is to be used but it appears that the value should be of the form
"1.0.0.0" and must match the corresponding version in the catalog.

• BusinessSpaceRegistry/Endpoint/url

A URL that will be the root of the iWidget. For example myWidget/. When building a
Dynamic Web Project that contains a custom Widget, this will normally be the name of that
project prefixed and followed by the "slash". For example /MyWidget/.

• BusinessSpaceRegistry/Endpoint/description

A human readable description of this entry

JavaScript for a new widget

When a widget is loaded by Business Space, that widget usually supplies some JavaScript code to
be executed. As the Business Space widget is loaded and used, callbacks are executed into this
code. It is this code that controls the user interactions and makes REST calls to back-end servers
and updates the HTML of the page to display or change content. JavaScript does not natively have
similar concepts to Java of package names and class names. Dojo provides a similar mapping using
the two Dojo methods called dojo.provide and dojo.declare. Using these methods
provides the ability to declare the Java equivalent of a Class type in a package. This is used with
custom Widgets in the iWidget specification. In the iWidget definition, there is an attribute called
iScope. This takes the name of the declared JavaScript class. When an instance of a Business
Space widget is created on the page, a corresponding instance of the JavaScript class object is also
created.

dojo.provide("com.kolban.SampleWidget");
dojo.declare("com.kolban.SampleWidget",
[dijit._Widget],
{
 "onLoad": function() {
 dojo.mixin(this,
 new com.ibm.bspace.common.util.widget.BSpaceCommonUtilityLoader());
 this.require("com.ibm.bspace.common.util.widget.BSpaceGeneralHelper");
 },
 "onUnload": function() {},
 "onReload": function() {},
 "onRefreshNeeded": function() {},
 "onSizeChanged": function() {}
});

Page 1089

Functions

The JavaScript written to implement the widget contains callback functions that are called by the
Business Space framework. The names of these functions are architected. What follows is a brief
description of the different callbacks available.

• onLoad

This appears to be called when the widget is loaded. This may not be the same as the
dojo.onLoad(). The page may not be fully loaded at this time. It is likely that a call to
dojo.addOnLoad() may be called here to ensure that the page is properly loaded.

• onUnload

• onReload

• onAdd

• onDrag

• onDrop

• onModeChanged

• onSizeChanged

An object is passed as a parameter. The object contains:

• name: "onSizeChanged"

• o payload:

• + newHeight: int

• + newWidth: int

• onNavStateChanged

• onItemSetChanged

• onRefreshNeeded

Called when the widget needs to be refreshed.

In addition, for each of the modes, a callback function is available for when the mode is selected:

onview

onedit

Modes

A widget can be in any one of a number of modes. The common modes are view and edit. To
switch mode, the iContext event called onModeChanged can be invoked.

this.iContext.iEvents.fireEvent("onModeChanged", null, "{newMode: 'view'}");

HTML rewriting

It is possible that there is HTML re-writing going on in the environment. I seem to see that the

Page 1090

widget.xml contains:

IWID

is being replaced with a UUID which I believe to be the iWidget ID (what ever that means). This
same widgetID can be obtained from iContext.widgetId.

Debugging iWidget JavaScript

Assuming you are running the iWidget in FireFox with FireBug installed, adding the JavaScript
code statement:

debugger;

causes a breakpoint to be reached which stops the execution and throws you into the FireBug
JavaScript debugger.

Adding the JavaScript:

console.log("Text");

caused the text to be logged to the FireBug console.

Event handling

A widget can send (publish) and receive (handle) events from other widgets. IBM's supplied
Business Space widgets both publish and handle events. This means that custom widgets can be
wired together with the IBM widgets to react or cause reaction. In order for two widgets to be
wired together, one needs to publish an event interface and the other needs to handle the exact same
event interface. The configuration that describes published and handled events is performed in the
iWidget XML document. There are two tags of interest. These are:

eventDescription

event

The eventDescription contains:

<iw:eventDescription id="{eventDescName}"
 payloadType="{payloadType}"
 description="{description}"
 lang="{locale}"
 title="{title}">
 <!-- one per locale -->
 <iw:alt description="{description}"
 title="{title}"
 lang="{locale}" />
</iw:eventDescription>

id

This appears to be a unique ID for the eventDescription. It must match the value used in the
eventDescName in the event tag.

payLoadType

This describes the type of data that can be incoming.

lang

A locale (eg. "en")

description

A textual description of the event

title

Page 1091

Unknown. Although this shows up in the spec, it does not show up in the iWidget editor.

The event contains

<iw:event id="{eventName}"
 eventDescName="{eventDescName}"
 published="{boolean}"
 handled="{boolean}"
 handlerItemName="{attributeValue}"
 onEvent="{handlerName}" />

id

The identity of the event. This must match between event sender and receiver.

• eventDescName

The name of the id value of a eventDescription tag.

• published

A value of either true or false. If true, then this widget can be the sender/source of this type of
event.

• handled

A value of either true or false. If true, then this widget can be the receiver/destination of this
type of event. If true, an onEvent method must be provided.

• onEvent
The name of a JavaScript function in the *.js file for the widget that will receive the event.

To send an event one uses the method called:

iContext.iEvents.fireEvent()

The function defined in the onEvent attribute of the event tag accepts a single parameter defined as
follows:

module iEvent
{
 String name;
 String type;
 Object payload;
 String source;
}

• name

 The name of the event, preferrably a Qname.

• type

The type of any payload. If this is set to null, no information is being provided. This is useful
for both simple signals or events with opaque payloads (i.e. a minor attempt at making it
private)

• payload

The data, if any, being provided by the source of the event.

• source

The iWidget supplied name for the source iWidget. Note that some iContexts will consistently

Page 1092

null this field for security reasons.

When the JavaScript function named in the <iw:event onEvent=...> entry is called, it is passed a
JavaScript Object as a parameter. This object contains at least the following:

• name

The name of the event type that was received. This allows a single event handler to be able to
process many types of handled event as the code can determine which event caused the
callback.

• payload

The data passed by the event publisher.

The iWidget specification provides a set of predefined events that callback into the JavaScript code
without event specifications in the XML file having to be coded. These are:

• onLoad – No parameters. Called when the widget has been loaded and is "ready".

• onUnload – No parameters. Called when the widget is about to be unloaded.

• onModeChanged – Called with:

{
"newMode": value

}

Called when the mode of the widget has changed

• onSizeChanged – Called when the size of the widget has changed. Parameters:

{
"newWidth": value,
"newHeight": value

}

• onNavStateChanged -?

• onItemSetChanged - ?

• onRefreshNeeded - ?

• onNewWire - ?

• onRemoveWire - ?

Dojo Level Workarounds

The level of Dojo distributed with Business Space is back-level compared to the latest possible
Dojo release. At the time of writing, the level of Dojo supplied is 1.4.3. Many of the expected
Dojo functions simply aren't there. Here are some of them (but by no means all) and some
suggested workaround:

None at this time.

Debugging and Problem determination

If after building a custom widget, things are not working as expected, here are some tips to follow
to see what might be going wrong:

Page 1093

In the catalog file, there is an entry called <definition>. This defines a WEB path to the iWidget
xml file. Open a browser and attempt to access this file. For example:

http://localhost:9080/PathToWidgetXMLFile

After making changes to the definitions, consider restarting the Business Space server. When
changes actually take effect is not completely known.

When logging JavaScript objects, consider using the FireBug command:

console.debug(object)

This will log the object to the console in an expanded form that allows one to interrogate the
object's contents very easily.

While developing Custom Widgets, changes are frequently made to the code files. If a browser
caches code, then re-testing can be a challenge. In FireFox 3, the Function Key 5 (F5) causes a re-
load of the current page bypassing any cached files.

Assuming you are running the iWidget in FireFox with FireBug installed, adding the JavaScript
code statement:

debugger;

causes a breakpoint to be fired when reached which stops the execution and throws you into the
FireBug JavaScript debugger.

If the widget appears but there is no flex content, check that the expected SWF file is the one
named.

See Also:
• DeveloperWorks – Develop custom widgets for Business Space with Rational Application Developer or WebSphere Integration Developer –

2009-12-20

• DeveloperWorks - Integrating Flex applications with IBM Mashup Center - 2009-06-29

• DeveloperWorks – Creating a Flex-based widget to display WebSphere Business Monitor data in Business Space – 2009-04-29

• The iWidget 1.0 specification

• The iWidget 1.0 primer

• The iWidget 2.0 specification

• The iWidget Programming Guide

• Lotus Mashup home page for iWidget programming – Includes links to the majority of iWidget documents

• Train yourself to develop, configure, and debug widgets

• RedBook - Building IBM Business Process Management Solutions Using WebSphere V7 and Business Space – 2010-06-10 - Contains large
chapter on building custom widgets

Custom Widget Walk through

In this section we will walk through the creation of a trivial custom widget from beginning to end to
demonstrate the creation of such an entity. It assumes familiarity with the previous topics

We create a new Dynamic Web based project to hold our new widget. We call the project
MyTestWidget and have it associated with a deployable EAR called MyTestWidgetEAR. This
project will host the JavaScript and iWidget XML file.

Page 1094

http://www.redbooks.ibm.com/redpieces/abstracts/sg247861.html?Open
http://www-10.lotus.com/ldd/mashupswiki.nsf/dx/learning-how-to-develop-widgets
http://www-10.lotus.com/ldd/mashupswiki.nsf/dx/widget-programming-guide
http://download.boulder.ibm.com/ibmdl/pub/software/dw/lotus/mashups/developer/iWidgetProgrammingGuide_20081020.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/lotus/mashups/developer/iwidget-spec-v2.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/lotus/mashups/developer/iwidget-primer-v1.0.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/lotus/mashups/developer/iwidget-spec-v1.0.pdf
http://www.ibm.com/developerworks/websphere/library/techarticles/0904_johnson/0904_johnson.html
http://www.ibm.com/developerworks/lotus/library/mashups-flex/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1004_wayne/1004_wayne.html

Now we need to create the JavaScript file that will be called to handle events.

dojo.provide("com.sample.MyTestWidget");

dojo.declare("com.sample.MyTestWidget", null, {
 onLoad: function ()
 {
 console.log("onLoad called");
 },

 onUnload: function() {
 console.log("onUnload called!");
 },

 onview: function() {
 console.log("onview");
 },

 onedit: function() {
 console.log("onEdit called!");

Page 1095

 },

 onReload: function() {
 console.log("onReload called");
 },

 onRefreshNeeded: function() {
 console.log("onRefreshNeeded called!");
 console.log("Root: " + this.getWidgetRootURI());
 console.log("here: " + this.iContext.io.rewriteURI(""));
 },

 onSizeChanged: function(event){
 console.log("onSizeChanged called");
 console.log("New sizes: width=" + event.payload.newWidth + " height=" +
event.payload.newHeight);
 },

 /**
 * Sample Event handler …
 */
 handleEvent: function(event)
 {
 console.log("handleEvent called! : " + event.payload);
 }
});

Create the iWidget XML file. Right click in the Web Content folder of the new project and select
create New > Other. From the Web folder of the New dialog, find and select iWidget.

Page 1096

The name of the new iWidget should be MyTestWidget.

Page 1097

Open the newly created iWidget XML file with the iWidget editor. This may have to be done with
the Open > Other and then select the editor explicitly.

Give values to some of the iWidget attributes such as name and iScope. The iScope parameter
MUST has the Dijit name of the widget. Save the result and close the editor.

Page 1098

Here is the data contained in the iWidget XML file:

<?xml version="1.0" encoding="UTF-8" ?>
<iw:iwidget id="MyTestWidget" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xmlns:iw="http://www.ibm.com/xmlns/prod/iWidget"
supportedModes="view" lang="en" iScope="com.sample.MyTestWidget">
<iw:content mode="view">

<![CDATA[
<div>Hello World</div>
]]>

</iw:content>

<iw:resource src="MyTestWidget.js"/>
</iw:iwidget>

Create a General Project called MyTestWidgetPackage. This project will be used to hold
Business Space widget installation and packaging artifacts.

In the new project, create three simple folders called:

catalog

ear

endpoints

The result should look as follows:

In the catalog folder, create a file called catalog_MyTestWidget.xml and in the folder called
endpoints create a file called endpoints.xml. These should be created as simple files.

Page 1099

Copy the following XML fragment into the content of the file catalog_MyTestWidget.xml.
This fragment is a template for what we need and will be further edited.

<?xml version="1.0" encoding="UTF-8"?>
<catalog id="myWidget">
 <resource-type>Catalog</resource-type>
 <category name="myWidget">
 <title>
 <nls-string lang="en">My Widget</nls-string>
 </title>
 <description>
 <nls-string lang="en">My Widget description.</nls-string>
 </description>
 <entry id="{mynamespace}myWidget" unique-name="{mynamespace}myWidget">
 <title>
 <nls-string lang="en">My Widget Title 2</nls-string>
 </title>
 <description>
 <nls-string lang="en">My Widget Description 2</nls-string>
 </description>
 <definition>/WebRoot/myWidget.xml</definition>
 <preview>/WebRoot/images/preview_myWidget.gif</preview>
 <icon>/WebRoot/images/icon_myWidget.gif</icon>
 <previewThumbnail>/WebRoot/images/thumb_myWidget.gif</previewThumbnail>
 <shortDescription>
 <nls-string lang="en">My Short Description</nls-string>
 </shortDescription>
 <metadata name="com.ibm.bspace.version">1.0.0.0</metadata>
 <metadata name="com.ibm.bspace.owner">IBM</metadata>
 <metadata name="com.ibm.bspace.serviceEndpointRefs">
 [{
 "name": "serviceUrlRoot",
 "required": "false",
 "refId": "endpoint://{mynamespace}myWidget",
 "refVersion":"1.0.0.0"
 }]
 </metadata>
 </entry>
 </category>
</catalog>

Change the following:

All references to myWidget to be MyTestWidget

All references to WebRoot to be MyTestWidget

The result will be:

<?xml version="1.0" encoding="UTF-8"?>
<catalog id="MyTestWidget">
 <resource-type>Catalog</resource-type>
 <category name="MyTestWidget">
 <title>

Page 1100

 <nls-string lang="en">My Test Widget</nls-string>
 </title>
 <description>
 <nls-string lang="en">My Test Widget description.</nls-string>
 </description>
 <entry id="{mynamespace}MyTestWidget" unique-
name="{mynamespace}MyTestWidget">
 <title>
 <nls-string lang="en">My Test Widget Title 2</nls-string>
 </title>
 <description>
 <nls-string lang="en">My Test Widget Description 2</nls-string>
 </description>
 <definition>/MyTestWidget/MyTestWidget.xml</definition>
 <preview>/MyTestWidget/images/preview_myWidget.gif</preview>
 <icon>/MyTestWidget/images/icon_myWidget.gif</icon>

<previewThumbnail>/MyTestWidget/images/thumb_myWidget.gif</previewThumbnail>
 <shortDescription>
 <nls-string lang="en">My MyTestWidget Short Description</nls-string>
 </shortDescription>
 <metadata name="com.ibm.bspace.version">1.0.0.0</metadata>
 <metadata name="com.ibm.bspace.owner">IBM</metadata>
 <metadata name="com.ibm.bspace.serviceEndpointRefs">
 [{
 "name": "serviceUrlRoot",
 "required": "false",
 "refId": "endpoint://{mynamespace}MyTestWidget",
 "refVersion":"1.0.0.0"
 }]
 </metadata>
 </entry>
 </category>
</catalog>

Copy the following XML fragment into the endpoints.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<BusinessSpaceRegistry
 xmlns="http://com.ibm.bspace/BusinessSpaceRegistry"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://com.ibm.bspace/BusinessSpaceRegistry
BusinessSpaceRegistry.xsd ">
 <Endpoint>
 <id>{mynamespace}myWidget</id>
 <type>{mynamespace}myWidget</type>
 <version>1.0.0.0</version>
 <url>/WebRoot/</url>
 <description>Location of MyWidget</description>
 </Endpoint>
</BusinessSpaceRegistry>

Change all occurrences of myWidget to MyTestWidget and the WebRoot to also be MyTestWidget.
The result will be:

<?xml version="1.0" encoding="UTF-8"?>
<BusinessSpaceRegistry
 xmlns="http://com.ibm.bspace/BusinessSpaceRegistry"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://com.ibm.bspace/BusinessSpaceRegistry
BusinessSpaceRegistry.xsd ">
 <Endpoint>
 <id>{mynamespace}MyTestWidget</id>

Page 1101

 <type>{mynamespace}MyTestWidget</type>
 <version>1.0.0.0</version>
 <url>/MyTestWidget/</url>
 <description>Location of MyWidget</description>
 </Endpoint>
</BusinessSpaceRegistry>

Now we want to generate the EAR file for the MyTestWidget Web project and save the result in the
file system underneath the ear folder in the packaging project.

Refreshing the packaging project now shows that the EAR is contained in the ear folder:

Generate a ZIP file containing just these folders and their contents. This can be done through the
ID Export option. Remember to select "Create only selected directories" to ensure that no extra
directories are created that we do not want.

Page 1102

If examined in a ZIP tool, the following would be shown:

Once the ZIP file has been created, the Widget is ready to be installed. Use the wsadmin script to
install the widget. Make sure that the script is pointing to the ZIP file that was just created. See

Page 1103

Registering Widgets. After installation has been completed, restart the WPS server to ensure that
all changes have taken effect. Once the server has been restarted, Business Space can be launched.
In the page editing section, we will now see a new widget that can be added to a page:

Once added, we can see it in place within the Business Space environment:

It isn't a very exciting widget … but it is indeed a custom widget.

Page 1104

Using RAD 8.0.3 to create an iWidget

Page 1105

Page 1106

Mashup Center

See also:

• IBM Mashup Center home page

Multiple Browser instances and BPM

When developing or working with BPM solutions, it is not uncommon to want to work with
multiple browsers open on your desktop to a variety of BPM applications. Such applications can
include:

• Business Space

• BPC Explorer

• WAS Admin Console

Page 1107

http://www-01.ibm.com/software/info/mashup-center/

• Business Rules Manager

• others ...

In a secure WAS environment, each of these applications requires you to authenticate with the
target WAS server before the application can be used. Unfortunately, this can cause a problem. To
understand this, let us examine how WAS authentication through a browser works.

When you login to WAS and provide a user name and password, that data is sent to WAS only
once. WAS validates that the user name and password match and generates a security token. This
token is probably no more than a long sequence of characters. When the browser subsequently
interacts with WAS, the token is passed back from the browser back to WAS. On seeing this token,
WAS now knows who you are and trusts the previous authentication. This means that the userid
and password only ever flowed to WAS once. All transmissions between the browser and WAS
occur over the encrypted HTTPS (SSL) transport and hence the content of the token is never
exposed on the network and can't be sniffed and replayed by other users.

When the token is originally generated by WAS and sent back to the browser, the token is saved
locally by the browser in the form of a cookie. This cookie containing the token is what is sent
back to WAS when the browser makes subsequent calls back to WAS.

So far ... no problems.

Now imagine bringing up two browser windows or tabs running in the same browser. If we sign-on
to a WAS based application on one window, a token is created and saved in the local cookie store.
If we sign-on to WAS in the second window, again a token is created and saved in the local cookie
store. The problem is ... is that there is only one cookie store shared by all browser
windows/instances. So if you sign-in as user "A" in one browser instance and then sign-in as user
"B" in a second browser instance, the token/cookie for user "A" is replaced with the token/cookie
for user "B".

From a users perspective, this manifests itself as either getting unexpected results when working
with WAS applications in different browser windows or else we get additional requests to
authenticate as the cookies are constantly being expired and refreshed.

Fortunately, there is a solution.

When we use the FireFox browser, each instance of the browser can have its own private profile.
Think of this as a complete set of configurations including the storage area where cookies are saved.
If we want to have multiple browsers up and running then we can launch multiple instances of
FireFox, each with its own profile.

The FireFox program has two command line flags that should be supplied:

-ProfileManager

-no-remote

The first parameter causes FireFox to display the ProfileManager dialog which allows us to create
and select the profile to be used.

The second parameter forces FireFox to use a second profile even if an existing instance of FireFox
is already running. Without this flag, a second profile will be ignored and FireFox will use the
profile in effect for the first instance started.

The ProfileManager dialog is shown next:

Page 1108

Use the Create Profile button to create as many profiles as desired. To start FireFox with a specific
profile, select it and click the Start Firefox button.

Note that multiple tabs in a single instance of FireFox will always share the same profile so utilize
multiple profiles and hence multiple browser instances to keep them separate.

Business Space Supplied Widgets
Business Space comes with a variety of Widgets. As other BPM products are installed, so too are
additional sets of Widgets.

Business Configuration

Business Rules

Human Task Management

The Human Task Management category of Business Space contains the following widgets:

• Business Categories

• Business Category Information

• Escalations

• Inbox

• My Team's Tasks

• My Work Organizer

• Process Definitions

• Processes

• Process Information

• Task Definitions

• Task Filter

• Task Information

• Tasks

• Work Basket Information

Page 1109

• Work Baskets

Escalations List

Human Workflow Diagram

A BPEL process can contain a set of Human Tasks. The Human Workflow Diagram widget allows
us to visualize the human tasks within instances of BPEL processes and see where we are within the
process with respect to the human tasks being executed. It dynamically examines the process
associated with a selected task and draws a picture of where that task is within the process relative
to other tasks.

The following illustrates an example of the Human Workflow Diagram.

The widget responds to the following events:

• Open – com.ibm.widget.Open

• Close – com.ibm.widget.Close

Page 1110

• Tab Changed – com.ibm.widget.TabChanged

An example wiring of this widget would be to a Tasks List widget with:

Tasks List (Item Selected) → Human Workflow Diagram (Open)

My Team's Tasks

My Work Organizer

Process Definitions List

Processes List

Task Definitions List

Task Information

Tasks List

Action Requested

Focus Changed

Items Selected

Task Released

Task Delegated

Task Terminated

Task Deleted

Task Claimed

Escalation Started

Page 1111

Problem Determination

Solution Administration

Solution Operation

User Management

Viewers

Web Viewer

The Web Site viewer widget displays the contents of a web site. The web site displayed can be
configured in the settings for the widget or can be passed in via an event definition.

Script Adapter

The Script Adapter widget can be wired to receive events published by any other widget. When it
receives an event, it can then forward that event onwards to any other wired widget. The value of
this is two-fold. First, it can be used during widget development for debugging. When one widget
publishes an event, the fact that the event was published and its payload can be logged by the Script
Adapter. Secondly, JavaScript source code can be supplied as a configuration parameter to the
Script Adapter widget. This JavaScript can operate against the payload data and potentially
massage or transform its content. The passed in data is available in a variable called payload.
Payload will be a String. If it contains JSON encoded data, then the data will have to be expanded.
An example of this is:

var myObject = eval('(' + payload + ')');

Visual Step

JSPs
See Also:
• DeveloperWorks - Building a human task-centric business process with WebSphere Process Server, Part 2: Customizing JSPs - 2007-03-21

WebSphere Portal
See also:

• developerWorks - Realizing the value of IBM Business Process Manager in the WebSphere Portal environment, Part 1: Integrating
WebSphere Portal with IBM Business Process Manager - 2011-09-29

Page 1112

http://www.ibm.com/developerworks/websphere/bpmjournal/1109_harris/1109_harris.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1109_harris/1109_harris.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0703_shankar/0703_shankar.html

Liferay
Liferay is an Open Source Portal environment.

Installing Liferay on WAS

Liferay can be installed on WAS v8 environment. Since we are working with IBM BPM, chances
are good that our familiarity with WAS v8 will be higher than other Java EE platforms.

We start our installation by creating a new WAS profile. I'll assume you know how to do that.
Create the profile with no special augmentations.

Download the Liferay package without a bundled Java EE environment. This can be found in the
Additional Files page at the Liferay web site:

A Zip file called "liferay-portal-depenencies" is supplied which contains JAR files that
need to be added to the WAS class path. As of writing, these are:

• hsql.jar

• portal-service.jar

• portlet.jar

These should be copied to <WAS>/lib/ext

Now we start the WAS Server. Experience has shown that the default max heap size of 256MB is

Page 1113

not enough. I increased to 512MB. Once started, bring up the WAS Admin console and install the
Liferay WAR file. Accept all the default options. The WAR is pretty large, it make take a few
moments to upload and then parse for installation.

Using the Liferay Tomcat bundle

One of the bundles available for Liferay is an integrated Tomcat environment. After extracting the
content to a folder, we can launch the Tomcat environment using:

<Liferay>/tomcat/bin/startup

Developing Liferay Portlets

First we will want to install the Liferay development environment. The full recipe for this can be
found in the Liferay documentation but here are some notes that I used to get it working. First I
downloaded Eclipse for Java EE 4.2.1. Once launched, I used the Eclipse in-built updated to install
the Liferay IDE from the following Eclipse update site:

http://sourceforge.net/projects/lportal/files/Liferay%20IDE/1.6.1/updatesite/

Liferay supports the JSR-286 Portlet Specification

See also:

• Understanding the Java Portlet Specification 2.0 (JSR 286): Part 1, Overview and Coordination Between Portlets – 2010-01

• JSR 168 Portlets & JSR 286

Page 1114

http://portlets.blogspot.com/2004/11/start-learning-portlet.html
http://www.oracle.com/technetwork/java/jsr286-141866.html
http://sourceforge.net/projects/lportal/files/Liferay%20IDE/1.6.1/updatesite/

Lotus Forms
See Also:
• DeveloperWorks – Build and deploy a business process model using WebSphere Business Process Modeler Advanced and Lotus Forms, Part

3: Implement a mediation flow – 2009-10-14

Dojo

Custom Dojo development environment

At times we want to work with the Dojo generated by WID. WID places these files in a Web
Project for deployment to the WPS server for subsequent retrieval by Business Space. If we want
to modify the generated HTML files, we find that we are constantly redeploying the Web project so
that the changes become visible. During development of UIs, we constantly find ourselves wishing
to make changes so this update/publish sequence can be annoying. Fortunately, there is an elegant
solution.

When the web project containing the HTML is published to WPS, the files for the HTML can be
accessed from the file system under the WPS profile directory. Changes made to these files are
immediately picked up.

In the following walk-through, assume that the Web Project hosting the Dojo/HTML files is called
DojoHolder and that an example HTML file is called MyHTML.html. DojoHolder is hosted by the
EAR called DojoHolderApp.

If we navigate to:

{WPS Profiles}/{Profile Name}/installedApps/{Cell
Name}/DojoHolderApp.ear/DojoHolder.war

we will find the files in the DojoHolder Web Project. Editing these will provide real-time changes
to the files as served by WPS.

Rather than editing these files with notepad or some similar editor, we ideally want to edit them
with a JavaScript editor such as is found in WID. It has been found that if we create a new WID
Static Web project we can then link in these file system files to the web project and edit within
WID. This Web Project will never be published and is only a wrapper to allow us access to the
files.

See also:
• DeveloperWorks – Developing custom widgets for Business Space using Dojo, Part 1: Generating Dojo markup using a generic markup

handler – 2009-12-09

• DeveloperWorks – Integrating a Dojo client with an SCA application via SCA HTTP binding – 2009-11-25

• DeveloperWorks – Customizing HTML-Dojo forms for Business Space powered by WebSphere – 2009-04-09

See also:
• DeveloperWorks - Integrating IBM WebSphere Portal V7 with IBM WebSphere Process Server V7 using the WebSphere Process Server client

- 2010-09-29

• DeveloperWorks – Building a process task portlet application using the Portlet Generator in WebSphere Integration Developer 6.2 – 2009-04-
08

• DeveloperWorks – Implementing a human-centric business process application using WebSphere Portlet Factory: Part 1: Solution overview –
2008-04-16

• DeveloperWorks – Implementing a human-centric business process application using WebSphere Portlet Factory: Part 2: Developing a human-
centric business process – 2008-04-16

• DeveloperWorks – Implementing a human-centric business process application using WebSphere Portlet Factory: Part 3: Developing user
interfaces for originating and participating tasks – 2008-04-30

• DeveloperWorks – Implementing a human-centric business process application using WebSphere Portlet Factory: Part 4: Developing a task list

Page 1115

http://www.ibm.com/developerworks/websphere/library/tutorials/0805_jung/0805_jung.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0804_santos/0804_santos.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0804_santos/0804_santos.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0804_kapadia/0804_kapadia.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0804_kapadia/0804_kapadia.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0804_ng/0804_ng.html
http://www.ibm.com/developerworks/websphere/tutorials/0904_gu/index.html
http://www.ibm.com/developerworks/websphere/zones/portal/proddoc/dw-w-integratewps/index.html
http://www.ibm.com/developerworks/websphere/techjournal/0810_kreis/0810_kreis.html
http://www.ibm.com/developerworks/websphere/tutorials/0911_kharlamov/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0912_khanna/0912_khanna.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0912_khanna/0912_khanna.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0910_kiss/index.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0910_kiss/index.html

application – 2008-05-28

• DeveloperWorks – Implementing a human-centric business process application using WebSphere Portlet Factory: Part 5: Deploying the user
interfaces – 2008-06-18

• DeveloperWorks – Setting up and testing a secured, two-cell process portal environment – 2007-12-12

• DeveloperWorks - Building a human task-centric business process with WebSphere Process Server, Part 4: Portlet development – 2007-07-30

• DeveloperWorks - Building a human task-centric business process with WebSphere Process Server, Part 3: Adding portlets - 2007-06-06

Flex and Business Space
Flex is UI technology from Adobe that allows a developer to create fantastic user interfaces very
easily. Flex is the combination of:

• The free Adobe Flash player

• An open source set of visual components

• An open source scripting language called Action Script that is based on ECMA Script
(JavaScript)

• (Optional) The Adobe Flex Builder Integrated Development Environment

Widgets that use Flex

Here is a list of widgets that are known to use Flex. There may very well be others. This list is
useful if reverse engineering is needed to see how a technique was done.

• Business Monitoring > KPI History and Prediction

• Business Monitoring Tools > Alert Manager

Flex Custom Widgets in Business Space

Business Space is the BPM framework for hosting “Widgets” that allow end users to interact with
IBM’s BPM products.

Business Space provides the ability to create new customer written widgets that can add or replace
functions for end user interaction. These are new widgets are generally called ‘custom widgets’.
The creation of a general custom Business Space widget is described in detail at Custom Widgets.

The goal of this section is to provide additional knowledge on creating end user interfaces using
Flex and that will be hosted as Custom Widgets in a Business Space environment.

Using Flex components, a user interface can very quickly be created. The next question is how can
this be visualized in the IBM Business Space?

The answer to this is to understand that a Business Space Custom Widget is a combination of the
following technologies:

• JavaScript

• HTML

• Dojo/Dijit

• iWidget specification

• Business Space framework contracts

To create a custom widget, the developer must be aware of all of these technologies and more. This
is a steep learning curve.

Page 1116

http://www.ibm.com/developerworks/websphere/library/techarticles/0706_shankar/0706_shankar.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_shankar/0707_shankar.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_suski/0712_suski.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0806_chan/0806_chan.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0806_chan/0806_chan.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0805_jung/0805_jung.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0805_jung/0805_jung.html

Fortunately, there is a relatively easy solution.

What if we could create a Business Space custom widget that could generically host a Flex
application? If designed and implemented properly, the task of creating a new custom widget
utilizing Flex would solely be that of building a Flex application solution and the custom widget
could simply be told which Flex application to load. This would dramatically reduce the burden of
implementation and allow the UI designers to focus exclusively in their area of comfort and
expertise … that being Flex.

At a high level, this solution would look as follows:

A Business Space user will open the web page to the Business Space environment and either add a
new widget or see existing widgets on their page. These widgets are written in the combination of
JavaScript and Dojo. The widget will insert an Adobe Flash Player object into the page using
HTML and the flash player will then load the Flex application. The Flex application can
communicate directly with the BPM environment using REST or other communication calls as well
as interact with the Widget that loaded it.

Again, it needs to be stressed, that the designer of the user interface need only concentrate on their
logical function and not be aware at all of the Widget and Business Space interactions. All they see
is the clean world of Flex programming.

We will call such a generic Flex wrapper for Business Space by the name BSFlex.

Building a new Custom Widget for Flex

The construction of a new Custom Widget needs WID for its design and configuration. Create a
new Dynamic Web project. In that Dynamic Web Project, add the following supplied files into the
WebContent folder:

Page 1117

After adding the files to the project, the file structure should look as follows:

The files that were added were:

• images/Icon_160x125.png

• images/Icon_20x20.png

• images/Icon_64x48.png

• BSpaceCommonUtilityLoader.js

• Flex.js

• Flex_iWidget.xml

Now we need to rename these files. Let us assume that our new widget is going to be called
“MyTest”

The mapping of file names becomes:

Page 1118

images/Icon_160x125.png unchanged

images/Icon_20x20.png unchanged

images/Icon_64x48.png unchanged

BSpaceCommonUtilityLoader.js unchanged

Flex.js MyTest.js

Flex_iWidget.xml MyTest_iWidget.xml

The resulting contents of the project after renaming looks like:

Next we must edit the content of some of these files.

The files that must be edited are:

MyTest.js

MyTest_iWidget.xml

Within these files, the places to be changed are marked with

** CHANGE **

The change is to replace the word “flex” or “Flex” with “myTest” or “MyTest”.

Copy the XXXRegistryEndpoints.xml and XXXRegistryWidgets.xml file to the WPS
<Profile>/BusinessSpace/registryData folder/directory.

Stop and restart the WAS application called BusinessSpaceManager.

From the Flex perspective, an Adobe Flex Builder project has been supplied which contains the
necessary functions for the framework to execute. Rename the FlexWidget.mxml file to be the
same name as the target widget.

Page 1119

Environment of the Flex application

When the Flex application has been loaded, it is passed some properties from the Business Space
widget. These properties can be used by the Flex programmer to communicate with BPM and
Business Space.

The properties passed in can be found in the Application.application.parameters
object

Property Type Description

iWidgetId String The ID of the Dijit widget in the Business Space

widgetBaseUri String The URL of the Web application associated with the Business Space widget

baseUri String Protocol/host/port to the server hosting business space

Page 1120

Widget Instance Configuration

Every Business Space widget has configuration data available to it. The BSFlex wrapper needs to
be informed when the user has selected configuration in Business Space.

In our Flex application, we must register a callback from Business Space which is informed when a
configure request has been issued. The following code should be added that is invoked early:

ExternalInterface.addCallback("doConfigure", doConfigure);

The function registered is called (with no parameters) when configuration is requested because the
user has selected Configure from the menu for the widget. The name of the callback must be
doConfigure. When the doConfigure function in Flex is called, it should visualize the
configuration to allow the user to change properties. This is the next section.

Our BSFlex wrapper provides an object called <local:Configuration>. This visual
component loads and saves data from the Business Space persistent store.

Custom configuration for the BS Widget is achieved through modification of this widget to display
the configuration desired.

The exposed (public) information for this object is:

function loadAttributes(): void

Load the attributes for this instance of the widget.

var attributes:Object

This variable holds the attributes of the widget. This object can be used globally to get the values
saved for this widget during configuration. The object should never be written to outside of the
context of a configuration edit.

event: endConfigure

Event issued when the configuration has completed (Apply or Cancel pressed).

The basic visual looks as follows:

Page 1121

When the Apply button is pressed, the values of the attributes object are saved back to Business
Space. If the Cancel button is pressed, nothing is saved back to the server.

When either Apply or Cancel are pressed, an event is generated called endConfigure that
flags the configuration as over.

It is anticipated that this component will be included in a ViewStack container and shown when
configuration of the Widget is requested. When the endConfigure event is received, the widget
will be hidden from the stack.

Example:

Imagine that our widget has three attributes called “a”, “b” and “c”. The Configuration.mxml
Flex source file would be modified to present visualization of these values. The data for the values
must be held off the “attributes” variable as this is the data that is loaded and saved when the
widget is used. The “attributes” variable is public from this flex file and hence can be read and
written to globally. From a Flex programmer’s perspective, the only customization needed is to
code the function called setAttributes() which is also in Configuration.mxml. This
function should populate the attributes object from the current settings of the configuration visuals.

Making REST requests

In many cases, the Flex BS Widget will want to make REST requests back to the server to send and
receive information. This is easily achieved in Flex through the HTTPService object.

Here is an example:

import mx.rpc.http.HTTPService;
import mx.rpc.AsyncToken;
import mx.rpc.events.ResultEvent;

var h1:HTTPService = new HTTPService();
var baseUri:String = Application.application.parameters["baseUri"];

Page 1122

h1.url = baseUri + "/rest/bpm/monitor/models";
var asyncToken:AsyncToken = h1.send();
asyncToken.addResponder(new mx.rpc.Responder(

function(result:ResultEvent): void
{

var respData:Object = JSON.decode(String(result.result));
// Do something …
return;

},
function(fault:FaultEvent): void
{

trace("Fault caught: " + ObjectUtil.toString(fault));
}));

Although this may look a little scary at first, it can be quickly understood. First we create an
instance of the HTTPService object which knows how to make a REST request. Next we get the
base URI that will be the server target of the request. We then append to this the target specific data
and set this to be the url property on the HTTPService object. We then send the request which
returns an asyncToken object. To this we add the callback function that will be invoked when
the response is available.

When using REST, we often find that we want to subvert browser security, thankfully that is
handled by the Ajax Network Proxy supplied with Business Space. This can be reached at:

/mum/proxy

For example:

http://localhost:9080/mum/proxy/http/www.google.com:123

Prior to 7.5.1, the Proxy was wide open meaning that any redirections were possible. From 7.5.1
onwards, Proxy configuration was tightened. The proxy configuration file is called "proxy-
config.xml" and can be found at:

<Profile Name>/BusinessSpace/<nodeName>/<serverName>/mm.runtime.prof/config

After making these changes, the AdminTask.updateBlobConfig wsadmin command must be
executed. Details of this can be found in the BPM InfoCenter. An example would be:

AdminTask.updateBlobConfig('[-serverName server1 -nodeName win7-x64Node01
-propertyFileName
"C:\IBM\WebSphere\AppServer\profiles\ProcCtr01\BusinessSpace\win7-
x64Node01\server1\mm.runtime.prof\config\proxy-config.xml" -prefix "Mashups_"]')

AdminConfig.save()

To switch off security for the Proxy, an entry such as the following may be added to proxy-
config.xml:

<proxy:policy url="*" acf="none" basic-auth-support="true">
<proxy:actions>

<proxy:method>GET</proxy:method>
<proxy:method>POST</proxy:method>
<proxy:method>PUT</proxy:method>
<proxy:method>DELETE</proxy:method>

</proxy:actions>
<proxy:headers>

<proxy:header>Cache-Control</proxy:header>
<proxy:header>Pragma</proxy:header>
<proxy:header>User-Agent</proxy:header>
<proxy:header>Accept*</proxy:header>

Page 1123

<proxy:header>Content*</proxy:header>
<proxy:header>X-Method-Override</proxy:header>
<proxy:header>X-HTTP-Method-Override</proxy:header>
<proxy:header>If-Match</proxy:header>
<proxy:header>If-None-Match</proxy:header>
<proxy:header>If-Modified-Since</proxy:header>
<proxy:header>If-Unmodified-Since</proxy:header>
<proxy:header>Slug</proxy:header>
<proxy:header>SOAPAction</proxy:header>

</proxy:headers>
<proxy:cookies>

<proxy:cookie>LtpaToken</proxy:cookie>
<proxy:cookie>LtpaToken2</proxy:cookie>
<proxy:cookie>JSESSIONID</proxy:cookie>

</proxy:cookies>
</proxy:policy>

If you are using the Chrome web browser, it has a command line option called "--disable-
web-security" that switches off web security (Same Origin Policy) for that instance of the
browser. This is useful for development but should never be used or suggested for production.

You will know it is working because you will see a warning message:

See also:

• Configuring the HTTP proxy for AJAX applications (V1.0)

Handling returned XML

Some of the REST requests return XML data. By default, this XML is parsed into an Object. If we
want the pure XML text, we need to set the resultFormat property of the HTTPService object to
“text”. It has been found that the XML returned contains carriage-return/line-feed characters (i.e
“\r\n”). To remove the carriage-return, the following AS3 can be used:

var data1:String = String(result.result);
var p1:RegExp = new RegExp("\r", "g");
data1 = data1.replace(p1, "");

Cross domain security

A Flex application that wishes to call a service in a machine other than that from which the Flex
application was loaded will be disallowed by default. This protects the Flex sandbox from breaking

Page 1124

http://www-10.lotus.com/ldd/mashupswiki.nsf/dx/configuring-the-ajax-proxy

security protocols. For development testing, create a file called crossdomain.xml and have it
available for download from the machine that the REST request is targeted to. The content of the
file should look as follows:

<?xml version="1.0"?>
<cross-domain-policy>

<allow-access-from domain="*" />
</cross-domain-policy>

Be aware that this will allow ANY Flex application to connect to the server. This is usually fine for
testing. Before setting up cross domain security, first test to see if the application works without it.
For BPM apps it seems to work fine probably due to explicit authentication.

Problems with PUT and DELETE requests

Unfortunately, Flex’s HTTPService object disallows both PUT and DELETE requests. What this
means is that a complete section of WPS REST interfaces appear to be inaccessible. Fortunately,
WPS claims to accept the X-Method-Override capability.

Bug

The problem with this is that it appears not to actually work. PMR 79493,004,000 has been raised
to address the problem. As of 2009-07-02 this has been partially fixed with an APAR available
from support called IZ52208. This problem no longer exists in the latest versions of WPS with the
latest fixpacks applied.

An example of this would be

h1.method = "POST";
h1.headers = {"X-Method-Override": "PUT"};

Widget to Widget Event Handling

Event handling is the idea that a Business Space widget can be a source or destination of events.
An event is simply the transmission of some data from one widget to another. The data can be
anything that the Flex programmer chooses to transmit.

Sending Events

A Flex application can send an event directly to another widget. The way to achieve this is
illustrated in the following code fragment:

var iWidgetId:String = FlexGlobals.topLevelApplication.parameters.iWidgetId;
ExternalInterface.call("_" + iWidgetId + "_iContext.iEvents.publishEvent",

"eventName",
"parms");

Old technique

Sending an event is accomplished in two parts. First the flex application will make a call back to
the JavaScript wrapper:

var iWidgetId:String = FlexGlobals.topLevelApplication.parameters.iWidgetId;
ExternalInterface.call("_" + iWidgetId + "_iContext.iScope().funcName", parms);

Page 1125

In the JavaScript file, we need to code something like the following to actually execute the event
publish.

this.iContext.iEvents.publishEvent(eventName, payload);

This needs to be wrapped in the function that the Flex application will invoke through the
ExternalInterface call.

eventPublish_markerClicked: function(payload)
{

this.iContext.iEvents.publishEvent("com.kolban.map.MarkerClicked", payload);
}

Convention has us declare the function with the name:

eventPublish_<event name>

The iWidget.xml file for the custom widget must be modified to declare that the widget is
capable of publishing events. Code similar to the following should be added:

<iw:eventDescription
id="com.sample.MyEventDescription"
payloadType="JSON"
lang="en"
description="My Event Description" />

<iw:event
id="com.sample.MyEvent"
description="com.sample.MyEventDescription"
published="true" />

The name of the event to be published is found in the iw:event@id location.

Unfortunately, we can't call the fireEvent wrapper function directly. This is because the function is
defined on the JavaScript object that represents the widget and not on the page itself. In WPS 7.0,
when a Business Space widget is on a page, the JavaScript object that represents that widget is
hooked of the root of the HTML DOM tree. It appears to have a name of

_iWidgetId_IContext

This object has a function upon it called iScope(). This returns the JavaScript object that we wish
to access.

From this a Flex application can call the functions in that widget directly. From within Flex, we
can then call functions on that object as shown in the following example:

var iWidgetId:String = FlexGlobals.topLevelApplication.parameters.iWidgetId;
ExternalInterface.call("_" + iWidgetId + "_iContext.iScope().testFunc", "Hello
World");

The iWidgetId can be passed into flex from the JavaScript variable

this.iContext.io.id

Receiving Events

Receiving events sent from another Widget is a little trickier.

In the receiving Flex application, a function needs to be created with the signature:

private function <name>(payload:Object) : void

This is the function that is to be called when an event transmitted by a partner widget has been

Page 1126

received. It is in this function that the Flex code for processing the event will be written.

This function needs to be exposed to the surrounding JavaScript with a call to the Flex provided
class called ExternalInterface such as:

ExternalInterface.addCallback("<name>", name);

This will allow the surrounding JavaScript to call the method when an event arrives. A suitable
place for adding this code is in the init() method.

In the iWidget XML file, the fact that this widget can now subscribe to incoming events must also
be registered:

<iw:eventDescription id="com.kolban.map.MapInputDesc"
description="MapInput Desc1"
lang="en"
payloadType="JSON">

</iw:eventDescription>
<iw:event id="com.kolban.map.MapInput"

description="com.kolban.map.MapInputDesc"
handled="true"
published="false"
onEvent="eventSubscribe_mapInput"/>

In the JavaScript for the iWidget, a callback handler must be defined:

eventSubscribe_mapInput: function(event)
{

var swfId = this.iContext.widgetId + "_" + this.widgetName;
if (dojo.isIE) {

window[swfId].eventSubscribe_mapInput(event.payload);
} else {

document[swfId].eventSubscribe_mapInput(event.payload);
}

}

Working with WPS Human Task / Process Data

WebSphere Process Server has the notion of Business Objects. Both a BPEL process and a Human
Task can take one or more Business Objects as input and return one or more Business Objects as
outputs. On occasion (and especially with Human Tasks) we may wish the input to be presented to
the user and have a response returned to the process or task (we will focus now on just tasks, but the
same applies to processes).

WPS internally represents a Business Object definition as an XML Schema and a Business Object
instance as an XML document corresponding to that schema. When we make REST calls to WPS
to get Human Task input data, we are returned an instance of an XML document. If we want to
send new data to the Human Task as output data for that task, we would supply an XML document.

Through the REST APIs we can ask for an instance of task data. The following code fragment
illustrates how this can be done:

h1.url = "http://localhost:9080/rest/bpm/htm/v1/task/" + tkiid + "/input";
h1.method = "GET";
h1.resultFormat = HTTPService.RESULT_FORMAT_E4X;
var asyncToken:AsyncToken = h1.send();
asyncToken.addResponder(new mx.rpc.Responder(
 function(result:ResultEvent) : void

Page 1127

 {
 var myXML:XML = XML(result.result);
 // Do something with the XML
 },
 function(fault:FaultEvent) : void
 {
 trace("Got a fault!");
 }

));

What we end up with is a Flex XML object. If the variable holding this data is held at the highest
level and defined as bindable … for example:

[Bindable]
private var myXML:XML;

Then the fields in the data can be accessed through Flex bindings.

Let us now work through an example of this. Imagine we have a Business Object that is defined as
follows:

It is used in a Human Task Interface that looks like:

The XML document retrieved via a REST call to WPS might look as follows:

<?xml version="1.0" encoding="UTF-8"?>

<p:mailing_._type xsi:type="p:mailing_._type"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://HTTestPerson/Mailing">
 <input>
 <street>9200 Glenhaven</street>
 <city>Fort Worth</city>
 <state>TX</state>
 <zip>76182</zip>
 </input>
</p:mailing_._type>

It looks pretty scary … but if we take it apart we have the following:

<root>
 <input>
 <street>

Page 1128

 <city>
 <state>
 <zip>

What we find is that the immediate children of the document are the input parameters. The tags are
named after the names of the parameters. In this case the tag called input matches the parameter
called input found on the Interface.

The children of the parameter tags are the data. In this case, a data type called Address which
matches the BO definition.

When this is assigned to a Flex XML object, we can then address the fields contained within such
as:

[Bindable] var myData:XML = …

var street:String = myData.input.street;
var state:String = myData.input.state;

If we then use Flex Binding, we can display a field in a TextInput Flex component with the
following:

<mx:TextInput text="{myData.input.street}" />

Mapping Data types and controls

A WPS Business Object field has a finite collection of possible common scalar data types
associated with it. These include:

• string

• int

• date

When we look at the input and output data associated with a task, we must realize that the Business
Object is serialized to and from an XML document. This then asks the question, what is valid for a
given BO field type in the associated XML item?

String

Any character string is allowable.

Int

Any positive or negative numeric characters are allowable

Date

Date is more interesting. The format of the date expected in XML is “YYYY-MM-DD”. This is
not the default format of a Flex DateField. DateField has a property called
formatString which can be set to “YYYY-MM-DD” to generate the correct format for the
XML document.

Page 1129

Working with repeating/array data

Working with AnyType

Performing input validation

Single User Workflow

Single User Workflow is the idea of being presented with a page, completing that page and then
immediately being presented with a succeeding page without having to manually claim the task.

InitiateAndClaimFirst

In: processTemplateName

In: InputMessage

Out: AIID

Out: ActivityName

Out: InputMessage

CompleteAndClaimSuccessor

In: AIID

In: OutputMessage

Out: AIID

Out: ActivityName

Out: InputMessage

CompleteAndClaimSuccessor
…

CompleteAndClaimSuccessor

<End>

Flex related REST Problems

Validate that the format of data being sent or received matches the expected format for the
HTTPService request.

Use the FireFox 3.5 FireBug tool which can show Flash related communications.

Only a large subset of the BFM and HTM APIs are available via the REST interface. If the other
BFM and HTM calls are needed, we seem to be stuck. As a possible workaround, we can create our

Page 1130

own REST based servlet that when called, makes the correct local EJB calls. This is not an
easy/obvious proposition.

Elixir

References – Elixir

• IBM Home page for Elixir

• DeveloperWorks - IBM ILOG JViews Enterprise Overview – 2010-03-02

• DeveloperWorks - Create an Elixir application using Adobe Flex Builder - 2009-11-04

References – Flex Widgets

• DeveloperWorks – Develop a rich Web client for a business process application with WebSphere Integration Developer, WebSphere Process
Server, and Adobe Flex – 2010-03-24

• DeveloperWorks - Integrating Flex applications with IBM Mashup Center - 2009-06-29

• DeveloperWorks – Creating a Flex-based widget to display WebSphere Business Monitor data in Business Space – 2009-04-29

• Flex Video Training

• Tour-De-Flex – An online set of examples of all the different flex capabilities

Page 1131

http://www.adobe.com/devnet/flex/tourdeflex/
http://www.adobe.com/devnet/flex/videotraining/?sdid=DKBGT
http://www.ibm.com/developerworks/websphere/library/techarticles/0904_johnson/0904_johnson.html
http://www.ibm.com/developerworks/lotus/library/mashups-flex/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1003_xue/1003_xue.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1003_xue/1003_xue.html
http://www.ibm.com/developerworks/offers/lp/demos/summary/ilog-elixir-createapp.html
http://www.ibm.com/developerworks/offers/lp/demos/summary/ilog-jviewsenterprise.html
http://www-01.ibm.com/software/integration/visualization/elixir/

Custom Process Portals
The IBM BPM framework provides what it calls the "Process Portal". This is an IBM supplied web
based application that provides users with the abilities to:

• See the list of tasks waiting for them to work against

• Start new instances of processes

• Interact with the screens of individual tasks

It looks as follows:

The IBM supplied Process Portal is feature rich and extremely powerful. However there is a
commonly encountered problem with consumers actually using it. Simply put, it may not be the
company's strategic direction for interacting with users. Imagine a clerk responsible for processing
insurance claims. This clerk has been trained to use the existing user interfaces of the existing
applications. It would not be surprising if multiple distinct applications could be worked upon
through this one user interface. If IBM BPM is to be considered as a component in a solution, it
may not be desired to use Process Portal for a variety of non-functional business reasons. From a
raw technical perspective, it will work just fine … but if Process Portal were used, we have the
unfortunate story of the clerk user having to switch from one application to another to perform their
work. In addition, extra training will have to be supplied to the clerks to teach them how to use the
new user interface. All of this adds up to expense and introduces opportunities for errors. There is
low quality in saying "Enter new claim data in this application" but "View claim history in that
application".

Fortunately, there is an elegant solution. The IBM BPM product provides programming interfaces
(APIs) that can be used by technical programming staff to perform the tasks that are achieved
through IBM's supplied Process Portal. These APIs are exposed through the REST style of remote
function call. By having such an API available, consumers can build or augment their own existing
user interface applications to include access to the features provided by IBM BPM. This section
will continue to discuss and dive deeper into that notion.

Page 1132

First of all let us ask ourselves what are the key concepts that we must take into account:

• Task lists – The core notion of IBM BPM is that there are tasks which are to be performed
by end users. The process models define when and to whom these tasks are to be assigned.
When a user is "free" to perform a task, they are expected to pull-up a task list and pick (or
be given) the next task to work upon. This means that there has to be a capability to search
for and retrieve a list of tasks that are associated with a user.

• Data presentation and input – For each task, there is data provided by IBM BPM that is to be
made known to the user as well as data or decisions that are to be entered by the user. With
Process Portal these screens are described through the "coach" technology and shown to the
end users. With custom user interfaces we have more UI choices. We can either launch a
coach based screen or else allow the consumer to build their own screen's from scratch.

• Starting a new Process – A user may wish to initiate a new process. Perhaps a telephone
clerk has received a call from a customer for a new order and now wishes to start an instance
of the order handling process.

• User authentication – For a user to be able to interact with IBM BPM, the run-time must
know who the user is and be convinced that they are in fact who they claim to be. This
means that we must provide a "sign-on" mechanism which includes propagation of the user's
identity/credentials with each REST request. A solution for this should be integrated with
any existing sign-on provided by existing user interface applications.

See also:

• REST Integration

Types of Custom Portal

Let us start with some simple thoughts on different types of portals. At the highest level we have
two basic kinds. Those known as "thick clients" and those that are "browser based". Thick clients
are native executables installed locally on consumers desktops. These are applications that may use
Windows/.NET APIs, Java Swing or Java SWT (as examples). The second type of process portal
are those that run within the browser environment. These are the more common types of custom
portals. These can also be broken down into categories based on whether the web page (HTML) is
build in the browser (Web 2.0 style) or built on the server.

Browser built HTML technologies includes:

• Dojo

• jQuery

• YUI

• Flex

Server built HTML includes:

• JSP

• JSF

• Portlets (JSR168, JSR286) hosted by portal providers

◦ IBM WebSphere Portal

◦ Liferay

Page 1133

Irrespective of the type of UI technology used, the high level concepts and design remain the same.

1. Use REST API to obtain a list of tasks

2. Use the UI technology of choice to show the list to the user

3. Allow the user to select the single task on which they are to work

Once the task has been selected, we now choose how to display the task data itself. This will either
be the Coach UI as an in-line web page perhaps using iFrame technology or else it will be custom
controls/UI using the REST API to get the data for a specific task.

See the following for the appropriate REST APIs for these tasks:

• Working with REST Search Queries

• Finishing a Task

• Getting Task variable values

Generic Widgets for Custom Portals

With the idea of Custom Portals in mind, maybe we can design a framework for generic portals?
This framework would be as flexible as possible and hide the majority of details from the consumer.
To make the solution as flexible as possible, let us assume that we introduce the notion of a
"Widget". A Widget is the user interface building block that is responsible for some function.

The Task List Widget

Here is a picture of the IBM Process Portal task list:

As we see, it is very attractive but what does it "logically" contain? If we strip away the superficial
colors and styling, what is left?

The answer is that it is a visual container that lists a series of tasks that a user can work upon. This
is a core thought. The concept of the Task List is a "container of tasks". It is responsible for
determining a list of tasks and then showing each task. If a building block Widget of a Task List
were to be created, what would it consist of?

Ignoring its visual appearance, we could define it to have:

Page 1134

• refreshTasks() – A function which, when called, refreshes the list of tasks shown to
the user. This could be called when the page loads to populate the list of tasks.
Alternatively, a "refresh" button could be supplied which, when clicked, would call this
function to refresh the list.

• taskSelected(taskId) – A task selected by the user. This would be a callback
function. When the user selects a task, this function is called. It is expected that this
function is implemented by the custom portal designer. It could then be "wired" to another
widget to show the selected task.

With this minimal interface, the Task List widget would then be functional.

After a Task List requests tasks from a BPM Server, the Task List must now display each Task
retrieved.

We will now assume the existence of a second type of Widget that we will call the TaskItem. The
Task List will create an instance of a TaskItem for each Task that it wishes to display. Since the
TaskItem is a widget, it is responsible for displaying its content. Again ignoring the visual
appearance of the TaskItem, we could define it as having the following signature:

• taskDetails – A task item returned from the BPM Server describing the task. This is a
property.

• onSelected(taskId) – A callback function called when the task is selected by the user

By generalizing these two functions, we now have all we need to create arbitrary visualizations of a
Task List.

Here is an example visualization of a new Task List using these principles:

Page 1135

The Task Table Widget

When we think of a custom portal, we must consider the selection of tasks by a user. The user
wishes to see these tasks in a desirable form. Given that the user may have some number of tasks
available for them to work upon, one style of task list presentation is that known as the table. The
table is pretty much what it sounds like. It is a rectangular array of information composed of rows
and columns. Each row will represent a single task and each column will hold some attribute of
that task.

The Task Table widget is an alternative to the Task List widget. It presents a table of tasks to the
user and allows the user to select a task through the "Open" button.

This widget has a callback function called "onTaskSelected" which is invoked and passed an
object which contains the taskId of the task that was selected.

The widget exposes a method called "refreshTasks()" which, when invoked, will retrieve the
current set of tasks and refresh the table with the new information.

An example of usage would be:

<div data-dojo-type="kolban.widget.TaskTable">
<script type="dojo/method">

this.refreshTasks();
</script>
<script type="dojo/connect" data-dojo-event="onTaskSelected"

data-dojo-args="value">
console.log("Connect called: " + value.taskId);
myCoachViewer.set("taskId", value.taskId);

</script>
</div>

Page 1136

This fragment will create the TaskTable widget, call its refreshTasks() method and, when a
task is selected, call a CoachViewer to show the Coach associated with the task.

The CoachViewer widget

The CoachViewer widget is used to load and view the Coaches for an associated task. It allocates
an area of the browser display and when asked to show a Coach, that area then hosts the Coach
details. It has a property called "taskId" that must be set using the widget's "set()" method.
When a new taskId is supplied, the widget will display the content of the associated Coach.

An example of usage would be:

<div data-dojo-type="kolban.widget.CoachViewer" data-dojo-id="myCoachViewer">
</div>

This can be combined with the TaskTable widget (see previous) to select which task to show.

The CoachViewer also has a callback function called "onCompleted" which is called when the
user completes the task. This can be used to signal a refresh of the task list or some other function.
The parameter passed to the callback is an object which contains:

• status – The status of the completion. This may be

◦ "completed" – to indicate that the coach completed succesfully

◦ "error" – to indicate that an error was encountered. If the status is error, two
additional properties will be available:

▪ errorMessage – A message describing the error

▪ errorNumber – The number of the error

A property of the CoachView called "showStandby" can be set to "true" to show a "standby"
overlay while the Coach is loading.

A property called "showError" is defined which is a boolean. If set to true and an error is
encountered, a dialog box showing the nature of the error will be displayed. If set to false, no
such dialog will be shown. In either setting, an error will be returned via the onCompleted
callback.

• taskId – The taskId of the task who's coach is to be shown in the CoachViewer. Must be
set by the CoachViewer set() method.

• showStandby – A boolean value which, if true, will show a standby message while the
coach is loading. The default is false.

• showError – A boolean value which, if true, will show an error dialog if an error is
encountered. The default is true.

• onCompleted – A callback function executed when the coach completes

Determining when the current Coach has completed

When writing a custom Portal, the current Coach is usually shown in an iFrame. When the Coach
completes, we somehow need to tell our portal framework that this has happened. It seems that
when a Coach completes, it posts a message to the DOM "window" containing the iFrame. This is

Page 1137

the same window being used by the portal. The following code will register a callback for such an
entry:
var onCompleted = function (m) {

debugger;
}
if (typeof window.addEventListener != 'undefined') {

window.addEventListener('message', onCompleted, false);
} else if (typeof window.attachEvent != 'undefined') {

window.attachEvent('onmessage', onCompleted);
}

A more modern solution using Dojo would be:
on(window, "message", function(m) { … });

Unfortunately, the callback is invoked on a number of occasions by different parties, not just when
we expect, so we have to be careful to check the response.

The passed in "m" message contains a field called "data" which appears to contain a single string
which is a JSON encoded piece of data that contains:

• name – so far we have seen instances of:

◦ onInitialized – Called when the Coach has been loaded

◦ onCompleted – Called when the Coach has been unloaded

◦ onError – Called when there was an error showing the coach

◦ notifyBoundaryEvent – Return from a boundary event?

• taskID

• applicationInstanceId

• parameters – Can be array of strings. For onError it appears to be a message and a message
code.

Using the Custom Portal widgets

Now that we have described the functions of the custom portal widgets, what remains is to describe
how to use them.

A Widget is added to a Web Page (a source HTML file). Since the widgets are Dojo, the first thing
we have to do is to add the mandatory boiler plate to load the Dojo environment:
<script

type="text/javascript"
src="/teamworks/script/coachNG/dojo/1.8.3/dojo/dojo.js"
data-dojo-config="async: true, parseOnLoad: true">

</script>
<link

rel="stylesheet"
href="/teamworks/script/coachNG/dojo/1.8.3/dojo/resources/dojo.css" />

<link
rel="stylesheet"
href="/teamworks/script/coachNG/dojo/1.8.3/dijit/themes/claro/claro.css" />

The above must be added to in the <head> section of the page. The URL to Dojo is good as of
IBM BPM 8.5.

Because we are using custom widgets that are not part of the default Dojo distribution, we need to
tell the environment where to load those widgets from. This is achieved using the AMD
technology. In addition to saying where the custom widgets are located, we also have to say which

Page 1138

of those widgets are going to be used in the page. Again in the <head> section, we add the
following:
<script type="text/javascript">

require({
packages : [{

name : 'kolban',
location : '/StaticTests/kolban'

}]
});
require(["kolban/widget/ProcessStart"]);

</script>

Because we are using Dojo, we must also specify the Dojo theme that we are going to use. The
HTML <body> tag should have the Dojo theme added to it:

<body class="claro">

We are now ready to include any widgets we wish, for example:
<div

data-dojo-type="kolban.widget.ProcessStart"
data-dojo-id="myProcessStart" >
<script

type="dojo/connect"
data-dojo-event="onStarted"
data-dojo-args="processDetails">
console.log("Process Started!");
console.dir(processDetails);

</script>
</div>

Putting it all together, a sample would look like:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Test_ProcessStart</title>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<script

type="text/javascript"
src="/proxy/teamworks/script/coachNG/dojo/1.8.3/dojo/dojo.js"
data-dojo-config="async: true, parseOnLoad: true">

</script>
<link

rel="stylesheet"
href="/proxy/teamworks/script/coachNG/dojo/1.8.3/dojo/resources/dojo.css" />

<link
rel="stylesheet"
href="/proxy/teamworks/script/coachNG/dojo/1.8.3/dijit/themes/claro/claro.css" />

<script type="text/javascript">
require({

packages : [{
name : 'kolban',
location : '/StaticTests/kolban'

}]
});
require(["kolban/widget/ProcessStart"]);

</script>
</head>
<body class="claro">
<h1>Test ProcessStart</h1>
<p>The ProcessStart Widget presents a visible list of start-able processes. Clicking on one of
these entries causes a new instance of that process to start.
</p>
<hr />
<div

data-dojo-type="kolban.widget.ProcessStart"
data-dojo-id="myProcessStart">
<script

type="dojo/connect"
data-dojo-event="onStarted"
data-dojo-args="processDetails">
console.log("Process Started!");
console.dir(processDetails);

</script>

Page 1139

</div>
<hr />
</body>
</html>

Writing custom portals using Coaches

In principle, a custom portal can itself be written as a Coach.

Within a custom portal we can imagine the user being presented with a list of tasks upon which they
can work. After selecting such a task, a new window might open which will show the details of the
new task. The URL to be used to open the window can be found using the REST API to query
upon the client settings of the taskId to be launched. This REST API returns a URL for exactly this
purpose. However, there appears to be a problem (as of 8.0.1.1). When the newly opened Coach
completes, it seems to cause a "refresh" or "reset" of the Coach that launched it. This means that if
we write a Coach which acts as a process portal, select a task and then open that task in a new
window, when that new window ends, the original process portal Coach is reset. We do not yet
know of a circumvention.

Addition: 2013-10-15: It appears that if we open a new window for a Coach if we set that window's
"opener" property to null, the refresh will not happen.

Apache Flex
Flex is a function rich UI development environment that runs within a browser, native on the
desktop and within Mobile platforms including Android and iOS. Originally developed by Adobe,
it was Open Sourced and provided to the Apache group. The latest information on Flex can be
found here:

http://flex.apache.org/

There are a variety of fee and free development tools for building Flex applications. These include:

• Adobe Flash Builder – fee

• FDT – fee

• Tofino – free

• FlashDevelop - free

Flex for Mobile

One of the key reasons for considering Flex is for building mobile applications (i.e. those that can
run on Android or iOS). Flex provides a write-once/run-anywhere model. It should be stressed that
a logical "runtime" of the Adobe AIR environment is used but to all intents and purposes building
such apps may be considered closer to native Apps than attempting to build HTML5 based
applications.

The Flex support for Mobile appears to be first class but restricts the components that can be used.
Here is a quick summary of those supported:

StageWebView Web Browser

BusyIndicator

Button

ButtonBar

Page 1140

http://www.flashdevelop.org/
http://www.ensemble.com/products/tofino.shtml
http://fdt.powerflasher.com/
http://www.adobe.com/products/flash-builder.html
http://flex.apache.org/

Callout

CalloutButton

CheckBox

DateSpinner

HSlider

Image

Label

List

RadioButton/RadioButtonGroup

SpinnerList

TextArea

TextInput

ToggleSwitch

DataGroup

Group

HGroup

Scroller

Spacer

TileGroup

VGroup

Installing FlashDevelop

FlashDevelop is a free, Open Source development environment for Flex based applications:

http://www.flashdevelop.org/

Page 1141

http://www.flashdevelop.org/

Page 1142

Google Charts
Google provides a charting package. The URL for this is:

https://developers.google.com/chart/

To use this technology, we need to perform some work:

1. Load the Google JavaScript APIs
<script type="text/javascript" src="https://www.google.com/jsapi"></script>

2. Load the packages
google.load('vizualization', '1.0', {'packages': ['corechart']});

3. Provide a callback function to execute when the packages are loaded
google.setOnLoadCallback(function() {
 … code goes here ...
});

Providing data to Google Charts

All Google charts expect data encapsulated in a DataTable object. The name of this object is
"google.visualization.DataTable". There are a number of ways to build and populate this object.
We will touch upon some of them. For full details, see the full Google documentation.
var data = new google.visualization.DataTable();
data.addColumn('string', 'Name');
data.addColumn('number', 'age');
data.addRows(1);
data.setCell(0, 0, 'Bob');
data.setCell(0, 1, 34);

Google Chart – Gauge

The Gauge control provides a "dial" or "gauge" which contains a label and a value. The value is
shown as well as a needle that provides a relative indication of where the value falls:

Package: google.load('visualization', '1', {packages: ['gauge']});

var chart = new google.visualization.Gauge(node);
chat.draw(data, options);

Google Web Toolkit – GWT
Google Web Toolkit (GWT) is a modern Web 2.0 toolkit/framework and development
environment. It has the ambitious (yet apparently achieved) goal of allowing the page designer to
write their code in the Java programming language which is then cross-compiled to JavaScript for
execution within the browsers. In addition, a rich set of visual widgets are available as well as a
free UI Integrated Development Environment (IDE) based on Eclipse. This is arguably the future
of web based programming and will give Dojo a serious run for its money especially since it has a

Page 1143

https://developers.google.com/chart/

superb and free UI designer built into Eclipse.

At the time of writing (2013-06), the latest version of GWT is 2.5.0.

A question which comes up from time to time when reading this section of the book is why was so
much dedicated to Google's GWT in a book about IBM's BPM? The answer to this is simple but
may not be what one wants to hear. The author took the route that he wanted to keep all his
thoughts in one document with cross references. Multiple books means multiple administrative
challenges when working with content and the simplest solution is to have one book for all activity.
The context in which the author studied GWT was that of BPM and much is written about GWT
and its potential relationships with BPM.

See Also:

• GWT Home page

Making REST calls from GWT

The ability to make REST calls from GWT is core to the BPM story. The REST application will
call BPM to obtain useful information. To begin, a GWT application must inherit the HTTP
package:

<inherits name="com.google.gwt.http.HTTP" />

in addition, since a lot of data will involve JSON encoding, you should also include the JSON
module:

<inherits name="com.google.gwt.json.JSON" />

To make the REST call, we need code similar to the following:

RequestCallback callback = new RequestCallback()
{

public void onResponseReceived(Request request, Response response) {
// … do something here ...

}
public void onError(Request request, Throwable exception) {

GWT.log("Error");
}

};
String url = …;

RequestBuilder builder =
new RequestBuilder(RequestBuilder.PUT, URL.encode(url));

builder.setUser("admin");
builder.setPassword("admin");
builder.setHeader("Content-Type", "application/json");
builder.setHeader("Accept", "application/json");
try {

builder.sendRequest(null, callback);
} catch (Exception e) {

e.printStackTrace();
GWT.log("err");

}

When working with GWT REST requests during development, we may find that we get "sand-
boxed" when making the requests. One solution to this is to start the GWT application using the
IBPM Advanced Proxy capability supplied with Business Space. A URL of the form:

http://localhost:9080/mum/proxy/http/127.0.0.1:8888/<PageName>.html?
gwt.codesvr=127.0.0.1:9997

entered into a browser will appear (to the browser) as coming from "localhost:9080" while in

Page 1144

http://code.google.com/webtoolkit/

reality, we are redirecting through the Proxy to http://127.0.0.1:8888 which is the
debug/development environment for GWT. The HTML web page part should be changed for the
GWT project being built. The Proxy configuration of Business Space may need to be changed in
order to allow pass through.

Alternatively, we can disable the "Same Origin Policy" security for a Chrome browser by starting
an instance of it with the command line flag "--disable-web-security".

See also:
• REST Integration

Working with JSON in GWT

When working with IBM BPM data, it is common to receive that data encoded in JSON. GWT
provides JSON processing capabilities through the package called com.google.gwt.json.*.
The GWT XML file must have a new inherit:

<inherits name="com.google.gwt.json.JSON"></inherits>

A class called JSONParser provides a static method called parseStrict which takes a JSON
encoded string as input. This method returns a JSONValue object which can then be accessed to
get the various different JSON types including:

• JSONArray

• JSONBoolean

• JSONNumber

• JSONObject

• JSONString

For example, on a BPM task query, the return is:

{
"status":"200",
"data":
{

"data":
[

{
"taskAssignedTo":{"type":"User","who":"admin"},
"bpdName":"Repeatable events",
"instanceCreateDate":"2011-11-21T22:04:29Z"
…

To get to the actual array of data, the following can be used:

JSONValue v =
JSONParser.parseStrict(response.getText()).isObject().get("data").isObject().get
("data");

Building GWT Apps in Eclipse

It is very easy to build a GWT app in a suitably configured Eclipse environment. What follows is a
suggested recipe for building a GWT development environment. First we will download a copy of
Eclipse from http://www.eclipse.org/downloads. At the time of writing, this was 3.7.1.

Page 1145

http://www.eclipse.org/downloads

The download size was approximately 175 MBytes. Make sure that you match the 32bit vs 64bit
selection of installer against the JVM you plan on using. The file that was downloaded was a ZIP
which was extracted into C:\IBM resulting in C:\IBM\eclipse. The eclipse.ini file was
edited to increase the size of the memory available to the product. This is optional and a function of
how much memory is available on your own machine.

When launched, the splash-screen for Eclipse will show.

Next we will install the Google plug-in for Eclipse. The locations and instructions for this can be
found here:

http://code.google.com/eclipse/docs/download.html

A typical selection looks like:

The installation time is typically less than 5 minutes

GWT provides a development set of plugins called GWT Designer/WindowsBuilder. Experience
shows that the default heap size for the Java VM is probably too small. Editing the eclipse.ini

Page 1146

http://code.google.com/eclipse/docs/download.html

file located in the same directory as Eclipse to provide additional heap size is recommended.

If memory permits, setting the parameters:

-Xms512m
-Xmx1024m

provides additional capacity. Even with these additional resources, WindowBuilder still seems to
crash/freeze from time to time. Thankfully, it hasn't been seen to corrupt anything and "killing"
Eclipse and restarting it seems to return the environment to stability. The mean-time-to-failure is
long enough that, even though very disappointing, the occasional crash is still acceptable. The
crashes were experienced on very large projects. I personally save all my work and export my
projects to a ZIP file approximately every hour. This means that I can always recover from some
fatal occurrence. I keep all my exports rather than overlay an old export with a new export just in
case something goes wrong with the content of the most recent export if I attempted to recover.

To create a sample application that is ready to run, the following recipe can be followed:

Page 1147

Page 1148

In addition to installing the GWT Designer, it is suggested that the Eclipse Web Editor be also
installed.

Notes on GWT Widgets

GWT provides a rich and powerful set of pre-supplied widgets and layouts. The documentation for
these can be found in the JavaDoc as well as in the Development Guides. The following sections
provide some summary notes on the usage of some of these widgets.

RootPanel

The RootPanel is the top level panel in an application. It has a method called get() which will
return the RootPanel object. Alternatively, the get(String id) method can be used to obtain a
RootPanel for a specific HTML DOM element.

Note: It seems that in the latest releases, one should not use RootPanel but instead use
RootLayoutPanel. Failure to do this can result in unexpected problems. I wasted a couple of hours
adding a DockLayoutPanel into a RootPanel when I should have added it into a RootLayoutPanel.
It feels that if one uses any ***LayoutPanel widgets then the ancestor should be a
RootLayoutPanel.

Page 1149

DockPanel

The DockPanel widget is a layout widget that contains areas for North, South, East, West and
Center.

DialogBox

The GWT DialogBox class is meant to be subclassed to provide a dialog box. The hide()
method disposes of it. The method show() will show the dialog while center() will show it an
center it in the browser.

When using a DialogBox with UiBinder, change the new class to be

public class MyUI extends DialogBox …

and

setWidget(uiBinder.createAndBindUi(this));

The method setGlassEnabled(true) will add a frosted glass background.

DisclosurePanel

Somewhat similar to the StackedLayoutPanel is the DisclosurePanel. This is a widget with a header
and a body. When the header is clicked, the body is shown beneath the header. When the header is
clicked again, the body is once more hidden. The default DisclosurePanel has a header with a
toggle button and some text. The text of the header can be accessed with the DisclosurePanel's
getHeaderTextAccessor() method.

It has the following three CSS styles:

.gwt-DisclosurePanel

.gwt-DisclosurePanel-open

.gwt-DisclosurePanel-closed

Composite

The Composite widget is a container for a single other widget. It is primarily used for creating
custom widgets. When attaching the single child widget, it is important to use the method
initWidget(Widget) to add the child widget.

ListBox

The ListBox presents a scrollable list of string items. Items can be added to the ListBox with the
addItem() method. The currently selected item can be found at the index returned by
getSelctedIndex(). The value of the item can be retrieved with getValue(index).

FlexTable

The FlexTable widget is similar to Grid.

Page 1150

Grid

The Grid widget lays out its children in rows and columns. When constructed, it defines an explicit
number of rows and columns. The children can then be added into these explicit cells using the
setWidget(row, column, widget) method.

Each cell in the grid can be customized using the grids's CellFormatter object.

HTML

The HTML widget allows one to insert arbitrary HTML into the page.

PushButton

To set the image on a PushButton we use the getUpFace() to get a CustomButton.Face object which
has a setImage() method.

FileUpload

The FileUpload widget will upload a file. In order to use FileUpload it must be included in a
FormPanel container.

final FormPanel myForm = new FormPanel();
form.setAction("url");
form.setEncoding(FormPanel.ENCODING_MULTIPART);
form.setMethod(FormPanel.METHOD_POST);
…
FileUpload fileUpload = new FileUpload();
fileUpload.setName("MyName");
form.add(fileUpload);
form.submit();

When defining a form in UiBinder, the form should look like:

<g:FormPanel ui:field="myForm" action="/url" encoding="ENCODING_MULTIPART"
method="METHOD_POST">

GWT Cell processing

There are a number of widgets that work with GWT Cells. Think of a cell is an extremely light-
weight logical widget. To put this in context, imagine a table showing sales orders. Imagine that
the table contains a 1000 rows and that each sales order has 10 columns. This means that there
would be 10,000 distinct pieces of information on the screen. Each item of information is called a
cell. If we chose a brute-force approach to solving this kind of a problem, we might consider
creating a widget to represent each cell. This would mean that 10,000 widgets would be needed.
Even with a lot of machine resources available, this is still an awful lot of data to manage. GWT
however provides an elegant solution.

The idea is that we have data and we want to present that data. Rather than create a separate widget
for each cell, we create a template widget (a Cell Widget) that knows how to "display" the
appropriate data. For each cell to be displayed, rather than creating a whole new widget to display
it, the Cell widget is passed the data that should be shown and the Cell widget generates as output
the HTML needed to show the data. Specifically, this means that the Cell widget is continually
reused. It does not own the data for the cell. Rather it owns how to visualize data for that type of
cell.

• CellList – A list using cells as the single column content

Page 1151

• CellTable – A table using cells as the table rows and columns

• CellTree – A tree ...

• CellBrowser – A ????

Each of these Cell widgets implements AbstractHasData<T>

GWT provides a number of pre-supplied cell types but these can be augmented with custom cells.

Text Cells

• TextCell

• ClickableTextCell

• EditTextCell

• TextInputCell

Buttons, Checkboxes and Menu cells

• ActionCell

• ButtonCell

• CheckboxCell

• SelectionCell

Date cells

• DateCell

• DatePickerCell

Images

• ImageCell

• ImageResourceCell

• ImageLoadingCell

Numbers

• NumberCell

Compositions

• CompositionCell

Decorators

• IconCellDecorator

Page 1152

Cell Selection

When cells are used to display information, we want to introduce the notion of "selection".
Selection is the indication that a user has interacted with the screen and has somehow "selected" one
or more cells. The architecture to support this is baked into the solution. An interface called
SelectionModel<T> is provided which forms the basis for a variety of pre-supplied selection
techniques:

• DefaultSelectionModel

• SingleSelectionModel

• NoSelectionModel

• SelectionModel.AbstractSelectionModel

The key to understanding how these work is to realize that every SelectionModel implements the
SelectionModel interface which provides:

• addSelectionChangeHandler() - A registration function for adding callbacks that
notify of selection changes

• setSelected(T object, boolean selected) – Flag a particular object as being
either selected or not selected

• isSelected(T object) – Returns whether or not the specified object is selected

A widget that shows cells will provide a setSelectionModel() method to associate a
SelectionModel with the widget. Once the widget and the SelectionModel are associated, the
widget will know which cells are selected for display and if the user changes the selection, the
SelectionModel will be updated to reflect the change causing any event handlers to be fired as
needed.

final SingleSelectionModel<String> ssm = new SingleSelectionModel<String>();
cellList.setSelectionModel(ssm);
ssm.addSelectionChangeHandler(new SelectionChangeEvent.Handler()
{

public void onSelectionChange(SelectionChangeEvent event)
{

String value = ssm.getSelectedObject();
GWT.log("Selection changed! : " + value);

}
});

The selected object for a Cell widget is always the whole object. This means that when a CellList is
clicked, the clicked object is selected. In a CellTable, it is the row that is selected.

For the SingleSelectionModel, the single selected item is returned with getSelectedObject(). For
the MultiSelectionModel, a set of selected objects is returned with getSelectedSet().

Adding Data to a Cell widget

In order to work, a cell widget will need to be provided data that it is to visualize in its cells. This
data is provided by two methods:

<widget>.setRowCount(int count);
<widget>.setRowData(0, List<T>);

A simpler pattern to show all the data is

<widget>.setRowData(List<T>);

Page 1153

Another alternative model of adding data to a Cell widget is the use of a ListDataProvider. This is
an object that wraps a Java List of data. The ListDataProvider also names a Cell Widget to be
notified when the list data changes. Think of ListDataProvider as a controller in an MVC
paradigm. The model data comes for the list and the view is the Cell Widget.

For example, imagine we have an ArrayList of data, to associate that with a Cell widget we might
use:

ListDataProvider<T> ldp = new ListDataProvider<T>();
ldp.setList(myArrayList);
ldp.addDataDisplay(myCellWidget);

One of the primary advantages of this is that sorting can now be provided.

CellList notes

The primary mechanism for showing a CellList is along the following lines:

CellList<MyType> humanServiceList =
new CellList<MyType>(new AbstractCell<MyType>(){
public void render(Context context, MyType value, SafeHtmlBuilder sb)
{

sb.appendHtmlConstant("<div>" + value.getName() + "</div>");
}

});

What happens is that the render() method is called and is responsible for building an HTML
fragment that will be shown in the cell area.

TextCell textCell = new TextCell();
CellList<String> cellList = new CellList<String>(textCell);
cellList.setRowData(DAYS);

CellTable notes

A CellTable is a rectangular set of Columns. A concrete example of a column is a TextColumn.
Generically, a Column provides a getValue() method that is given an object (for the row) and must
return a value used by the cell for display.

When a CellTable is constructed, it is supplied with the type of data for a row.

Here is an example of creating a CellTable.

CellTable<Data1> cellTable = new CellTable<Data1>();

TextColumn<Data1> textColumnA = new TextColumn<Data1>() {
@Override
public String getValue(Data1 object) {

return object.getA();
}

};

TextColumn<Data1> textColumnB = new TextColumn<Data1>() {
@Override
public String getValue(Data1 object) {

return object.getB();
}

};

TextColumn<Data1> textColumnC = new TextColumn<Data1>() {

Page 1154

@Override
public String getValue(Data1 object) {

return object.getC();
}

};

cellTable.addColumn(textColumnA, "A");
cellTable.addColumn(textColumnB, "B");
cellTable.addColumn(textColumnC, "C");

cellTable.setRowData(data1Dat);

To make a column sortable, we call the column's setSortable(true) method.

See also:

• GWT Developers Guide – Cell Widgets

DataGrid Notes

An alternative to the CellTable is the DataGrid. DataGrid appears to be identical to the CellTable
with one important distinction. The DataGrid's header remains in place during a content scroll.
This means that we can scroll and page through the content of the table while the header remains
perfectly in place.

Cell Tree Notes

The tree structure shows parent/child oriented data in a tree structure. The core to using Cell Trees
is the class known as the NodeInfo which encapsulates everything needed to show an individual
node. The nodes are tied together using the TreeViewModel interface.

Imagine that a tree is composed of a tree of MyTreeNode objects. Imagine that the MyTreeNode
contains:

• String value – The value of the tree node

• ArrayList<MyTreeNode> children – The children of this tree node

Each tree node is then wrapped in a NodeInfo object …

TreeViewModel.DefaultNodeInfo<MyTreeNode>

This is constructed with:

TreeViewModel.DefaultNodeInfo(new ListDataProvider<MyTreeNode>(children), new
TextCell<MyTreeNode>());

Note: After some study in this area it appears that CellTrees are still somewhat immature. There
appears to be great trouble dynamically adding or deleting nodes.

GWT Modules

From a development perspective, parts of a GWT solution can be packaged into "modules" and
these modules can be become black-box and reusable components. Typically a module defines:

• Other modules needed by this module

• An entry point application class

Page 1155

http://code.google.com/webtoolkit/doc/latest/DevGuideUiCellWidgets.html

• Source path entries

• Public path entries

• Deferred binding rules

Naming conventions and recommendations

There are a number of separate artifacts used in the building of a GWT based solution. Each of
these have names and file types associated with them. Here are some recommendations and
conventions for their use.

• Style Sheets – Style sheets end with a file suffix called ".css". It is recommended that these
files be named <package>.<module>.style.css. For example, if a Module had the name
com.kolban.MyModule, then the suggested CSS file would be
com.kolban.MyModule.style.css. If a style sheet is used by a module, it should be placed into
the public folder and referenced in the Module's XML configuration file.

The Entry-Point class

A module can have one or more classes that implement EntryPoint. Any classes contained
within a module that implement EntryPoint will be constructed and their onModuleLoad()
methods called. For example:
public class XYZ implements EntryPoint {

public void onModuleLoad() {
GWT.log("Loaded!");

}
}

Source Path

The source path is the package of Java code that will be translated into JavaScript. The default for
this is the "client" sub-package.

Public Path

<TBD>

When using images or other static resources in a Module, change the URL for the images to be:

GWT.getModuleBaseURL() + "imageName.png"

Module declaration files

A module declaration file is an XML file with a file extension of .gwt.xml

<module>
<inherits name="com.google.gwt.user.User"/>
<inherits name="com.google.gwt.user.theme.standard.Standard"/>
<inherits name="com.google.gwt.http.HTTP"></inherits>
<inherits name="com.google.gwt.json.JSON"></inherits>
<entry-point class="com.kolban.project.client.BPMUtils"/>

</module>

To include a separate package, use the <inherits> construct.

Page 1156

Working with resources

Resources are collections of data used by a module. These can include images. The resources are
based on the concept of a ClientBundle. For example:

public interface Resources extends ClientBundle {
@Source("next_16x16.png")
ImageResource nextButton();

}

will create a resource containing an image. To get the image:

Resources resources = GWT.create(Resources.class);
Image image = new Image(resources.nextButton());

GWT Layouts and resizing

From GWT 2.0 onwards, a set of new layouts were provides that modernize and enhance panel
layouts. Take great care not to use the old panels when you want to use the new panels; their
names are very similar. The new panels are:

• RootLayoutPanel

• CustomScrollPanel

• DeckLayoutPanel

• DockLayoutPanel

• LayoutPanel

• ResizeLayoutPanel

• ScrollPanel

• SimpleLayoutPanel

• SplitLayoutPanel

• StackLayoutPanel

• TabLayoutPanel

When building a custom widget that is going to be involved in these layouts, base the custom
widget on ResizeComposite as opposed to Composite.

RootLayoutPanel

RootLayoutPanel is a singleton that contains other layout panels. Typically it is used as a
replacement for RootPanel. For example, where one would commonly code:

RootPanel.get().add(myWidget);

One would now code

RootLayoutPanel.get().add(myWidget)

StackLayoutPanel

The StackLayoutPanel shows a vertical set of widgets. It replaces the StackPanel widget. When a
widget is clicked, it is expanded to show another widget. As such, the panel contains an array of

Page 1157

rows where each row is composed of two widgets. The first is a header widget used to expand an
entry while the second widget shows the content.

Example:

StackLayoutPanel stackLayoutPanel = new StackLayoutPanel(Unit.EM);
HorizontalPanel horizontalPanel_1 = new HorizontalPanel();
stackLayoutPanel.add(horizontalPanel_1, new HTML("New Widget"), 2.0);

The first widget is the body, the second is the header.

stackLayoutPanel.add(<body>, <header>);

To explicitly show a particular child widget, the showWidget() method may be used. This can take
either an ordinal value or a widget reference.

Although the StackLayoutPanel sounds nice in principle, it seems to have some possible challenges
in practice. In a particular project, I wanted to dynamically add sections to the StackLayoutPanel.
Unfortunately, this didn't seem to work out anywhere near like what I would have liked.
Fortunately, the StackLayout widget was also available.

TabLayoutPanel

The TabLayoutPanel provides a set of tabs that can be used to switch between different widgets.
This widget replaces the TabPanel widget which is now deprecated.

Things that seem to scroll ok

A DockLayoutPanel containing a ScrollPanel containing a Vertical Panel containing added labels.

Another is a FlowPanel > (Dynamic Disclosure Panels)

UIBinder – XML descriptions of screens

So far we have spoken about writing UI code directly in Java. GWT provides an alternative and,
arguably, better way of describing UIs. This is through the use of an XML document. The XML
declares what the UI should look like and is used as an alternative to the code.

At its heart, a UIBinder xml file looks like:

<!DOCTYPE ui:UiBinder SYSTEM "http://dl.google.com/gwt/DTD/xhtml.ent">
<ui:UiBinder xmlns:ui="urn:ui:com.google.gwt.uibinder"

xmlns:g="urn:import:com.google.gwt.user.client.ui">
<ui:style>

.important {
font-weight: bold;

}
</ui:style>
<g:VerticalPanel>

<g:Button ui:field="myButton">Hello World</g:Button>
<g:Label text="New Label"/>
<g:ListBox visibleItemCount="5"/>

</g:VerticalPanel>
</ui:UiBinder>

Imagine we wish to create a UI component called XYZ. We will create an XML file called
XYZ.ui.xml and from that a Java class called XYZ.java be created. Eclipse Window Builder

Page 1158

understands UI Binder so we do not lose UI drawing capabilities.

In the Java code we will build:

public class XYZ extends Composite {
private static XYZUiBinder uiBinder = GWT.create(XYZUiBinder.class);
@UiField Button myButton;

interface XYZUiBinder extends UiBinder<Widget, XYZ> {
}

public XYZ() {
initWidget(uiBinder.createAndBindUi(this));

}

@UiHandler("myButton")
void onMyButtonClick(ClickEvent event) {
}

}

When a Widget is used inside a ui.xml file, any property of that widget can supplied as an attribute
in the XML.

UiBinder can also save a lot of time/effort with event handlers using the @UiHandler

See:

• Declarative Layout with UI Binder

Using CSS for changing the appearance of UI

CSS is used extensively for changing the appearance of the UI components. A standard CSS can be
found in <project>/war/<project>/gwt/standard/standard.css.

A gradient background can be added to a CSS by using this really-cool web site to build the CSS:

http://www.colorzilla.com/gradient-editor/

The CSS styling of a Widget is derived from UIObject which is an ancestor of Widget. UIObject
contains properties called:

• styleName

• styleDependentName

• stylePrimaryName

• styleElement

• stylePrimaryName

GWT comes with a number of built-in "themes" that provide default styling for the widgets. These
are:

• com.google.gwt.user.theme.standard.Standard

• com.google.gwt.user.theme.clean.Clean

• com.google.gwt.user.theme.chrome.Chrome

• com.google.gwt.user.theme.dark.Dark

The "Standard" theme is the default.

Page 1159

http://www.colorzilla.com/gradient-editor/
http://code.google.com/webtoolkit/doc/latest/DevGuideUiBinder.html

The GWT Editor Framework – Mapping data to widgets

A JavaBean object is one which has properties that adhere to the JavaBean specification. This
means that they have getters and setters.

An Editor is an object that supports editing some (or all) of the properties of a JavaBean. An editor
can contain sub-editors.

SimpleBeanEditorDriver

See also:

• GWT Wiki – Editor Framework

Working with XML in GWT

GWT has built in support for working with XML documents. One needs to declare intent to use the
XML package by inserting:

<inherits name="com.google.gwt.xml.XML" />

In the Java code of the module, one can then call:

Document myDocument = XMLParser.parse(xmlString);

This will return a DOM document that can then be manipulated. A useful function on XMLParser
is called removeWhitespace() which will remove empty TEXT nodes from the document.

In the module XML file.

See also:

• Coding Basics – Working with XML

Integrating with native JavaScript

Native JavaScript can be utilized within the context of a GWT application. To define a method that
implements a call to JavaScript we can code:

public class MyClass
{

public native void sayHello(String name)
{

/*-{
alert("Hi there " + name);

}-*/
}

}

Building custom GWT Widgets

It is common to build custom GWT Widgets both for re-use amongst multiple projects or simply for
comprehension within a single project. Building coarse grained UI with lots of function vs fine
grained UIs with re-usable components is a user's choice. When building custom widgets, some
common factors apply and this section describes some of them.

Adding Event Handling

Let us start with some basic notions. First, when something interesting occurs in a widget, we want

Page 1160

http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsXML.html
http://code.google.com/p/google-web-toolkit/wiki/Editors

that widget to "generate" an Event. In GWT, the Event is going to be represented by an Object
which has a specific format.

Comment: Should the Handlers actually be called Listeners? For example, imagine an event that
happens when a "task is selected". This will create a TaskSelected event. What kind of
implementation should be notified? There seems to be two possibilities. The first is a
"TaskSelectedHandler" and the other is a "TaskSelectedListener" both of which will have a method
called "onTaskSelected". The consumer will code:

new TaskSelectedXXX()
{
 public void onTaskSelected()
 {
 ...
 }
}

Personally, I think I like the idea of a TaskSelectedListener. The word Listener (as opposed to
Handler) gives the impression that we are listening/watching for events to be processed. Studying
the events supplied with GWT itself, they use the Handler style.

Generically, the new Event will look like:

<Custom>EventHandler

public interface CustomEventHandler extends EventHandler {
void onCustom(CustomEvent event);

}

Note: I have seen an interesting idea which is to add the XXXHandler interface as a type inside the
XXX class.

<Custom>Event

public class CustomEvent extends GwtEvent<CustomEventHandler> {
public static Type<CustomEventHandler> TYPE = new Type<CustomEventHandler>();
private String message;

public CustomEvent(String message)
{

this.message = message;
}

public String getMessage()
{

return message;
}

@Override
public GwtEvent.Type<CustomEventHandler> getAssociatedType() {

return TYPE;
}

@Override
protected void dispatch(CustomEventHandler handler) {

handler.onCustom(this);
}

}

Custom1

Page 1161

public class Custom1 extends Composite implements HasHandlers {

private HandlerManager handlerManager;

// maybe

// private HandlerManager handlerManager = new HandlerManager(this);

public Custom1() {
handlerManager = new HandlerManager(this);

}

@Override
public void fireEvent(GwtEvent<?> event) {

handlerManager.fireEvent(event);
}

public HandlerRegistration addCustomEventHandler(CustomEventHandler handler)
{

return handlerManager.addHandler(CustomEvent.TYPE, handler);
}

public void doSomething()
{

/* … */
fireEvent(new CustomEvent("hello!"));

}
}

In summary, to handle events:

• CustomEventHandler

• CustomEvent

• Custom1

– Experimental

As a test, I put THIS code in the Class that owns the publication of the event. This may be the
easiest way to cookie cut.

private HandlerManager handlerManager = new HandlerManager(this);

public static interface SelectionChangedHandler extends EventHandler {
void onSelectionChanged(SelectionChangedEvent event);

}

public HandlerRegistration addSelectionChangedHandler(SelectionChangedHandler
handler) {

return handlerManager.addHandler(SelectionChangedEvent.TYPE, handler);
}

public static class SelectionChangedEvent extends
GwtEvent<SelectionChangedHandler> {

public static Type<SelectionChangedHandler> TYPE = new
Type<SelectionChangedHandler>();

public GwtEvent.Type<SelectionChangedHandler> getAssociatedType() {
return TYPE;

}

protected void dispatch(SelectionChangedHandler handler) {

Page 1162

handler.onSelectionChanged(this);
}

}

With this infrastructure set up, what remains is the use of the event processing system. Imagine
now that someone creates an instance of Custom1 and wants to be notified when the CustomEvent
(that is fired inside Custom1) happens.

Here is an example of how this might be used:

Custom1 custom1 = new Custom1();
custom1.addCustomEventHandler(new CustomEventHandler() {

public void onCustom(CustomEvent event) {
GWT.log("Custom event fired!" + event.toDebugString());

}
});

When using Eclipse GWT Designer, this code can be added through the tooling as follows:

There is one final item that needs to be considered and that is when does the event actually get
fired? Somewhere in the code of the Widget that can generate such events there must be code
similar to the following:

fireEvent(new CustomEvent("hello!"));

When executed, it will fire the CustomEvent event.

Using Google Charts with GWT

Google has provided a rich set of charting functions that are primarily leveragable through
JavaScript from ordinary web pages. A binding has been built that allows these charts to be used
through GWT. To use these functions, the gwt-visualization.jar file must be downloaded and added
to the project's classpath. The .gwt.xml file must include the
com.google.gwt.visualization.Visualization package:

<inherits name='com.google.gwt.visualization.Visualization'/>

public class ChartTests implements EntryPoint {

Page 1163

public void onModuleLoad() {
Runnable onLoadCallback = new Runnable()
{

@Override
public void run() {

RootPanel panel = RootPanel.get();
PieChart pie = new PieChart(createTable(), createOptions());
panel.add(pie);

}
};

VisualizationUtils.loadVisualizationApi(onLoadCallback, PieChart.PACKAGE);
}

private AbstractDataTable createTable() {
DataTable data = DataTable.create();
data.addColumn(ColumnType.STRING, "Task");
data.addColumn(ColumnType.NUMBER, "Hours per Day");
data.addRows(2);
data.setValue(0, 0, "Work");
data.setValue(0, 1, 14);
data.setValue(1, 0, "Sleep");
data.setValue(1, 1, 10);
return data;

}

private PieOptions createOptions() {
PieOptions options = PieOptions.create();
options.setWidth(400);
options.setHeight(240);
options.set3D(true);
options.setTitle("My Daily Activities");
return options;

}
}

One of the core concepts behind Google Charts is that of the DataTable. The DataTable is the
holder of data that is to be visualized in the chart. Logically, the DataTable is a rectangular table of
rows and columns. Each column has some properties which include:

• A data type. The types available are:

◦ Boolean

◦ Date

◦ Date/Time

◦ Number

◦ String

Page 1164

◦ Time of day

• An optional ID

• An optional label

To use the Google Charts, they have to be dynamically loaded before use. This is achieved via the
code snippet that looks as follows:

VisualizationUtils.loadVisualizationApi(onLoadCallback, XXX.PACKAGE);

The onLoadCallback is an implementation of the Java Runnable interface. Its run method is called
when the charts have been loaded. Each chart type has a .PACKAGE in its class and should be
specified for loading.

Notes:

• It appears that the usage of Google Charts requires an Internet connection to access Google's
Web sites. This implies that non-Internet accessible browsers won't work. This may be the
case in enterprises with firewalls in place.

See

• Google API Libraries for Google Web Toolkit (GWT)

• Google Chart Tools

Deploying a GWT application

So far we have only examined what it takes to build a GWT based application. Now we need to
consider what it takes to actually deploy one. During development, we are coding and testing in a
Java code environment. The WindowBuilder IDE built into Eclipse is running the solution as Java.
When a solution is built, that solution is "cross-compiled" to JavaScript to run natively within the
browser. This is a piece of magic that is brought to us courtesy of the wizards at Google.

The compilation of the project is best done through Eclipse:

We will start by realizing that the compiled artifacts have to be deployed on a Web page. Because
this book is about IBPM, the web server that hosts the web pages will usually be IBPM itself. This
will allow access to the the REST requests for the "same host" principal. To achieve this, we want

Page 1165

http://code.google.com/apis/chart/interactive/docs/index.html
http://code.google.com/p/gwt-google-apis/

to create a Java EE WAR file that can then be deployed to the WAS server. This WAR file will
contain the artifacts that are built in the GWT environment.

After switching to the Eclipse Web perspective:

We can now create a Dynamic Web Project. This will eventually result in a WAR.

Page 1166

The end result of this will be a new project which contains a folder called WebContent.

Copy the compiled results of the GWT war folder into the WebContent folder with the exception of
the folder called WEB-INF.

Once done, we can now generate and export the WAR file:

Page 1167

The name of a file on the file system will be asked for. This is the file into which the resulting
WAR file will be written. Be sure to give it the suffix ".war" to mark it as a Java EE WAR file.

Page 1168

Once the WAR file has been exported, our next task is to import it into WAS. This can be done
through the IBM admin console (ISC). Under the Applications section, select New Application and
select the path to the exported WAR file.

Most of the defaults can be taken but I suggest changing the Context Root. This is where the
application root path in the URL directory tree will be set.

Once the installation of the WAR has been complete, we will find it installed but stopped. The
default state for a new application installed into WAS is stopped. We want to explicitly start the
application.

Once started it will show "green" in the console.

We are now able to start the GWT app by connecting to the WAS server at the content root/page.

Page 1169

http://localhost:9080/MyGWTTest/MyTest.html

The compilation of a large project can take a little time.

Debugging and Logging GWT applications

A package called gwt-log is available which provides the most comprehensive debugging for GWT
applications.

To get running, download the gwt-log-x.x.x.jar file. Add it to the build path of the Eclipse GWT
project. In the gwt.xml file add an entry that looks like:

<inherits name="com.allen_sauer.gwt.log.gwt-log-DEBUG" />

Finally, in the code of the application, add:

Log.info("Hello World!");

GWT Libraries – Smart GWT

GWT has a number of extension libraries available for it. These are 3rd party code built on top of
the base GWT that adds significant function on top of the base GWT environment.

Smart GWT appears to be one of the most prevalent and feature rich additional library sets available
for GWT. It can be downloaded from:

http://code.google.com/p/smartgwt/

A quick-start guide (PDF) can be found here:

http://www.smartclient.com/releases/SmartGWT_Quick_Start_Guide.pdf

The version of SmartGWT available now (2012-01) is v3.0. This version appears to have done
something rather odd. It has removed support for GWT Designer. What this means is that visual
composition in the Eclipse tool can not be performed. Previous versions provided this support. This
seems a very strange state of affairs. The developers claim that hand coding the Smart GWT
widgets is an easy proposition.

To prepare an application for using SmartGWT, two JARs must be added to a project's class path.
These are:

• smartgwt.jar

• smartgwt-skins.jar

These can be added from the project build path:

Page 1170

http://www.smartclient.com/releases/SmartGWT_Quick_Start_Guide.pdf
http://code.google.com/p/smartgwt/

The .gwt.xml file should be updated to include:

<inherits name="com.smartgwt.SmartGwt"/>

Smart GWT – ListGrid

The ListGrid is the Smart GWT version of a visual table and what a table it is. At a high level,
here is the recipe for use:

• Create an instance of a ListGrid

• For each column that you want, add a new ListGridField using the setFields()
method

• For each row of data to be show, create a ListGridRecord and add it using the
setData() method

Here is an example:

public void onModuleLoad() {
Canvas canvas = new Canvas();
ListGrid listGrid = new ListGrid();
ListGridField c1ListGridField = new ListGridField("c1", "Column C1");
ListGridField c2ListGridField = new ListGridField("c2", "Column C2");
listGrid.setFields(new ListGridField[] { c1ListGridField, c2ListGridField});
canvas.addChild(listGrid);
listGrid.setRect(6, 6, 374, 228);
ArrayList<ListGridRecord> al = new ArrayList<ListGridRecord>();
ListGridRecord lgr = new ListGridRecord();
lgr.setAttribute("c1", "c1val");
lgr.setAttribute("c2", "c2val");

Page 1171

al.add(lgr);
lgr = new ListGridRecord();
lgr.setAttribute("c1", "c3val");
lgr.setAttribute("c2", "c4val");
al.add(lgr);
listGrid.setData(al.toArray(new ListGridRecord[0]));

canvas.draw();
}

This produces the following:

A ListGrid can show arbitrary components in each of the cells. This is achieved by over-riding
the createRecordComponent method of the ListGrid. Here is a quick example showing
buttons:

ListGrid listGrid = new ListGrid()
{

@Override
protected Canvas createRecordComponent(ListGridRecord record, Integer colNum)
{

String fieldName = this.getFieldName(colNum);
System.out.println("FieldName: " + fieldName);
if (fieldName.equals("c1"))
{

IButton button = new IButton();
button.setTitle("Press Me");
return button;

}
return super.createRecordComponent(record, colNum);

}
};

listGrid.setShowRecordComponents(true);
listGrid.setShowRecordComponentsByCell(true);

Smart GWT – DataSource

One of the more interesting capabilities of Smart GWT is the concept of a DataSource. This is a
container for structure descriptions and data that can be passed in to visualization widgets that can
then show the data.

Page 1172

A DataSource description consists of a set of DataSourceFields.

A DataSource field contains:

Property Value

name Identifier field

type One of:
• text
• integer
• float
• boolean
• date
• sequence

title Label for the field

length

hidden

detail

required

valueMap

editorType

primaryKey

foreignKey

rootValue

To create a DataSource in client side Java, we perform the following:

• Create an instance of a DataSource object

• Set the ID property

• Create instances of DataSourceField for each field in the DataSource

• call the setFields() method of the DataSource to add each of the DataSourceFields

Here is some working code that will create a ListGrid and set a DataSource against it:

public void onModuleLoad() {
dataSource.setClientOnly(true);
DataSourceTextField c1DSField = new DataSourceTextField("c1", "c1");
dataSource.addField(c1DSField);
DataSourceTextField c2DSField = new DataSourceTextField("c2", "c2");
dataSource.addField(c2DSField);

ListGridRecord record = new ListGridRecord();
record.setAttribute("c1", "c1Val");
record.setAttribute("c2", "c2Val");
dataSource.addData(record);

Canvas canvas = new Canvas();

ListGrid listGrid = new ListGrid();

ListGridField c1ListGridField = new ListGridField("c1", "c1");
ListGridField c2ListGridField = new ListGridField("c2", "c2");

listGrid.setFields(new ListGridField[] { c1ListGridField, c2ListGridField });

Page 1173

listGrid.setDataSource(dataSource);
listGrid.setAutoFetchData(true);
canvas.addChild(listGrid);
canvas.draw();

}

The end result of this is:

See also:

• Showcase

• code.google.com – SmartGWT

Smart GWT – Drawing

Drawing is the notion of drawing items (usually geometry) on a canvas area. SmartGWT provides
just that capability using the DrawPane technology. In order to use this, an additional entry must be
added to the GWT XML file:

<inherits name=”com.smartgwt.Drawing”/>

final DrawPane pane = new DrawPane();
pane.setWidth(500);
pane.setHeight(500);
pane.setShowEdges(true);
pane.draw();

Integrating GWT with IBPM Coaches

One interesting area of potential GWT usage is integrating GWT with IBM Coach technology.
This would mean having a Coach appear which includes GWT capabilities. There are a number of
ways that this could work and this section describes some of the tests and experiences.

The first question is how do we get GWT included in a Coach page?

The answer to this is that we insert a Custom HTML script that contains the following:

<script type="text/javascript" language="javascript"
src="http://localhost:9080/mum/proxy/http/localhost:8888/coachinclude/coachinclu
de.nocache.js">
</script>

This is going to take a little explaining. Here I am assuming that the GWT code is still in the
Eclipse development environment. That means that the JavaScript for GWT can be found at:

http://localhost:8888/<name>/<name>.nocache.js

This is the default runtime for GWT testing. However, notice that the hostname/port isn't the same
as that of the BPM server. As a result of that, things are likely to get wrong from a networking
sandbox perspective. To solve that problem, we use the Web Proxy that is shipped as part of
Business Space.

The last line of the Custom HTML is an HTML tag with an "id". This is the anchor where
the GWT will insert its content. For example,

Page 1174

http://code.google.com/p/smartgwt/
http://www.smartclient.com/smartgwt/showcase/#main

public void onModuleLoad() {
RootPanel rootPanel = RootPanel.get("GWTHERE");
if (rootPanel == null)
{

GWT.log("Unable to find panel anchor point");
return;

}
Label label = new Label("Hi World");
rootPanel.add(label);

}

In a simple page, this results in:

Using tables with GWT

GWT provides table viewers for displaying tabular data. If we want to leverage a GWT table
within a Coach, how might we go about that? The first puzzle is to determine how to get data from
the Human Service into the Coach so that it can be rendered by GWT? Native Coach technology
seems to build an HTML table in-line (i.e. no Ajax) using HTML <TD> tags. This doesn't appear
to be of any use to us. What we really want is the data that is to be shown in the table to be supplied
to us for display.

Page 1175

Kolban's GWT BPM Utils
GWT is a powerful and flexible toolkit that allows a user interface developer to build just about
anything. When it comes to building custom UIs for IBPM, experience is showing that the same
patterns occur again and again. Instead of starting from scratch, a set of GWT libraries has been
built that attempt to address some of the common occurrences. These are still a work in progress
but the author (kolban@us.ibm.com) is very keen to work on these and hear back from users who
have tried to use them or are looking for enhancements. The code is provided "as-is" in source
format but any changes to the code should be fed back for inclusion for all.

The GWT BPM Utils provide the following functions:

• Visual Task Lists

• REST wrappers and helpers

Visual Task Lists

A common need is to present a list of tasks that a user is eligible to work upon. A GUI widget
called the StackedTaskList presents such a list. This widget provides three visual containers.
One for tasks that are Owned, one for tasks that are Available and one for Tasks that are
Completed.

For each task found in the IBPM run-time, an entry is added to the corresponding container. The
format of an entry is composed of two parts. The first is a header which is always shown that
provides a quick summary of the task. The second entry is the body which is shown when the user
expands the header. The thinking behind this is to provide a summary of tasks and, for tasks that a
user wishes to know more about, the details can be displayed.

The implementation of this widget exposes a method called searchTasks(). When this method
is called, a search is executed against the server and the results displayed in the widget. To refine
the search, a set of conditions can be supplied (setSearchConditions()) which will be used
to choose which results are returned. To choose which individual columns to return, a list of
column names can also be supplied (setSearchColumns()).

The entries for each task are made up of two further Widgets which are also customizable. These
widgets should inherit from SearchResultViewer. One widget will be used for the header and
the other for the body. Users of the StackedTaskList can implement their own viewer
widgets. The contract with the SearchResultViewer is simple. First it inherits from GWT

Page 1176

mailto:kolban@us.ibm.com

Component so any content visualized there will be displayed in the appropriate area. An
implementation of such a class must implement the newInstance() method. This returns a new
instance of the SearchResultViewer. This is needed to create new instances, one for each
task entry. To display content associated with the task, the setSearchResult() method is
called which has a SearchResult object passed to it. The SearchResult contains the details
of the task as returned from the search. The implementer of the SearchResultViewer is
expected to visualize chosen data in the implementation.

In addition to the body for the viewer, each task entry has a button in it to allow the task to be
"selected". A callback can be registered to be invoked when the button is pressed.

REST wrappers and helpers

The REST wrappers and helpers provide high level interfaces to the IBPM functions exposed
through REST. These include:

assignTask

claimTask

completeTask Complete the task with returned data

executeSearch Execute a search for tasks and instances

exposed

getTask Retrieve details of a specific task

porocessApps

startService Run an instance of a specific service

userList

The way one appears to use this toolkit is:

1. Add an inherits of the BPMUtils module into the XML file for your current project

eg. Add:

 <inherits name="com.kolban.project.BPMUtils"/>

2. Add the BPMUtils project as a dependency at the Eclipse level when building

Page 1177

3. Use the REST APIs

4.

5.

Examples

Using the GWT BPM Utils is pretty straightforward. This section provides some examples of some
of the more common usage patterns:

Showing a visual data table

Consider a data type within a Process Application that looks as follows:

Page 1178

It represents an item in an order. Now imagine that we have a variable in a process which is a list
of such items. In our UI, we wish to present a table of these items. The end result should look like:

One way to achieve this is to use the getTask() method which returns a TaskDetails object. This
object contains a property called "variables" (retrieved with the getVariables() method). The data
type of this property is a JSONObject which contains all the variables of a task instance. For a list
object owned by the process, an example of data returned would be:

{
"order":
{

"selected": [],
"items":
[

{
"name": "Widget X",
"color": "Green",
"quantity": 10

},
{

"name": "Widget Y",
"color": "Blue",
"quantity": 20

}
]

}
}

Take a few minutes to review the structure. See how a list variable contains a child called items that
is an array of objects. This is important as access to the data is not achieved by directly accessing
the variable but rather its items child. A list can also indicate which (if any) of the items within it
are flagged as “selected”. A list variable has a property called “selected” which is a list of integers.
Think of the list as having an ordinal set of entries. If the ordinal value appears in the selected set,

Page 1179

then the list entry is considered selected.

Now let us look at how we can map this to a visual table.

First we create a Java Class that will act as a holder for each item. This class looks as follows:

public class OrderItem
{

public String name;
public String color;
public int quantity;

};

Now we can look at the code that utilizes the GWT BPM library to retrieve the content of a task:

REST rest = new REST();
int taskId = // The taskId to be retrieved
rest.getTask(taskId, new TaskDetailsResultsCB() {

public void onTaskDetailsResults(TaskDetails taskDetail) {
JSONObject variablesObject = taskDetail.getVariables();
JSONObject orderJO = variablesObject.get("order").isObject();
JSONArray itemsJA = orderJO.get("items").isArray();
ArrayList<OrderItem> al = new ArrayList<OrderItem>();
for (int i=0; i<itemsJA.size(); i++)
{

JSONObject itemJO = itemsJA.get(i).isObject();
OrderItem item = new OrderItem();
item.name = itemJO.get("name").isString().stringValue();
item.color = itemJO.get("color").isString().stringValue();
item.quantity = new

Double(itemJO.get("quantity").isNumber().doubleValue()).intValue();
al.add(item);

}
cellTable.setRowData(al);

}
});

There looks like a lot going on here but in reality, not that much. First a REST call is made to get
the task details. The callback from the REST call provides a TaskDetails object. From this we
retrieve the JSONObject that represents the variables. We then look for a variable called order.
We know that order is a list variable so we get its content through its items property. This is an
array of JSONObjects. For each element in the array, we build a Java OrderItem. When this has all
been done, we set the data in the GWT CellTable.

See also:
• Getting Task and Instance details through REST

Starting a process from GWT

To start a process using the toolkit, we can make a call to rest.startProcess(). This takes some
parameters as follows:

• processTemplateId – The id of the BPD template to be started

• processAppId – The id of the process app containing the template

• snapShotId – The snapshot id of the process app

Page 1180

• parameters (optional) – Optional parameters

• callback (optional) - Optional callback

Imagine we want to invoke an instance of "MyBPD" but that is all we know about it. First we
would have to get a list of all exposed processes. From there, we could search for the exposed
process with a display name of "MyBPD". Given that, we have all we need to make the
startProcess() call.

For example:
rest.exposedProcesses(new ExposedDetailsCallback() {

@Override
public void onExposedDetails(ExposedDetails[] exposedDetails) {

// TODO Auto-generated method stub
for (ExposedDetails ed : exposedDetails) {

if (ed.getDisplay().equals("MyBPD")) {
String processTemplateId = ed.getItemId();
String processAppId = ed.getProcessAppId();
String snapShotId = ed.getSnapshotId();
rest.startProcess(processTemplateId, processAppId, snapShotId, null, null);

}
}

}
});

Showing a Coach within GWT

If we have a BPM task and we wish to show the BPM Coach associated with that task within a
GWT environment, we can leverage the GWT Frame component. This injects an HTML
<IFRAME> into the page and allows us to set the URL that should be display.

For example,
rest.getClientSettings(taskId, new ClientSettingsDetailsCallback() {

public void onClientSettingsDetails(ClientSettingsDetails clientSettingsDetails) {
frame.setUrl(clientSettingsDetails.getURL());

}
});

Page 1181

IBM Business Monitor
IBM BPM solutions are intended to run the process oriented aspects of your business. An example
process might be that of handling sales orders. When an order arrives, the order is built, the
customer is billed and then the product is shipped. All of this may be governed by the execution of
the process. Great!! But now consider that hundreds of such orders may be processed a day. After
a few months of operation, you may find that you have the following questions:

• What was the average value of an order?

• Which states or provinces ordered the most blue widgets?

• Which sales rep brought in the highest return?

• Which orders take the longest to be processed?

• Is there a pattern in orders received in a week?

In order to be able to begin to answer these kinds of questions, we must have some mechanism of
capturing the raw information that we are later going to analyze. IBM BPM provides an out-of-the-
box solution to capturing such information and presenting it to the user through the Performance
Data Warehouse story. An alternative to the IBM BPM supplied monitoring is to employ and
integrate the separate IBM Business Monitor product.

IBM Business Monitor is its own rich and sophisticated environment and, once again, could
trivially be the topic of its own book. Here we will try and discuss Business Monitor in context of
IBM BPM.

The high level architecture of Business Monitor (Monitor) is that it acts as the target of events sent
from external applications. In our story, IBM BPM can be considered such an application. Events
are generated from IBM BPM and consumed by Monitor.

So … what might be considered an event? The answer is primarily:

• BPD Process information

◦ Start of a process

◦ End of a process

• BPD Activity information

◦ Start of an activity

◦ End of an activity

• Tracking events

◦ Message Intermediate events originating from tracking points

These low level events seem quite technical in nature and not immediately that useful to business …

Page 1182

for example, BPD activity XYZ started or Tracking Point ABC was invoked. The
nature of the event by itself isn't that interesting but if we place it in context it suddenly has
meaning.

Let us look at this simple process as an example:

A customer submits an order, we build the product to specification, we charge the customer and
finally ship the product. If we now say that the start and end of a BPD step generates events, we
immediately can start examining the operation of our processes:

• How many orders arrive over a period of time?

• How long on average does it take from receiving the order until till we bill the customer?

• What is the average order price?

• To which US states are we shipping the majority of our products?

Notice that these are Buisness Level questions which can be answered by overlaying what our
process means with the data that is produced at different steps in our process.

To be able to answer these kinds of question, we have to model the notion of a single instance of a
process and then when multiple processes have completed, we can aggregate such individual
instances together. The information that we wish to collect on a single instance of a process are
generically called metrics. Metrics are the meaningful data items associated with a process
instance. In our sample process, these are potential metrics we could define as wanting to collect:

• orderValue – The value of a single order.

• shipState – Which state is the product being shipped to.

• orderToBillingDuration – The amount of time that order took from order taking to
billing.

• orderDate – The date when the order was received.

When IBM BPM generates events that are sent to Monitor, these events are raw events. There is
nothing in them that provides these nice and clean metrics. The raw events are almost purely
technical in nature. An example of a raw event might be (not real data)

Event:
{

processId: 1234,
step: TakeOrder,
state: completed,
dateTime: 2011-07-07T17:34Z

}

which might signify that for a specific process instance identified as 1234, the step in the process
that the developer called TakeOrder has completed at a given time. Trying to build sense out of
raw events like this would be impossible (or at least extremely difficult). It is here that Business
Monitor comes into play.

Business Monitor has the notion of a Model. A model is a description of the logical metrics we
wish to collect (eg. the value of an order) and the rules used to populate or construct that metric

Page 1183

from the raw events arriving from the external systems. The Monitor Model is the bridge between
raw events and the business friendly metrics. Monitor Models can be constructed in two ways.
They can either be generated by the tooling or they can be built using the Monitor Model editors
supplied with IID. A hybrid approach is also possible where generated models can then be
modified by the Monitor Model editors. Personally I feel that to be effective, one should
understand how to build a Monitor Model from scratch. Not only does this grow confidence and
understanding in the product but if and when generated models need to be modified, there is
significantly less mystery involved.

Installation of Business Monitor
At the time of writing (2013-12), the latest version of Business Monitor is 8.0.1.

The part numbers are:

Name Part Number

IBM Business Monitor v8.0.1 for Windows 1 of 4 CIC9YML

IBM Business Monitor v8.0.1 for Windows 2 of 4 CIC9ZML

IBM Business Monitor v8.0.1 for Windows 3 of 4 CICA0ML

IBM Business Monitor v8.0.1 for Windows 4 of 4 CICA1ML

The prerequisites for IBM Business Monitor can be found here:

http://www-01.ibm.com/support/docview.wss?uid=swg27008414

The IBM IID product also includes a copy of IBM Business Monitor.

Page 1184

http://www-01.ibm.com/support/docview.wss?uid=swg27008414

Page 1185

Page 1186

Page 1187

Page 1188

Creating a profile
A new profile for a Business Monitor server can be created with the WebSphere PMT tool. This
can be found in the Start Menu under IBM > Business Monitor 8.0 > Profile Management Tool.

Page 1189

Page 1190

Page 1191

Page 1192

Page 1193

Page 1194

Page 1195

Page 1196

Page 1197

Page 1198

When running on the same machine as IBM BPM, make sure that you choose distinct port numbers.
Adding "5" to the basics might be a good choice:

Description Base port + 5

Administrative console port 9065

Administrative Console Secure Port 9048

HTTP Transport port 9085

HTTPS Transport port 9448

Bootstrap Port 2814

SIP Port 5070

SIP Secure Port 5071

SOAP Connector Port 8885

Admin IPC Port 9638

Page 1199

SAS SSL Server Auth Port 9416

CSIV2 ServerAuth Listener Port 9418

CSIV2 MultiAuth Listener Port 9417

ORB Listener Port 9105

HA Communication Port 9358

Service Integration Port 7281

Service Integration Port Secure 7291

Service Integration MQ interoperability port 5563

Service Integration MQ interoperability secure port 5583

These settings will result in Business Space being available at:

http://localhost:9085/BusinessSpace

and WAS Admin Console at:

https://localhost:9048/ibm/console/logon.jsp

Page 1200

https://localhost:9048/ibm/console/logon.jsp
http://localhost:9085/BusinessSpace

Page 1201

Page 1202

Page 1203

Page 1204

Page 1205

Finally we get to run the configuration command.

Page 1206

Augmenting an existing profile with Business Monitor
Augmenting a profile is the task of updating a profile definition with additional functions. Monitor
can be added to an existing profile including a profile for Process Center and/or Process Server. To

Page 1207

perform this task, launch the PMT tool and select the server to be augmented. Once selected, click
the Augment button to begin the steps.

From the augmentation types available, select the Monitor server.

Page 1208

Page 1209

Page 1210

Page 1211

Page 1212

Page 1213

Information Sources for Business Monitor
InfoCenter for Business Monitor

Page 1214

The InfoCenter for IBM Business Monitor can be found at:

http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r0m1/index.jsp

A downloadable version can be found here:

http://www-01.ibm.com/software/integration/business-monitor/library/

Redbooks

• Business Activity Monitoring with WebSphere Business Monitor V6.1 – SG24-7638-00 -
2008-07-30

DeveloperWorks for Business Monitor
DeveloperWorks hosts many articles on IBM Business Monitor.

• Monitoring business processes: How your topology influences your monitoring approach – 2013-08-07

• Some tips for IBM Business Monitor modeling and versioning - 2013-01-30

• What's new in IBM Business Monitor V8 - 2013-09-26

• Troubleshooting common CEI-related issues with IBM Business Monitor - 2012-09-20

• Monitoring business processes with IBM Business Process Manager and IBM Business Monitor - 2011-12-14

• Monitoring very long-running business processes with WebSphere Business Monitor - 2011-12-14

• Enabling event flow in BPM solutions and best practices for monitor model deployment, Part 1: Configuring and verifying event flow between
a clustered Process Server and IBM Business Monitor server - 2011-11-16

• Monitoring business processes by using tracking groups in IBM BPM V7.5 - 2011-08-10

• Business activity monitoring with IBM Business Monitor V7.5, Part 1: What's new in IBM Business Monitor V7.5 – 2011-06-29

• Business activity monitoring with IBM Business Monitor V7.5, Part 2: A quick tour of the dashboards – 2011-06-29

Page 1215

http://www.ibm.com/developerworks/websphere/bpmjournal/1106_alcorn/1106_alcorn.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1106_wayne/1106_wayne.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1108_venugopal/1108_venugopal.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1111_kohli/1111_kohli.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1111_kohli/1111_kohli.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1112_solovey/1112_solovey.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1112_walden/1112_walden.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1212_fang/1212_fang.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1209_alcorn/1209_alcorn.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1301_fang/1301_fang.html
http://www.ibm.com/developerworks/bpm/library/techarticles/1308_ocana/1308_ocana.html
http://publib-b.boulder.ibm.com/abstracts/sg247638.html?Open
http://www-01.ibm.com/software/integration/business-monitor/library/
http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r0m1/index.jsp

• Business activity monitoring with IBM Business Monitor V7.5, Part 3: Monitoring IBM Business Process Manager – 2011-06-29

• Business activity monitoring with IBM Business Monitor V7.5, Part 4: Customizing the dashboard experience - 2011-06-29

• Monitoring your business applications, Part 2: Products offering basic integration with WebSphere Business MonitorMonitoring your business
applications, Part 2: Pro

• Smart interactive process design for modeling and monitoring – 2011-01-19

• Multi-module monitoring with the V7 WebSphere BPM suite, Part 1: Use two new plug-ins for WebSphere Business Modeler V7 to achieve
end-to-end business process monitoring - 2010-10-06

• Monitoring and administering human tasks with WebSphere Business Monitor, Part 2: Using and customizing the global human task model -
2010-12-14

• BPM voices: Joachim Frank: Behind the scenes of WebSphere Business Monitor event processing – 2010-10-06

• Multi-module monitoring with the V6.2 WebSphere BPM suite - 2010-10-06

• Building smarter event-driven business processes with the WebSphere BPM suite – 2010-05-05

• Comment lines: Modeling for execution, revisited – 2010-04-14

• Configure database high availability for WebSphere Business Monitor V6.2 – 2010-04-12

• Business Event Processing with WebSphere Business Events, Part 5: Integrating Business Events with WebSphere Business Monitor - 2010-
03-15

• Dimensional analysis in business activity monitoring (BAM), Part 2: Improve performance in WebSphere Business Monitor V6.2 with
materialized query tables – 2010-02-24

• A technical deep dive into the global process monitor model – 2010-02-03

• Developing custom widgets for Business Space using Dojo, Part 1: Generating Dojo markup using a generic markup handler - 2009-12-09

• Developing custom widgets for Business Space using Dojo, Part 2: Creating a Dojo DataGrid component using a generic grid handler – 2010-
01-20

• Develop custom widgets for Business Space with Rational Application Developer or WebSphere Integration Developer – 2009-12-20

• Business process monitoring in WebSphere Process Server V6.2 using WebSphere Business Monitor V6.2, Part 1: Configuring the integration
– 2009-12-16

• WebSphere Business Modeler and WebSphere Business Monitor feedback loop – 2009-12-15

• How to use event processing in CICS: Part 3, Consuming CICS events with WebSphere Business Monitor – 2009-11-25

• Generate events for monitoring in WebSphere Business Monitor V6.2 from an Oracle database – 2009-10-28

• Configure WebSphere Business Monitor for high throughput and performance – 2009-11-19

• Improve performance and usability by implementing TopCount functionality for WebSphere Business Monitor dimensions with DB2
Alphablox – 2009-11-02

• Dimensional analysis in business activity monitoring (BAM), Part 1: Leverage WebSphere Business Monitor V6.2 to perform dimensional
analysis – 2009-08-25

• Monitoring your SAP system using WebSphere SAP Adapter and WebSphere Business Monitor – 2009-07-22

• What's new in WebSphere Business Monitor V6.2 – 2009-01-28

• Use Common Event Infrastructure for business-level logging to improve business processes - 2005-12-07

Introducing the Monitor Model
To provide business level monitoring, IT systems must produce data that is recorded. We can
imagine a system producing an event that a sale has occurred. The event data may be described as
XML, character delimited, COBOL copybook or some other format of data. This is the concrete
representation of the data. It may be stored in files or database tables. However, this is too low-
level for our purposes. What we really want to do is record the conceptual information. We want
to have a model of the data under consideration and have the real world physical data be used to
populate the notion of our model.

Let us try and make this real. Imagine we wish to answer the question "What was the average value
of an order?" To be able to answer this, we need to record the value of each order as it is

Page 1216

http://www.ibm.com/developerworks/websphere/library/techarticles/0512_becker/0512_becker.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0901_wayne/0901_wayne.html
http://www.ibm.com/developerworks/websphere/tutorials/0907_kumar/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0908_enyeart/0908_enyeart.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0908_enyeart/0908_enyeart.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0909_angani/0909_angani.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0909_angani/0909_angani.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0908_wilms/0908_wilms.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0910_nguyen/0910_nguyen.html
http://www.ibm.com/developerworks/websphere/tutorials/0911_wang/index.html
http://www.ibm.com/developerworks/offers/lp/demos/summary/ws-feedbackloop.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0912_cui/0912_cui.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1004_wayne/1004_wayne.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1001_khanna/1001_khanna.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0912_khanna/0912_khanna.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1002_frank/1002_frank.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1002_enyeart/1002_enyeart.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1002_enyeart/1002_enyeart.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0812_sivakumar/0812_sivakumar.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1004_huang/1004_huang.html
http://www.ibm.com/developerworks/websphere/techjournal/1004_col_xu/1004_col_xu.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1005_iyer/1005_iyer.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1003_lakshmanan/1003_lakshmanan.html
http://www.ibm.com/developerworks/websphere/bpmjournal/0812_col_frank/0812_col_frank.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1012_ngo/1012_ngo.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1010_lakshmanan/1010_lakshmanan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1010_lakshmanan/1010_lakshmanan.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1101_walden/1101_walden.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1105_alcorn2/1105_alcorn2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1105_alcorn2/1105_alcorn2.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1106_alcorn3/1106_alcorn3.html
http://www.ibm.com/developerworks/websphere/bpmjournal/1106_alcorn2/1106_alcorn2.html

encountered. An order may be taken by a variety of sources. For example, a web site may result in
an order or a phone call to a CSR. Each of these may result in an event, possibly in a different
format, indicating that an order has been made. However the order is received, all of them indicate
an order. This leads us to the notion of a "an order" as a logical entity separate from the physical
data. The set of logical entities in aggregate are described as a model. The model describes:

• What are the logical entities, which are called metrics, that are to be recorded?

• How do we map incoming data to populate these metrics

• More to be described

The overview then of how Business Monitor is used is that a developer builds a Monitor Model
(MM) describing the metrics that they would like to work with. Next the developer will map the
real incoming data to those metrics describing when and how they are populated.

Monitor models are created and edited in an Eclipse Perspective that can be found in IID.

Before building a model, a monitor project must be constructed. A simple wizard is presented into
which the name of the new monitor project can be supplied.

Once created, the project holds a number of folders. The one of interest to us right now is Monitor
Models.

Page 1217

The wizard for creating the Monitor Model is also very simple.

Once created, the Monitor Model editor is opened. It is within this editor that the vast majority of
monitor model definitions are performed.

Page 1218

Monitoring Context
A monitoring context is part of the Monitor Model. A context defines a set of metrics and other
attributes that are related together through a common thread. For example, if a sales order has a
description of what is being ordered, a price and an actual shipped date, it may be that this data is
not generated at one time. For example, when the order is first received, we know what is being
ordered and how much it is selling for but it is some time later that we know the date of actual
shipment. If the data that describes this sale arrives in pieces over time then we need to ensure that
the distinct pieces are contextually related to each other. It is the Monitoring Context that allows us
to group together these properties. As subsequent events arrive which belong to the same
monitoring context, the model for that instance is updated with the new information.

Key Fields

Within a Monitoring Context one or more fields must be flagged as key fields. It is the key fields
that provide the identity of the context.

Key fields show up in the monitor model with a key icon beside them

Page 1219

The properties of the key details look as follows:

A core aspect of the key is the XPath expression used to set its value.

Inbound Event
The Inbound event monitor model definition describes an external event that is to be recognized by
this monitor model. An inbound event is external data that physically arrives at Business Monitor.
The data has to be in XML format. The inbound event conforms to an XML Schema Definition
(XSD) that is used to map the incoming data.

The event data descriptions are described through either CEI or through XSDs created in another
section.

Page 1220

When an event is received, all monitoring context are given the opportunity to work with the event.
The mandatory Filter Condition executes an XPath expression against the received data. If
the expression evaluates to true, then the event will be handled by this model, otherwise the model
will ignore the event as though it had never happened.

Once an event is determined to be appropriate for this model, the next question becomes one of
which instance of the model should the event be delivered? Here an expression is supplied that is
used to match the data in the event against a specific instance of the monitor model context. Rules
then govern what to do in each of the possible circumstances where zero, one or may instances are
found.

Metric
The Metric definition defines a specific data item that can be used by dashboard designers for
populating those dashboards. The Metrics are the logical entities of the model that we eventually
wish to populate with data received contained within externally published events that are received
by the Inbound Event.

Each Metric definition has an ID and a Name. The ID is the unique value maintained for the

Page 1221

metric. The Name is a human readable annotation for the metric.

Each of the metrics has an associated data type. The allowable data types are:

• Boolean

• Date

• DateTime

• Decimal

• Duration

• Integer

• String

• Time

Within the metric definition is the ability to supply an expression that will be used to populate the

Page 1222

metric from an incoming piece of data.

Key

Counter

Stopwatch
The Stop watch is a timer that can be started, stopped or reset. Initially, it is not counting but when
an event or a trigger arrives, it can be told to start. Other events and triggers can be used to stop or
reset it.

Trigger
A trigger is an indication that something has happened. Specifically, a trigger can occur when a
metric's value changes, another trigger fires, an inbound event arrives or a clock timer fires. Let us
call this the trigger's source event.

In addition to the source event, there is an optional expression which can be evaluated. The
outcome of this expression is either true or false. If no expression is supplied, the trigger will fire
every time the source event occurs. If an expression is supplied, then when the source event
happens, the expression will be evaluated. Only if the expression results in a true value, will the
trigger actually fire.

A boolean attribute on the trigger is available called "Trigger is repeatable". This indicates whether
or not the trigger may fire more than once for this monitoring context.

If is set to true (checked), then the trigger will fire every time its source event happens. If a
condition is also supplied, then obviously the trigger will only fire if the condition is also true.

If the repeatable flag is set to false, then if there is no condition supplied, the trigger will fire once
and once only. If a condition is supplied, it will fire the first time a source event happens and the
condition is true and will not fire again until the condition becomes false and then true once more.

Another attribute of the trigger is called "Terminate monitoring context". If this flag is set to true
then when the trigger fires, this is the indication that the monitoring context is no longer needed and
the monitoring context will be flagged as "closed".

As mentioned previously, the source event that can cause a trigger to fire can be a time base. The
trigger definition for time events has three possible options.

The first is a recurring evaluation. This is an interval of time after which the trigger condition will
be evaluated (if one is supplied) and the trigger will fire. If the trigger is flagged as repeatable, the
interval will be repeated otherwise it will be a one-off fire.

The second option is a specific time evaluation. This is a one-time trigger that will happen on the
date/time specified.

The third option is a daily evaluation which will fire at a specific time of the day each day that the
monitoring context is open.

Outbound Event
Monitor not only has the ability to receive events for processing, it has the ability to publish events
for others to consume. One of the core consumers of this is the notification mechanism. Within a
monitor model we can define "Outbound Event" definitions which declare when an outbound event
should be fired and what it may contain.

Page 1223

When created, we get to name the event and also define

In the creation wizard, we can define that this is an event that will be destined for the Monitor
action services and what trigger will be used to cause the event to be emitted.

Commonly we define a value for the "BusinessSituationName" which will be used as the
key for the type of action service to be performed:

Page 1224

Key Performance Indicators
So far we have just discussed the population of modeled metrics based on the arrival of events. An
example of such a metric might be the duration it takes to process an individual order. Now we
look at aggregating these metrics together, the result of which we term a "Key Performance
Indicator". For example, if we aggregate a set of sales order durations using an average function,
we now find the average duration of sales orders. That becomes a very meaningful concept.

In a KPI definition, we get to define a metric that will be aggregated across its instances. The
aggregation functions supplied by IBM include:

• Average – The average of metrics from the time set

• Minimum – The minimum value of a metric from the time set

• Maximum – The maximum value of a metric from the time set

• Sum – The sum of metrics from the time set

• Count – The number of metrics in the time set

• Standard Deviation - ??

When we define a KPI we give it a Name and an ID. The Name is used to display the KPI in a
human readable form when it is displayed to the end user, while the ID is used to track the KPI
internally and through APIs.

For numeric values, we can supply a "Decimal Precision" property which is the number of
decimal places to show if the value of the KPI is shown. The value of the KPI is not altered by this
property … it is available to any display technology to format the output.

We can also request that the KPI be displayed as a "percentage". This means (for example) that if
the value of a KPI were 0.3, it would be displayed as "30%".

Page 1225

The Time Filter section provides the range of time over which the set of metrics are calculated.

I like to think of a KPI like a dial on my car dashboard. At a quick glance I can tell if I am going
too fast/slow, what my fuel level is and other key aspects of the operation of my car. A KPI is not
the same as a chart … instead, the KPI should be used to show that you are operating within an
acceptable range.

Let us use an example to illustrate KPIs. Imagine that we are processing sales orders and we have a
target of $1000 worth of sales per day. Each sale that is made creates a metric called "amount"
that represents the amount of a sale. To calculate our KPI, we want to calculate the sale value over
the last day.

We create a new

The time filter allows us to specify which instances of metrics should be used to calculate the KPI.
For example, if we have been running our process for many months and have been collecting
information, the daily sales should be calculated from what happened today and should not include
sales metrics from previous days. When we define our KPI, we have the option of specifying a
"Time Filter" which defines whether to include or exclude metrics. The Time Filter
expression has four options available to us:

• None – Include all available historic metrics. Effectively no filtering is performed and the
KPI is based on all data available.

Page 1226

• Repeating – This defines an interval of time that is a window into the data. It may have
one of four options:

◦ Daily – Data is calculated on a per day basis

◦ Monthly – Data is calculated on a per month basis

◦ Quarterly – Data is calculated on a per quarter basis

◦ Yearly – Data is calculated on a per year basis

We can also calculate the KPI as a function of a full "period" or the "in progress" period. To
illustrate this, if we say that the period is "daily" and we select "Last full period", then if
today is Friday at 11:30am, then the KPI will be built from the data from Midnight to
Midnight of Thursday (yesterday). Any data from today (Friday) will not be included.
However, if select "Period in progress", then the data will be built from Midnight of today
(Friday) up to and including now.

• Rolling – This setting builds KPI data from a sliding window of data. The options for the
period can be one of the following Minutes, Hours, Days, Months or Years.

• Fixed – This setting builds KPI data from metrics sourced over a fixed period of time.
The start and end dates/times can be supplied.

A KPI usually has a "target" associated with it. This is our "goal". It is what we would hope to
achieve or expect. By setting a target, we can see if we are higher or lower than the desired amount.

Page 1227

In addition to defining a target, we can define "ranges" for our data. These ranges provide visual
indications of where are relative to our goal.

Alerts and Actions
If monitor detects an event that should be made known to a user, it can use the concept called
"Situation Events".

Action processing is managed by the WAS application called "IBM_WBM_ACTIONSERVICES".

Action Service templates
When a situation event occurs, it can be serviced by of one of three possible types of action:

• Notifications

• SCA

• Web Services

These are defined in the WAS Admin Console:

Notification Templates

The notification template describes HOW we wish to notify someone when a business situation
happens. These notifications are available in four distinct types:

• alert – Add an alert to a dashboard

• email – Send an email

• cell phone – Call a cell phone

Page 1228

• pager – Call a pager

They all use the same format of template. Core within the template are places where we can define
what the "Subject" and "Body" of the notification will be composed from. Think of this as
describing WHAT the user will see when the notification is made.

When creating a new template definition, it looks as follows:

• Template name – Every template must have a unique named and is used as the key to
look it up.

Page 1229

• 'To' query type – Defines the algorithm used to determine a set of users to which the
notification will be delivered. See also the "To" field.

• To – If supplied, this will be the expression used to define which users that the notification
will be sent. If left empty, users can subscribe to the notification from the dashboard.

• Owner – If there are no subscribers to the notification, this field can be used to name an
owner who will be alerted.

• Priority – A field on a notification that can be used to set the priority of the notification.

• Subject – The subject line of the notification. Can use meta code to describe data.

• Body – The body of the notification. Can use meta code to describe data.

Both the "Subject" and "Body" properties can use meta code to describe data. The meta code
can be:

• %<CBE Variable>% - A variable within the CBE

• %%<XPath Expression>% - An Xpath expression to data. Note that when using this
feature, you may have to define additional XML namespaces and prefix your own data. For
example, if the payload of a business situation is an XML document, then the fields will
have to be prefixed with the namespace.

• #% - The "%" symbol itself

• ## - The "#" symbol itself

Let us look at an example of this:

Consider an outbound event definition that looks as follows:

Page 1230

Notice specifically the addition of an event property called "Amount" that is populated from a
Monitor Model metric. This means that when this event is published, it will also contain event
specific data.

In our template, we can refer to the value of that property via the meta string:
%%cbe:CommonBaseEvents/cbe:CommonBaseEvent/amount/text()%

With these concepts in mind, let us now see if we can put some of them together. Consider a
scenario where you want to be informed of a high value sale on your dashboard. This is an example
of an alert.

The first thing we will want to do is to create a "template" used by Monitor's action services
subsystem. This template describes "what" we want to happen when a situation such as a high
value sale is detected.

Templates can be added, viewed or deleted from the WAS admin console at:
Applications > Monitor Services > Monitor Action Services > Template Definitions > Notifications

Page 1231

Within the template definition, we have choices of what type of action service to built. We will
concentrate on the "Dashboard Alert".

The template describes what shall be the content of the Subject and Body.

Once the template has been built, we have an abstract definition of what the user might see if a
business situation is encountered but we have not yet said "which" events will result in the creation
of such an alert. That is where the next part comes in. What we now do is bind a "Business
Situation Event" (a technical thing) with the template that defines what should happen when that
technical thing is detected. We again perform this task through the IBM WAS Admin Console.
Applications > Monitor Services > Installed Situation Event Bindings

Within this area, we can add, view and delete the bindings/relationships between events and
templates. The administration user interface here is a little confusing so let us take some time.
When we first visit the link, we will see an empty table that looks as follows:

If we click the New button to create a new entry, we are presented with the following screen:

Page 1232

The first thing we need to do is enter the value for the "Situation event name". This is the technical
part that is the "key" in the data that says "Hey... an event has happened that I want you to tell
someone about!". Once we enter a value here, we must hit the Apply button before we can go
further.

Once done, we can now define the association between THIS event and a template that describes
how we want to inform the user. Clicking the Add button opens a new screen. Within this screen
we get to provide a name for our binding association and finally, the ability to specify which action
template to use to handle the event.

Page 1233

The result will be:

That sure is a lot of indirections!! The way to interpret this important page is as follows:

"When a business situation event of type 'HighValueSale' happens, then execute the alert service
described by the template called 'Not1'. This binding is known by the name of 'My Alert' and it so
happens that the template type if an 'AlertHandler'".

With all this in place, we now think about how an event is generated by the monitor model. What
we do is create an instance of an "Outbound Event"

Page 1234

During creation, we have the option to check the box labeled "Configure this event to be processes
by IBM Business Monitor action services". It this that defines this event as the source of an alert.
The outbound event must also be associated with a Monitor Model trigger to determine when the
event should be fired.

Because we checked the box that said this was a monitor action event, the payload of the event has
been partially filled in for us. Among its properties is one called "BusinessSituationName". This
property is very important. This is the key used to determine which template to invoke. This maps
to the "Situation event name" defined in a previous WAS admin panel.

Page 1235

Monitor SVG Diagrams
Graphic images are commonly found in raster formats such as JPEG and PNG. An alternative
format is the Scalable Vector Graphic (SVG).

Shapes in an SVG diagram can:

• Change shape fill color

• Change shape outline color

• Display Text

• Link to other diagrams

• Hidden/displayed

An SVG file (which is really an XML document) must be modified for it to be used by Monitor.
Edit the file and add the following to the <svg> tag:
xmlns:mm="http://www.ibm.com/xmlns/prod/websphere/monitoring/6.1.0/mm"

The most popular tool for working with SVG diagrams is called "Inkscape". We can edit our
diagram within that tool to prepare it for Monitor usage.

After opening our base diagram in Inkscape, we will be presented with a view similar to the
following:

Page 1236

From the Edit menu, select XML Editor. Select the root of the document and set the property as
shown in the following screen shot:

Page 1237

Next you can click on parts of the diagram and give them identifiers by adding an attribute called
"mm:id" and a value corresponding to the ID name. Once the SVG is saved and loaded into IID's
Monitor editor,

From the Instances widget, be sure and change its configuration by checking the "Enable this
widget to send events over wires" from the wiring tab. This will add a "synchronize" icon to the
Instances widget. When clicked, the diagram will be changed to reflect the data associated with that
instance.

For each SVG shape entry that was marked with an identifier, we have the ability to define one or
more actions.

The types of actions are described in the following.

See also:

• DeveloperWorks - Model and simulate business processes, Part 2: Displaying SVG diagrams on the WebSphere Business Monitor dashboards -
2007-06-05

SVG Action – Set Color
This action sets the color of the shape. It includes the following properties:

• condition – An expression which, if it evaluates to true, will result in the action being
performed.

• fill color – The color to be used to fill the shape.

• outline color – The color to be used for the stroke of the shape.

Page 1238

http://www.ibm.com/developerworks/library/ar-model2/

SVG Action – Set Text
This actions sets the text of a text area. It includes the following properties:

• condition – An expression which, if it evaluates to true, will result in the action being
performed.

• text color – The color to be used for the text.

• text value – The string to be used for the text. Can be evaluated as a function.

SVG Action – Hide Shapes
This action hides (or shows) the shape as a function of an expression.

• condition – An expression which, if it evaluates to true, will result in the action being
performed.

SVG Action – Set Diagram Link
This action changes the diagram being shown to a different context when the shape entry is clicked.

• condition – An expression which, if it evaluates to true, will result in the action being
performed.

• target context – ??

SVG Action – Send Human Task Notification When Clicked
This action sends a human task notification.

• condition – An expression which, if it evaluates to true, will result in the action being
performed.

• human task instance ID – ??

• human task name – ??

• human task namespace – ??

SVG Action – Send Notification When Clicked
This action sends a notification when the shape entry is clicked.

• condition – An expression which, if it evaluates to true, will result in the action being
performed.

• event code – ??

Generating events from a BPMN process
Before a Process Application can generate events for Monitor, it must be instructed that it can
communicate with Monitor. This is achieved through the Process Application settings in a process
application:

Page 1239

Once this change has been made, when either a new snapshot is deployed or an update of the
tracking definitions is performed, the generated Monitor Model EAR will be deployed to the
Process Server.

The name of the generated application will be:
bmon_<ProcessAppSynonym>_Main

A BPD in a Process Application can emit events. It does this by building and sending event
messages to a JMS queue.

Page 1240

The identity and details of the queue can be found in JNDI at:
jms/com.ibm.lombardi/EventEmissionQueue

An instance of this resource is created when a Process Server profile is built. It's default WAS
resource name is LombardiEventEmissionQueue which resolves to an SIBus queue name of
LombardiEventEmitterInputQueue.

There must also be a a JMS Queue Connection factory found at JNDI:
jms/com.ibm.lombardi/EventEmissionQueueFactory

An instance of this resource is created when a Process Server profile is built. Its default resource
name is LombardiEventEmissionQCF. This points to an SI Bus called
"MONITOR.<cellname>.Bus"

By default, Process Center does not have the event emission resources defined to it. However, if
the JNDI resources are defined, it will start using them.

In summary, these resources are needed:

• jms/com.ibm.lombardi/EventEmissionQueueFactory – A Queue Connection
Factory

• jms/com.ibm.lombardi/EventEmissionQueue – A Queue

Resource Type Value

LombardiEventEmissionQCF JMS Queue
Connection
Factory

jms/com.ibm.lombardi/EventEmissionQueueFactory

LombardiEventEmissionQueue JMS Queue jms/com.ibm.lombardi/EventEmissionQueue

It is important to take a pause here and fully understand the story so far. In my experience, it is
important to understand the architecture in order to be fully successful. What we have is that IBM
BPM generates messages that are written to an SI Bus queue. The content of these messages are
XML documents. It is here that IBM BPM ends its part of the Monitor interaction. At this point,
the events have not made their way to monitor and merely reside in a queue. In the next part we
will see how the messages are consumed by Monitor but before going there we have one more
thought.

What if Monitor is not installed on the same cell or machine as IBM BPM? We will shortly see
that Monitor has to be able to read the messages from the queue and if Monitor is remote we seem
to have a problem as a remote machine can't read a queue that is local to IBM BPM. The solution
to this comes from the IBM WAS SI Bus technology. SI Bus has the concept of "Foreign
Connections". This means that we can define a network link from the WAS server hosting IBM
BPM to the remote WAS server hosting Monitor.

Page 1241

From BPM's perspective, it continues to think that it is writing messages to a named queue and
from Monitor's perspective, it thinks it is reading from a named queue but WAS is managing the
movement of messages from WAS 1 to WAS 2.

Mechanically, the way we achieve this is through the SI Bus notion called the "foreign bus
connection".

The IBM_BPM_EMITTER_SERVICE application

The messages sent to the JMS queue by BPM are (obviously) written to the target queue and are
also not in a format that Monitor can directly consume. IBM has supplied an application called
"IBM_BPM_EMITTER_SERVICE" that watches a JMS queue for such messages and, when they
arrive, formats them for Monitor and delivers them to Monitor. This application should be installed
on a machine which is part of the Monitor environment and which can also read from the BPM
written queue. Since 8.5 of BPM can't co-exist on the same cell as Monitor, we normally set up a
cross cell queuing environment where BPM writes the message to a queue which is actually remote
from BPM. The message then ends up on the machine hosting Monitor which is where the
IBM_BPM_EMITTER_SERVICE will be installed.

The application uses three WAS level JMS resource definitions:

• jms/com.ibm.lombardi/JMSEmitterInputQueueFactory

◦ WAS Resource Name – LombardiEventEmitterInputQCF

◦ Points to MONITOR.<Cellname>.Bus

• jms/com.ibm.lombardi/JMSEmitterInput

◦ WAS Resource Name – LombardiEventEmitterInputQueue

◦ Points to SIBus Queue: LombardiEventEmitterInputQueue

• jms/com.ibm.lombardi/JMSEmitterInputActivationSpec

◦ WAS Resource Name – LombardiEventEmitterInputAS

To install the IBM_BPM_EMITTER_SERVICE application, a wsadmin command has been
supplied called "wbmDeployBPMEmitterService":

AdminTask.wbmDeployBPMEmitterService(['-cluster', '<clustername>'])
AdminConfig.save()

eg.
AdminTask.wbmDeployBPMEmitterService(['-cluster', 'SingleCluster'])
AdminConfig.save()

Diagnosing problems
If when you run a process and the data from that process does not show as instance data within a
model, obviously, data is not moving from the process to monitor. Here is a check-list of items that
can be checked.

BPM side definitions

Within the IBM BPM side of the house we have the following JMS definitions:

Page 1242

• jms/com.ibm.lombardi/EventEmissionQueueFactory – A Queue Connection
Factory

• jms/com.ibm.lombardi/EventEmissionQueue – A Queue

Monitor side definitions

The following JMS definitions:

• jms/com.ibm.lombardi/JMSEmitterInputQueueFactory

◦ WAS Resource Name – LombardiEventEmitterInputQCF

◦ Points to MONITOR.<Cellname>.Bus

• jms/com.ibm.lombardi/JMSEmitterInput

◦ WAS Resource Name – LombardiEventEmitterInputQueue

◦ Points to SIBus Queue: LombardiEventEmitterInputQueue

• jms/com.ibm.lombardi/JMSEmitterInputActivationSpec

◦ WAS Resource Name – LombardiEventEmitterInputAS

Configuring CEI on BPM

AdminTask.wbmDeployCEIEventService('[-busMember [-cluster <clusterName>
-datasourceJndiName <jndiName> -datasourceAuthAlias <authAlias> -databaseSchema
<schemaName> -createTables true] -eventService [-cluster <clusterName>] -jmsAuthAlias [-user
<userName> -password <password>]]')

for example

AdminTask.wbmDeployCEIEventService('[-busMember [-cluster SingleCluster
-datasourceJndiName jdbc/CEI -datasourceAuthAlias BPM_DB_ALIAS -databaseSchema
db2admin -createTables true] -eventService [-cluster SingleCluster] -jmsAuthAlias [-user admin
-password admin]]')

AdminConfig.save()

Notes:

It may be that the datasourceJndiName has to be a new unique entry

Configuring for remote Monitor ↔ BPM
In many cases, the Process Servers running IBM BPM will be separate from the server running
Monitor. Because of this, the monitoring events in the form of JMS messages will have to be
remotely "shipped" from a queue on IBM BPM to a queue on the Monitor server.

Collect the following:

Property BPM Monitor

Host Name localhost localhost

SOAP Port 8879 8885

WAS Admin Userid cadmin admin

Page 1243

WAS Admin Password password admin

Link Userid monlink monlink

Link Password password password

Cluster Name SingleCluster

WBM provides scripts and sample properties files to assist in setting this up.

Create a userid called “admin” (if it doesn't already exist) on both servers.

A properties file was created that contained the following (a template for such can be found at
<Root>/scripts.wbm/crossCell/configRemoteMonitorBus.props):
SECURE_CONFIGURATION=true
LOCAL_WAS_HOST=localhost
LOCAL_WAS_PORT=8882
LOCAL_WAS_USERID=admin
LOCAL_WAS_PASSWORD=admin
LOCAL_WAS_MESSAGING_ENGINE=win7-x64Node03.server1-MONITOR.win7-x64Node03Cell.Bus

REMOTE_WAS_HOST=localhost
REMOTE_WAS_PORT=8880
REMOTE_WAS_USERID=admin
REMOTE_WAS_PASSWORD=admin
REMOTE_WAS_BUS_USERID=admin
REMOTE_WAS_BUS_PASSWORD=admin

LINK_USERID=admin
LINK_USERID_REMOTE_PASSWORD=admin
LINK_USERID_LOCAL_PASSWORD=admin

REMOTE_WAS_ME_NODE=win7-x64Node01
REMOTE_WAS_ME_SERVER=server1
#REMOTE_WAS_ME_CLUSTER=
REMOTE_WAS_ME_STORE=default

Next, the command "configRemoteMonitorBus.bat -props <fileName>" was
executed.

The servers were then restarted.

At this point I gave up … not because it was broken but because I opted instead for augmenting my
BPM server with WBM.

New instructions

Configure Server to Server SSL

Start both BPM and CEI

Login to WAS Admin Console

Go to

Security > SSL certificate and key management > (Related Items) Key stores and certificates

Select NodeDefaultTrustStore

> (Additional Properties) Signer Certificates

Click Retrieve from port

Enter details

Page 1244

Click OK to add the new entry

Go to Security > SSL certificate and key management > manage endpoint security configurations

Realm

defaultWIMFileBasedRealm

Results after execution:
C:\IBM\WebSphere80\AppServer\scripts.wbm\crossCell>configRemoteMonitorBus.bat -props
configRemoteMonitorBus.props
BM WebSphere Application Server, Release 8.0
ava EE Application Client Tool
opyright IBM Corp., 1997-2009
SCL0012I: Processing command line arguments.
SCL0013I: Initializing the Java EE Application Client Environment.
12/29/13 10:09:54:570 CST] 00000000 W UOW=null source=com.ibm.ws.ssl.config.SSLConfig org=IBM
prod=WebSphere component=Application Server thread=[P=394289:O=0:CT]
 CWPKI0041W: One or more key stores are using the default password.
SCL0035I: Initialization of the Java EE Application Client Environment has completed.
SCL0014I: Invoking the Application Client class com.ibm.wbimonitor.sib.configassist.Launcher

This utility will create a foreign bus link between the Monitor bus and a remote cell
Reading properties from file configRemoteMonitorBus.props
Creating remote Bus MONITOR.PCCell1.Bus
Adding application server Node1 : SingleClusterMember1 to the bus
Creating the foreign buses
Creating the foreign bus links
Saving the configuration changes
Saved
You must restart both application servers for this change to take effect
C:\IBM\WebSphere80\AppServer\scripts.wbm\crossCell>

After execution, the following resource changes will be found:

Page 1245

On BPM

Resource Name Resource Type Example

MonitorBusAuth J2C authentication data cadmin

MonitorBusAuthLink J2C authentication data monlink

MONITOR.<Cell>.Bus SI Bus MONITOR.PCell1.Bus

MONITOR.<MonCell>.Bus Foreign SI Bus Link MONITOR.win7-x64Node01Cell.bus

On Monitor

Resource Name Resource Type

See also:

• InfoCenter article on "configRemoteMonitorBus" – 8.0.1

• TechNote - 1424259 - Parameters for the configRemoteMonitorBus utility – 2010-07-03

• DeveloperWorks - Business process monitoring in WebSphere Process Server V6.2 using WebSphere Business Monitor V6.2, Part 1:
Configuring the integration - 2009-12-16

Event data format
The format of the event data written to the JMS queue by IBPM's BPDs is an XML document. This
data is well documented in a number of detailed articles in the IBM BPM InfoCenter.

Here is an example of a en event message:
<?xml version="1.0" encoding="UTF-8"?>
<mon:monitorEvent mon:id="R7aa8b5a191e031792162189"
 xmlns:bpmn="http://schema.omg.org/spec/BPMN/2.0"
 xmlns:bpmnx="http://www.ibm.com/xmlns/bpmnx/20100524/BusinessMonitoring"
 xmlns:ibm="http://www.ibm.com/xmlns/prod/websphere/monitoring/7.5/extensions"
 xmlns:mon="http://www.ibm.com/xmlns/prod/websphere/monitoring/7.5"
 xmlns:wle="http://www.ibm.com/xmlns/prod/websphere/lombardi/7.5"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <mon:eventPointData>
 <mon:kind mon:version="2010-11-11">bpmnx:PROCESS_STARTED</mon:kind>
 <mon:time mon:of="occurrence">2011-06-30T12:21:16.728-05:00</mon:time>
 <ibm:sequenceId>0000000002</ibm:sequenceId>
 <mon:model mon:id="f4396aed-63c7-4da9-b66d-bcc051c7dd41"
 mon:type="bpmn:process"
mon:version="2064.a3ac4487-a8f3-47ee-9bfd-
51491d944d6T">
 <mon:name>Sale</mon:name>
 <mon:instance mon:id="653">
 <mon:state>Active</mon:state>
 </mon:instance>
 </mon:model>
 <mon:model mon:id="68c2430a-bc66-4460-8e1a-df27cbed7706"
 mon:type="wle:processApplication" mon:version="2064.a3ac4487-a8f3-47ee-9bfd-
251491d944d6T">
 <mon:name>Mon1</mon:name>
 <mon:documentation/>
 </mon:model>
 <mon:correlation>
 <mon:ancestor mon:id="f4396aed-63c7-4da9-b66d-bcc051c7dd41.2064.a3ac4487-a8f3-47ee-9bfd-
251491d944d6T.653"/>
 <wle:starting-process-instance>f4396aed-63c7-4da9-b66d-bcc051c7dd41.2064.a3ac4487-a8f3-
47ee-9bfd-251491d944d6T.653</wle:starting-process-instance>
 </mon:correlation>
 </mon:eventPointData>
</mon:monitorEvent>

Page 1246

http://www.ibm.com/developerworks/websphere/library/techarticles/0912_cui/0912_cui.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0912_cui/0912_cui.html
http://www-01.ibm.com/support/docview.wss?uid=swg21424259
http://pic.dhe.ibm.com/infocenter/dmndhelp/v8r0m1/topic/com.ibm.wbpm.mon.ref.doc/ref/configremotemonitorbus.html

At a high level, it is composed of:

mon:monitorEvent – The root element of the event.
• @mon:id – A unique identifier for this event instance

mon:eventPointData – The details of the event. There is only one of these per event.

mon:kind – Defines the kind of event

mon:time – The time the event was generated

ibm:sequenceId -??

mon:model – An executable model element
• @mon:type – ???

mon:instance

mon:correlation

mon:applicationData

wle:tracking-point

wle:kpi-data

wle:tracked-field

The monitoringEvent/eventPointData/kind is a critical entry. It defines the kind of
the event that is received. The options include:

bpmnx:PROCESS_STARTED An instance of a process has been started. The models
supplied include:
• type=bpmnProcess
• type=wle:processApplication

bpmnx:PROCESS_COMPLETED An instance of a process has completed

bpmnx:PROCESS_TERMINATED An instance of a process has terminated

bpmnx:PROCESS_DELETED An instance of a process has been deleted

bpmnx:PROCESS_FAILED An instance of a process has failed

bpmnx:ACTIVITY_READY An activity is ready. The models supplied include:
• type="bpmn:userTask"
• type="bpmn:process"
• type="wle:processApplication"

bpmnx:ACTIVITY_ACTIVE An activity is active. The models supplied include:
• type = "bpmn:userTask"
• type = "bpmn:process"
• type = "wle:processApplication"

bpmnx:ACTIVITY_COMPLETED An activity has completed

bpmnx:ACTIVITY_TERMINATED An activity has terminated

bpmnx:ACTIVITY_FAILED An activity has failed

bpmnx:ACTIVITY_RESOURCE_ASSIGNED A user or group has been associated with an activity. The
models supplied include:
• type="bpmn:userTask"
• type="bpmn:process"
• type="wle:processApplication"

ACTIVITY_LOOP_CONDITION_TRUE

Page 1247

ACTIVITY_LOOP_CONDITION_FALSE

ACTIVITY_PARALLEL_INSTANCES_STARTED

bpmn:EVENT_CAUGHT The models supplied include:
• mon:type = "bpmn:startEvent"
• mon:type = "bpmn:process"
• mon:type = "wle:processApplication"

bpmn:EVENT_EXPECTED

bpmn:EVENT_THROWN

bpmn:GATEWAY_ACTIVATED

bpmn:GATEWAY_COMPLETED

The model type can be:

bpmn:process

bpmn:intermediateThrowEvent

wle:processApplication

A common pattern will be to create a Monitoring Context when a bpmnx:PROCESS_STARTED
event is detected and close the Monitoring Context when a bpmnx:PROCESS_COMPLETED event
is detected.

The XML Schema files that represent these events can be found in the InfoCenter at:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r5mx/topic/com.ibm.wbpm.admin.doc/topics
/rmon_eventschemaext.html

These three files should be built, saved and added to the Monitor projects.

Common patterns

A Process has started

mon:monitorEvent/mon:eventPointData/mon:kind = bpmx:PROCESS_STARTED

Examining events issued from BPM
When a BPM process runs, it generates events that are sent to Business Monitor. From time to
time, we may wish to examine these events and ensure that the data we expected to be sent arrived.
Alternatively, we may simply be interested in seeing what is passing.

One way to achieve this is to switch on Event Recording. This can be done through the IBM WAS
Admin Console in the

Applications > Monitor Services > Recorded Event Management > Event Recording

section. Within there we can enable or disable event recording:

Page 1248

http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r5mx/topic/com.ibm.wbpm.admin.doc/topics/rmon_eventschemaext.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r5mx/topic/com.ibm.wbpm.admin.doc/topics/rmon_eventschemaext.html

Once enabled and new events generated, we can review those events from

Applications > Monitor Services > Recorded Event Management > Event Management

Clicking on an event will show its XML content:

Capturing additional data from BPM
The IBM generated monitor models are a great start but there are times when we might wish to
capture additional information. Here we will document some recipes for additional items that may
be of interest.

Page 1249

Capturing the Task ID of a task

When a task is created in the process, we may wish to know the Task ID for the task in the monitor
data. This can be achieved by adding a new metric called "Task ID" in the "Steps" monitoring
context. The data type of the metric should be "String" and the expression used to populate it
should be:
if
(fn:exists(ACTIVITY_RESOURCE_ASSIGNED_Event/EventPointData/mon:model[1]/mon:instance/wle:taskInstanc
eId)) then

ACTIVITY_RESOURCE_ASSIGNED_Event/EventPointData/mon:model[1]/mon:instance/wle:taskInstanceId
else

 Task_ID

Capturing the Process ID of a process

When a process instance is created, we may wish to know the Process ID of that process in the
monitor data. This can be achieved by adding a new metric called "Process ID" in the top of the
monitoring context for the generated model. The data type of the metric should be "String" and the
expression used to populate it should be:
PROCESS_STARTED_Event/EventPointData/mon:model[1]/mon:instance/@mon:id

Capturing the Process Name of a process

When a process instance is created, we may wish to know the Process Name of that process in the
monitor data. This can be achieved by adding a new metric called "Process Name" in the top of the
monitoring context for the generated model. The data type of the metric should be "String" and the
expression used to populate it should be:
PROCESS_STARTED_Event/EventPointData/mon:model[1]/mon:name

Compiling Monitor Models
Once a monitor model has been edited in the Monitor Model editor, the EAR file that represents the
deployable unit of the model must be built. Right-clicking on the Monitor Model and selecting
Generate Monitor JEE Projects will achieve this task.

Page 1250

Once completed, the application can be deployed on the Monitor server.

In rare cases, the compilation can get confused in ID. A solution to this is to delete the generate
code and then re-compile from scratch. To achieve this, switch to the Resource Eclipse
perspective and delete the two projects which are called:

• <ModelName>Application

• <ModelName>ModelLogic

Page 1251

When the monitor model is changed, this recipe needs to be repeated in order for the changes to
take effect. In principle, it should be possible to simply re-deploy the new EAR with the existing
one still published but practice has shown this to be extremely problematic. My strongest
recommendation is to:

1. Un-install the existing EAR model

2. Generate a new JEE EAR from the model

3. Re-deploy the new EAR model

If after making a change to your model you find that there is no obvious runtime change, carefully
check that you have rebuilt and republished the EAR model. It is not an uncommon error to make a
change to the model and neglect to rebuild and republish.

It takes a few minutes to un-deploy, build and re-publish. You will need a machine with sufficient
resources to make this a workable recipe.

It has also been noticed that even though the deployment of the new model appears completed from
the ID Servers view, work is still on-going as shown in the console log. When I publish new
models, I keep an eye on the console log to ensure all work has completed before progressing with
new tests. Specifically, I continuously see the EAR being published, it saying it is started … a
minute passes … it says it is stopped and then finally it says it is started again.

Versioning Monitor Models
If we wish to create a new version of a Monitor Model while maintaining the data already collected,
we do this by we update the Model Version timestamp to be a later value.

Page 1252

Building Monitor models using the Model Editor
The Monitor Model editor is heavily dependent on XPath expressions.

It uses a number of namespaces. The common prefixes for these namespaces are show below as
well as their expanded values. The expanded values are needed when building models that have
data types of QName.

Prefix Namespace

mon http://www.ibm.com/xmlns/prod/websphere/monitoring/7.5

wle http://www.ibm.com/xmlns/prod/websphere/lombardi/7.5

bpmn http://schema.omg.org/spec/BPMN/2.0

bpmnx http://www.ibm.com/xmlns/bpmnx/20100524/BusinessMonitoring

See also:

• Building a Monitor Model for BPMN events

Monitor Process Start event
When a Process instance is started, an event is generated. The mon:kind has the value
bpmnx:PROCESS_STARTED. An example of the event is shown below:
<mon:monitorEvent ...>

<mon:eventPointData>
<mon:kind mon:version="2010-11-11">bpmnx:PROCESS_STARTED</mon:kind>

…
<mon:model mon:type="wle:processApplication">

<mon:name>ProcessAppName</mon:name>
…

</mon:model>

Something is wrong here. Using just this algorithm below, we would
capture ALL Process Starts not just the ones we are interested in
modeling.

Page 1253

A suitable Monitor Model inbound event definition would have:

Event Type Details

• ID: EventPointData
• type: mon:eventPointData
• Path: cbe:CommonBaseEvent/mon:monitorEvent/mon:eventPointData

Filter Condition

xs:string(PROCESS_STARTED_Event/EventPointData/mon:kind) =
'{http://www.ibm.com/xmlns/bpmnx/20100524/BusinessMonitoring}PROCESS_STARTED'

Correlation Expression

PROCESS_STARTED_Event/EventPointData/mon:correlation/wle:starting-process-instance = piid

Here we assume that the key for the MC is called piid and is configured:

Key Value Expressions

PROCESS_STARTED_Event/EventPointData/mon:correlation/wle:starting-process-instance

Correlating BPMN process events
mon:monitorEvent/mon:eventPointData/mon:correlation/wle:starting-process-instance

Monitor Tracking point data
When a tracking point is reached in a BPD, a bpmnx:EVENT_THROWN is generated.

The body of the event contains the name of the tracking group plus the values of the tracking group
parts.

Here is an example of the event edited for clarity:
<mon:monitorEvent>

<mon:eventPointData>
<mon:kind mon:version="2010-11-11">bpmnx:EVENT_THROWN</mon:kind>
<mon:time mon:of="occurrence">2011-07-03T11:40:52.778-05:00</mon:time>
<ibm:sequenceId>0000000007</ibm:sequenceId>
<mon:model mon:type="bpmn:intermediateThrowEvent"

mon:id="bpdid:56d35..."
mon:version="2064.d9d1e...">
<mon:name>Untitled1</mon:name>
<mon:instance mon:id="4"></mon:instance>

</mon:model>
…

</mon:eventPointData>
<mon:applicationData>

<wle:tracking-point wle:time="2011-07-03T11:40:52.779-05:00"
wle:name="Untitled1"
wle:id="ded130..."
wle:version="2064.d9d1e3..."
wle:groupName="sale2"

Page 1254

wle:groupId="18e915..."
wle:groupVersion="2064.d9d1e3...">
<wle:tracked-field

wle:name="usState"
wle:id="09d4da..."
wle:type="xs:string">TX</wle:tracked-field>

<wle:tracked-field
wle:name="saleDate"
wle:id="08365..."
wle:type="xs:dateTime">2011-07-22T05:00:00.00Z</wle:tracked-field>

</wle:tracking-point>
</mon:applicationData>

</mon:monitorEvent>

The XPath to get a named tracking data field is:

mon:monitorEvent/mon:applicationData/wle:tracking-point/wle:tracked-
field[@wle:name='???']

Here is a suggested set of inbound event details.

Event Type Details

• ID: EventPointData
• Type: mon:eventPointData
• Path: cbeCommonBaseEvent/mon:monitorEvent/mon:eventPointData

• ID:TrackingPoint
• Type: TrackingPoint
• Path: cbeCommonBaseEvent/mon:monitorEvent/mon:applicationData/wle:tracking-point

Filter Condition

xs:string(TRACKING_GROUP_name/EventPointData/mon:kind) =
'{http://www.ibm.com/xmlns/bpmnx/20100524/BusinessMonitoring}EVENT_THROWN' and
xs:string(TRACKING_GROUP_name/EventPointData/mon:model[1]/@mon:type) =
'{http://schema.omg.org/spec/BPMN/2.0}intermediateThrowEvent' and
TRACKING_GROUP_Sale2/TrackingPoint/@wle:groupName = 'name'

Correlation Expression

TRACKING_GROUP_name/EventPointData/mon:correlation/wle:starting-process-instance = piid

The way to read this inbound event is that it is the tracking group we are looking for if all of the
following are true:

• The kind of event is bpmnx:EVENT_THROWN

• The sub-type is bpmn:intermediateThrowEvent

• The tracking event is for our named tracking group

A metric can then be populate from the Inbound event with the expression:

Metric Value Expressions

TRACKING_GROUP_name/TrackingPoint/wle:tracked-field[@wle:name = 'field']

Take care not to populate fields when there is no data present. One solution is to create a trigger
from the inbound event and associate a condition with that trigger so that it only fires if the field is

Page 1255

present. We can then use the trigger as the indicator that a metric should be updated.

See also:

• Tracking Intermediate Event

Closing the Monitoring Context
When a BPD completes, it should close the associated monitoring context. The completion of the
process is detected by an event having mon:kind set to bpmnx:PROCESS_COMPLETED. An
example fragment of the data is shown next:
<mon:monitorEvent ...>

<mon:eventPointData>
<mon:kind mon:version="2010-11-11">bpmnx:PROCESS_COMPLETED</mon:kind>
…

Example monitoring definitions:

Event Type Details

• ID: EventPointData
• type: mon:eventPointData
• Path: cbe:CommonBaseEvent/mon:monitorEvent/mon:eventPointData

Filter Condition

xs:string(PROCESS_COMPLETED_Event/EventPointData/mon:kind) =
'{http://www.ibm.com/xmlns/bpmnx/20100524/BusinessMonitoring}PROCESS_COMPLETED'

Correlation Expression

PROCESS_COMPLETED_Event/EventPointData/mon:correlation/wle:starting-process-instance = piid

A Trigger is required to close the context:

Trigger Sources

Source: PROCESS_COMPLETED Event

Trigger Condition

N/A

Removing monitor 'Problems' view errors and warnings
By default, the Monitor Model editor shows warnings in the Problems view. These messages are
not needed.

Page 1256

When building Monitor models, a series of superfluous warning messages are logged in the
Problems view. These messages can distract from more significant issues. These warnings can be
disabled in ID through:
Window > Preferences > Java > Compiler > Errors/Warnings

From there, switch the relevant types of warning from "Warning" to "Ignore" and the
messages/warnings are removed.

• Code style

◦ Non-static access to static member

• Potential programming problems

◦ Serializable class without serialVersionUID

• Deprecated and restricted API

◦ Deprecated API

• Unnecessary code

◦ Local variable is never read

◦ Unused local or private member

◦ Unused import

• Annotations

◦ Unused '@SuppressWarnings' annotations

The generated J2EE projects can also cause warnings to be written. These can also be switched off.
In ID go to
Window > Preferences > Validation

From there, switch off (uncheck) the entries next to:

• EJB Validator

Debugging Monitor Models
Recorded Events Management
Monitor has the capability to record events that have previously been presented to it for later
examination. This is enabled or disabled from within the WAS admin console. The default is

Page 1257

disabled.

Once enabled, events received can also be seen in the admin console:

From here individual events can be viewed,deleted or exported.

Using the Monitor Model debugger
The Monitor Model debugger is a capability of IID that allows Monitor Models to have break
points associated with them. When events arrive at the Monitor Server, these breakpoints are
honored and a debugging perspective is shown that allows the programmer to see the event,
conditions and other items associated with the processing of that event.

Two applications must be installed in the server in order to use the Monitor Model debugger. These
are:

• com.ibm.wbimonitor.debug.server.application

• com.ibm.wbimonitor.ice.machine.application

Both can be found in the <WAS>/installableApps.wbm/debugger folder.

Page 1258

The first provides an application called IBM_WBM_DBG_SERVICES the second provides an
application called IBM_WBM_IVM. Before running debugging on a new server, validate that these
applications are installed and running.

To launch the debugger, right click on the Monitor model and select "Debug Monitor Model":

We know that the monitor debugger is ready when the following is shown:

Page 1259

Integrated Test Client
Another diagnostic tool at our disposal is the Integrated Test Client. This is launched from the
context menu of a Monitor Model:

Page 1260

Once launched, it looks as follows:

Page 1261

The high level model of its usage is that you add a series of events that are to be published. An
individual event is configured in the left panel. Once defined, the "Add to Test Script" button can
be pressed which will add it to the set of tests to be executed as shown on the right. Once the tests
have been defined, clicking the "Run Script" button will actually run the tests. The set of tests can
be saved as a group.

Uninstalling Monitor Apps
If we wish to uninstall a Monitor Application, we may use the standard WAS based techniques. To
see what models are installed, visit Applications > Monitor Models.

This will then show you the applications corresponding to each of the models:

Page 1262

From there you can visit Applications > Application Types > WebSphere
enterprise applications. The associated application can be selected and uninstalled.

Page 1263

Using Monitor REST APIs
One of the REST interfaces exposed by Monitor is the ability to send in data that, when received, is
considered to be an Event. This page provides notes on that topic.

REST requests are simple HTTP requests that carry payload and return response data. REST
requests can be sent from any language capable of sending an HTTP request. This includes Java and
JavaScript.

The Monitor REST Event catcher
When a client sends a REST Event to Monitor, monitor must "catch" that event and process it. We
will call the application that receives the event the "catcher". The catcher is a Java EE application
that when it receives the data, forwards that through CEI for normal Monitor processing. The
catcher is listening on the URL at the context root of /rest/bpm/events.

The Monitor REST request
The request should be sent to /rest/bpm/events. It must have a MIME type of "text/xml".
As of 8.0.1, there appears to be a need to send it to https.

A particularly good free tool for sending REST requests to monitor is "postman". To use this with
monitor, the following screen shot shows some sample settings;

The Monitor REST response

Page 1264

The response back from Monitor following a REST request is a JSON string. It contains the
following fields:

• Event Emission - String - Unknown meaning

• Request ContentType - String - The encoding of the request message

• Event IDs - Array of Strings - Event IDs

On an error, the response contains:

• Emission Completion Status - Integer

• Error - String - Description of the problem

Sending a Monitor REST request from Java
In Java, the core class of interest to us is called URL. This class provides the ability to name an
HTTP target, send data and receive a response. When sending a secure request, the HTTPS protocol
should be used.
String data = "<data to send as the event>";
URL url = new URL("http://localhost:9080/rest/bpm/events");
HttpURLConnection httpUrlConnection = (HttpURLConnection) url.openConnection();
httpUrlConnection.setRequestMethod("POST");
httpUrlConnection.setDoOutput(true);
httpUrlConnection.setRequestProperty("content-type", "text/xml");

OutputStreamWriter wr = new
OutputStreamWriter(httpUrlConnection.getOutputStream());
wr.write(data);
wr.flush();
InputStreamReader inReader = new InputStreamReader(httpUrlConnection.getInputStream());
BufferedReader br = new BufferedReader(inReader);
String line = br.readLine();
while (line != null) {
 System.out.println("Line is: " + line);
 line = br.readLine();
}

Monitor REST Security

When sending a request to a secure Monitor, authentication must be performed. Adding the
following before connecting to the server will achieve this:
String wasUserName = "<WAS Userid>";
String wasPassword = "<WAS Userid Password>";
String authorization = "Basic " + Base64.encode(new String(wasUserName + ":" +
wasPassword).getBytes());
httpUrlConnection.setRequestProperty("Authorization", authorization);

If the caller is running in an authenticated context, then an LTPA token can be passed. Adding the
following before connecting to the server will achieve this:
Set s = WSSubject.getCallerSubject().getPublicCredentials(WSCredential.class);
WSCredential creds = (WSCredential) s.iterator().next();
byte token[] = creds.getCredentialToken();
httpUrlConnection.setRequestProperty("cookie", "LtpaToken=" + Base64.encode(token));

Notes

Page 1265

• Do not include the <XML> header that is commonly found at the start of XML
documents. Monitor appears to choke on this.

When sending a request over HTTPS, certificates may need to be exchange. One of the easiest
ways to set this up is the following recipe.

First, obtain the Monitor Server certificate using the WAS admin console:
Security > SSL certificate and key management > Key stores and certificates > NodeDefaultKetStore >
Personal certificates

To insert the
keytool -import -file ProcCtr.pem -alias ProcCtr -keystore cacerts

The initial password for the Java keystore is "changeit"

REST API Components

Getting models

This API returns a list of monitor models known to Monitor with their version information:
GET /rest/bpm/monitor/models

Example:
[
 {
 "Model ID": "MonitorMonitoringModel",
 "Versions": [
 {
 "Model Display Name": "MonitorMonitoringModel",
 "Version": 20140105011802
 }
]
 }
]

Getting monitoring contexts
GET /rest/bpm/monitor/<ModelID>/mcs

Example:
{
 "Model ID": "MonitorMonitoringModel",
 "MC Array": [
 {
 "MCID": "Handle_Order",
 "MC Display Name": "Handle Order",
 "Cube Name": "MONITORMONITORINGMODEL_HANDLE_ORDER",
 "Child MCs": [],
 "Diagram Exists": false
 }
]
}

Get Metrics
GET /rest/bpm/monitor/<ModelID>/mcs/<MC ID>/metrics

Example:
{
 "MCID": "Handle_Order",
 "Model ID": "MonitorMonitoringModel",
 "Metric Array": [
 {
 "Metric Sortable": "false",
 "Metric Type": "DECIMAL",
 "Metric Name": "amount",

Page 1266

 "Metric ID": "bmon_f_amount"
 },
 {
 "Metric Sortable": "false",
 "Metric Type": "STRING",
 "Metric Name": "Aux Starting Process Instance ID",
 "Metric ID": "Aux_Starting_Process_Instance_ID"
 },
 {
 "Metric Sortable": "true",
 "Metric Type": "BOOLEAN",
 "Metric Name": "COMPLETED",
 "Metric ID": "COMPLETED"
 },
 {
 "Metric Sortable": "true",
 "Metric Type": "DATETIME",
 "Metric Name": "CreationTime",
 "Metric ID": "CreationTime"
 },
 {
 "Metric Sortable": "false",
 "Metric Type": "DATETIME",
 "Metric Name": "End Time",
 "Metric ID": "bmon_EndTime"
 },
 {
 "Metric Sortable": "false",
 "Metric Type": "STRING",
 "Metric Name": "Handle Order Instance ID",
 "Metric ID": "Handle_Order_Instance_ID"
 },
 {
 "Metric Sortable": "false",
 "Metric Type": "STRING",
 "Metric Name": "orderType",
 "Metric ID": "bmon_f_orderType"
 },
 {
 "Metric Sortable": "false",
 "Metric Type": "STRING",
 "Metric Name": "salesRep",
 "Metric ID": "bmon_f_salesRep"
 },
 {
 "Metric Sortable": "false",
 "Metric Type": "DATETIME",
 "Metric Name": "Start Time",
 "Metric ID": "bmon_StartTime"
 },
 {
 "Metric Sortable": "true",
 "Metric Type": "DATETIME",
 "Metric Name": "TerminationTime",
 "Metric ID": "TerminationTime"
 }
]
}

Get instances
GET /rest/bpm/monitor/<ModelID>/mcs/<MC ID>/metrics

Example:
{
 "Record Count": 2,
 "MCID": "Handle_Order",
 "Page Size": 10,
 "Model ID": "MonitorMonitoringModel",
 "FGSSecurityFilterApplied": false,
 "Metric ID Array": [
 "bmon_f_amount",
 "bmon_f_amount Localized",
 "Aux_Starting_Process_Instance_ID",
 "COMPLETED",

Page 1267

 "CreationTime",
 "CreationTime Localized",
 "bmon_EndTime",
 "bmon_EndTime Localized",
 "Handle_Order_Instance_ID",
 "bmon_f_orderType",
 "bmon_f_salesRep",
 "bmon_StartTime",
 "bmon_StartTime Localized",
 "TerminationTime",
 "TerminationTime Localized"
],
 "Instance Data": [
 {
 "Instance ID": 1,
 "Version": 20140105011802,
 "Metric Data": [
 100,
 "100.00",
 "8f5aff20-7b1f-4f6b-b30b-fcfea5fef005.2064.f35f2b68-0c54-46e8-bfd4-e07d53a82db.561",
 true,
 "2014-01-05T07:28:05",
 "January 5, 2014 1:28:05 AM",
 "2014-01-05T07:28:24",
 "January 5, 2014 1:28:24 AM",
 "8f5aff20-7b1f-4f6b-b30b-fcfea5fef005.2064.f35f2b68-0c54-46e8-bfd4-e07d53a82db.561",
 "Red",
 "cadmin",
 "2014-01-05T07:28:05",
 "January 5, 2014 1:28:05 AM",
 "2014-01-05T07:28:24",
 "January 5, 2014 1:28:24 AM"
],
 "Children": []
 },
 {
 "Instance ID": 2,
 "Version": 20140105011802,
 "Metric Data": [
 200,
 "200.00",
 "8f5aff20-7b1f-4f6b-b30b-fcfea5fef005.2064.f35f2b68-0c54-46e8-bfd4-e07d53a82db.562",
 true,
 "2014-01-05T07:28:31",
 "January 5, 2014 1:28:31 AM",
 "2014-01-05T07:28:43",
 "January 5, 2014 1:28:43 AM",
 "8f5aff20-7b1f-4f6b-b30b-fcfea5fef005.2064.f35f2b68-0c54-46e8-bfd4-e07d53a82db.562",
 "Blue",
 "kolban",
 "2014-01-05T07:28:31",
 "January 5, 2014 1:28:31 AM",
 "2014-01-05T07:28:43",
 "January 5, 2014 1:28:43 AM"
],
 "Children": []
 }
],
 "Page Number": 1,
 "DisplayFGSIndication": false
}

Getting KPI Contexts
GET /rest/bpm/monitor/<ModelID>/version/<Version>/kcs

[
 {
 "Model ID": "MonitorMonitoringModel",
 "KPI Context Name": "Handle Order",
 "Version": 20140105011802,
 "KPI Context ID": "Handle_Order",
 "Diagram Exists": true
 }
]

Page 1268

Getting KPI Lists
GET /rest/bpm/monitor/<ModelID>/version/<Version>/kpis

[
 {
 "Aggregated Metric Name": "Amount",
 "KPI Description": "",
 "KPI Origin": "runtime",
 "KPI Display Name": "My KPI",
 "Enable KPI Prediction": false,
 "KPI Context ID": null,
 "Target Localized": null,
 "Aggregated Metric ID": "bmon_f_amount",
 "User ID": "uid=admin,o=defaultWIMFileBasedRealm",
 "KPI Calc Method": "aggregated",
 "Target": null,
 "Model ID": "MonitorMonitoringModel",
 "Aggregated Function": "avg",
 "KPI Data Type": "decimal",
 "Calculated KPI Expression": null,
 "KPI ID": "My_x0020_KPI",
 "Version": 20140105011802,
 "KPI Context Name": null,
 "Version Aggregation": "allVersions",
 "Enable KPI History": true,
 "View Access": "personal"
 }
]

Getting KPI Value
GET /rest/bpm/monitor/<ModelID>/version/<Version>/kpis/value/<KPI ID>

This API retrieves the value of the KPI as well as its definition. The following is an example of
what might be returned.
{
 "Aggregated Metric MC Name": "Handle Order",
 "Aggregated Metric Name": "Amount",
 "Fixed Period End Localized": null,
 "KPI Display Name": "My KPI",
 "FGSKpiHistoryTrackingEnabled": null,
 "Effective End Date": null,
 "FGSKpiPredictionsEnabled": null,
 "Rolling Period Quantity": null,
 "Fixed Period Start": null,
 "Model ID": "MonitorMonitoringModel",
 "Aggregated Function": "avg",
 "Rolling Period Duration": null,
 "KPI Range Type": "actualValue",
 "Format Currency": null,
 "Repeating Period Timezone": null,
 "Model Display Name": "MonitorMonitoringModel",
 "Target Localized": null,
 "Fixed Period Timezone": null,
 "Time Period Method": null,
 "Aggregated Metric Type": "DECIMAL",
 "Aggregated Metric MC ID": "Handle_Order",
 "Aggregated Metric ID": "bmon_f_amount",
 "KPI Value Localized": "150",
 "Target": null,
 "KPI Value": 150,
 "KPI ID": "My_x0020_KPI",
 "Version": 20140105011802,
 "KPI Context Name": null,
 "KPI History Defaults": {
 "History Display Ranges": false,
 "History Granularity": "daily",
 "History Rolling Period Quantity": null,
 "History Repeating Period Basis": "periodInProgress",
 "History Repeating Period Quantity": 2,
 "History Timezone": null,
 "History All Versions": false,

Page 1269

 "History Time Range Method": "repeatingPeriod",
 "History Rolling Period Duration": null,
 "History Repeating Period Duration": "monthly",
 "History Time Range End": null,
 "History Time Range Start": null,
 "History Valid From": null,
 "History Display Target": false
 },
 "Repeating Period Duration": null,
 "Time Period Metric ID": null,
 "View Access": "personal",
 "KPI Cache Override Interval": null,
 "KPI Description": "",
 "KPI History Granularity Options": [
 {
 "KPI History Granularity Supported": [
 {
 "Granularity Value": "hourly"
 },
 {
 "Granularity Value": "daily"
 },
 {
 "Granularity Value": "weekly"
 },
 {
 "Granularity Value": "monthly"
 },
 {
 "Granularity Value": "quarterly"
 },
 {
 "Granularity Value": "yearly"
 }
],
 "KPI History Granularity Hours": 0,
 "KPI History Granularity Default": "hourly"
 },
 {
 "KPI History Granularity Supported": [
 {
 "Granularity Value": "hourly"
 },
 {
 "Granularity Value": "daily"
 },
 {
 "Granularity Value": "weekly"
 },
 {
 "Granularity Value": "monthly"
 },
 {
 "Granularity Value": "quarterly"
 },
 {
 "Granularity Value": "yearly"
 }
],
 "KPI History Granularity Hours": 48,
 "KPI History Granularity Default": "daily"
 },
 {
 "KPI History Granularity Supported": [
 {
 "Granularity Value": "daily"
 },
 {
 "Granularity Value": "weekly"
 },
 {
 "Granularity Value": "monthly"
 },
 {
 "Granularity Value": "quarterly"
 },
 {

Page 1270

 "Granularity Value": "yearly"
 }
],
 "KPI History Granularity Hours": 336,
 "KPI History Granularity Default": "daily"
 },
 {
 "KPI History Granularity Supported": [
 {
 "Granularity Value": "daily"
 },
 {
 "Granularity Value": "weekly"
 },
 {
 "Granularity Value": "monthly"
 },
 {
 "Granularity Value": "quarterly"
 },
 {
 "Granularity Value": "yearly"
 }
],
 "KPI History Granularity Hours": 2208,
 "KPI History Granularity Default": "monthly"
 },
 {
 "KPI History Granularity Supported": [
 {
 "Granularity Value": "weekly"
 },
 {
 "Granularity Value": "monthly"
 },
 {
 "Granularity Value": "quarterly"
 },
 {
 "Granularity Value": "yearly"
 }
],
 "KPI History Granularity Hours": 8784,
 "KPI History Granularity Default": "monthly"
 }
],
 "Effective End Date Localized": null,
 "Fixed Period End": null,
 "DisplayFGSIndication": true,
 "Time Period Metric Name": null,
 "KPI Data Type": "decimal",
 "Calculated KPI Expression": null,
 "Repeating Period Basis": null,
 "KPI Range Array": [
 {
 "KPI Range Color": "#73bfe5",
 "KPI Range Start Value": 0,
 "KPI Range Icon": null,
 "KPI Range End Value Localized": "100",
 "KPI Range Display Name": "low",
 "KPI Range ID": "kpiRangeId###0###1389452567044",
 "KPI Range End Value": 100,
 "KPI Range Start Value Localized": "0"
 },
 {
 "KPI Range Color": "#add9c1",
 "KPI Range Start Value": 100,
 "KPI Range Icon": null,
 "KPI Range End Value Localized": "150",
 "KPI Range Display Name": "medium",
 "KPI Range ID": "kpiRangeId###1###1389452573771",
 "KPI Range End Value": 150,
 "KPI Range Start Value Localized": "100"
 },
 {
 "KPI Range Color": "#feb76b",
 "KPI Range Start Value": 150,

Page 1271

 "KPI Range Icon": null,
 "KPI Range End Value Localized": "200",
 "KPI Range Display Name": "high",
 "KPI Range ID": "kpiRangeId###2###1389452583442",
 "KPI Range End Value": 200,
 "KPI Range Start Value Localized": "150"
 }
],
 "Version Aggregation": "allVersions",
 "Enable KPI History": true,
 "History Include Predictions": false,
 "KPI Origin": "runtime",
 "Format Percentage": false,
 "Default Prediction Model ID": null,
 "KPI Metric Filter Array": [],
 "Format Decimal Precision": null,
 "KPI Context ID": null,
 "Enable KPI Prediction": false,
 "KPI Calc Method": "aggregated",
 "User ID": "uid=admin,o=defaultWIMFileBasedRealm",
 "Prediction Model Array": [],
 "FGSSecurityFilterApplied": false
}

As we can see there is a bewildering number of properties returned. Here are some of the most
important:

• "KPI Value" – The current value of the KPI.

• "KPI Range Array" – An array of objects defining the ranges that have been defined. Each
object contains:

◦ "KPI Range Color" – The color to show the range.

◦ "KPI Range Start Value" – The start of the range.

◦ "KPI Range End Value" – The end of the range.

◦ "KPI Display Name" – A text display for this range.

◦ … others …

Creating new KPI definitions

In addition to viewing and listing KPI data, we also have the ability to dynamically create new KPI
definitions.
POST /rest/bpm/monitor/models/{model id}/versions/{version}/kpis/config/{kpi id}[?locale={string}]
[&mode={string}]

The payload of the request contains the details of the definition. The following table is reproduced
from the InfoCenter:

Name Type Required Description

KPI ID string Yes* The key performance indicator (KPI) ID. This value is
required for KPI updates. It is not a required field to create
a KPI. When a KPI is created, the KPI ID is derived from
the KPI Display Name.

Model ID string Yes The monitor model ID

Version number Yes The monitor model version

Locale string No The locale. This value consists of lowercase ISO language
code (ISO 639) and the uppercase ISO country code (ISO
3166) joined by an underscore (for example, en_US).

Page 1272

Results will be returned in the locale specified. If no locale
is specified, the locale of the REST server will be used.

KPI Context ID string No The key performance indicator (KPI) context ID

KPI Display Name string Yes The key performance indicator (KPI) display name

KPI Cache Override
Interval

number No Time in minutes for the KPI to cache the value. If set, this
time interval overrides the KPI Cache Refresh set at the
Model/version level on the Admin console. A value of zero
indicates that the KPI should not be cached.

KPI Description string No The key performance indicator (KPI) description

KPI Origin string Yes The key performance indicator (KPI) origin. Valid values
are "modeled" and "runtime"

KPI Data Type string Yes The key performance indicator (KPI) data type. Valid
values are "decimal" and "duration"

Target number No The key performance indicator (KPI) target value. If the
data type is "duration", the target is in milliseconds

KPI Range Type string Yes The key performance indicator (KPI) range type. Valid
values are "actualValue" and "percentage". Percentage
indicates a percent of the target, where 100 = 100% of
target. Required if KPI Range Array is not empty.

KPI Calc Method string Yes The key performance indicator (KPI) calculation method.
Valid values are "aggregated" and "calculated"

Aggregated Metric ID string Yes* The ID of the aggregated metric Required if KPI Calc
Method is "aggregated". Required if KPI Calc Method is
"aggregated".

Aggregated Metric MC ID string Yes* The ID of the monitoring context of the aggregated metric.
Required if KPI Calc Method is "aggregated".

Aggregated Function string Yes* The aggregated function. Valid values are "avg", "sum",
"min", "max", and "count". Required if KPI Calc Method is
"aggregated".

Version Aggregation string Yes The scope of the metric aggregation, whether it is for
instances within the same model version as the KPI or for
instances across all model versions. Valid values are
"singleVersion" and "allVersions". Required if KPI Calc
Method is "aggregated".

Time Period Metric ID string Yes* The ID of metric used for time period qualification. This is
a date or datetime metric. Required if KPI Calc Method is
"aggregated" and a Time Filter is used.

Time Period Method string Yes* The time period method. Valid values are
"repeatingPeriod", "rollingPeriod", and "fixedPeriod".
Required if KPI Calc Method is "aggregated" and a Time
Filter is used.

Repeating Period Duration string Yes* The repeating period duration. Valid values are "yearly",
"quarterly", "monthly", and "daily". Required if KPI Calc
Method is "aggregated" and Time Period Method is

Page 1273

"repeatingPeriod".

Repeating Period Basis string Yes* The repeating period basis. Valid values are
"previousPeriod" and "periodInProgress". For example, for
year-to-date, use "periodInProgress". Required if KPI Calc
Method is "aggregated" and Time Period Method is
"repeatingPeriod".

Repeating Period Timezone string Yes* The repeating period time zone. This is a Java timezone
identifier (for example, America/Los Angeles). Required if
KPI Calc Method is "aggregated" and Time Period Method
is "repeatingPeriod".

Rolling Period Duration string Yes* The rolling period duration. Valid values are "years",
"months", "days", "hours", and "minutes". Required if KPI
Calc Method is "aggregated" and Time Period Method is
"rollingPeriod".

Rolling Period Quantity number Yes* The number of rolling periods. Required if KPI Calc
Method is "aggregated" and Time Period Method is
"rollingPeriod".

Fixed Period Start string Yes* The fixed period start time. Valid formats are '2007-01-01'
and '2007-01-01T00:00:00' Either Fixed Period Start or
Fixed Period End is required if KPI Calc Method is
"aggregated" and Time Period Method is "fixedPeriod"

Fixed Period End string Yes* The fixed period end time. Valid formats are '2007-01-01'
and '2007-01-01T00:00:00' Either Fixed Period Start or
Fixed Period End is required if KPI Calc Method is
"aggregated" and Time Period Method is "fixedPeriod"

Fixed Period Timezone string Yes* The fixed period time zone. This is a Java timezone
identifier (for example, America/Los Angeles). Required if
KPI Calc Method is "aggregated" and Time Period Method
is "fixedPeriod".

Calculated KPI Expression string Yes* The calculated key performance indicator (KPI) expression.
This must be a valid XPath expression. Other KPIs and
UDFs can be referenced. Required if the KPI Calc Method
is "calculated".

User ID string No The user ID of the key performance indicator (KPI) owner

View Access string Yes The view access, whether the KPI can be viewed by others
or not. Valid values are "public" and "personal".

Format Decimal Precision number No The number of digits that are displayed after the decimal
point for numeric KPIs.

Format Currency string No The currency code to be used for formatting numeric KPIs.
This 3-letter code must conform to ISO 4217 standards.

Format Percentage boolean No The format percentage, whether the KPI will be displayed
as a percentage or not. Valid values are "false" and "true".

Enable KPI History boolean No Flag to indicate if KPI History is enabled. Valid values are
true and false . Default value is true .

History Include Predictions boolean No Flag to indicate if KPI History should include predictions.

Page 1274

Valid values are "true" and "false". This parameter is only
available for KPI Update. It defaults to "false" upon KPI
create.

KPI History Defaults array No Array to contain KPI history default values. This parameter
and all sub-parameters within the array are only available
for KPI Update.

History Time Range Start string No Fixed period start date for retrieving KPI History. Valid
formats are '20081201T123000' ,'2008-12-01' and
'20081201'.

History Time Range End string No Fixed period end date for retrieving KPI History. Valid
formats are '20081201T123000' ,'2008-12-01' and
'20081201'.

History Repeating Period
Quantity

number No The number of KPI History periods to retrieve. For a
periodInProgress query, the current period would count as
1. It defaults to 2 upon KPI create.

History Rolling Period
Duration

string No The rolling period duration. Valid values are "yearly",
"quarterly", "weekly", "monthly", and "daily". It defaults to
"monthly" upon KPI create.

History Repeating Period
Basis

string No The repeating period basis. Valid values are
"previousPeriod" and "periodInProgress". For example, for
year-to-date, use "periodInProgress". It defaults to
"periodInProgress" upon KPI create.

History All Versions boolean No Flag to indicate if KPI History should include all version of
the KPI. This flag must be false if the KPI is a single
version KPI. Valid values are "true" and "false". It defaults
to "false" upon KPI create.

History Time Range
Method

string No The time period method. Valid values are
"repeatingPeriod", "rollingPeriod", and "fixedPeriod". It
defaults to "repeatingPeriod" upon KPI create.

History Rolling Period
Quantity

number No The number of KPI History periods to retrieve.

History Display Ranges string No Flag to indicate if KPI Ranges should be displayed in the
KPI History widget. Valid values are "true" and "false". It
defaults to "false" upon KPI create.

History Granularity string No The value can be yearly, quarterly, monthly, weekly, daily
and hourly. It defaults to "daily" upon KPI create.

History Valid From string No Timestamp used to indicate the earliest date/time that KPI
History is valid. For example, this is initially set to the KPI
creation date. KPI History would not be valid prior to the
creation of the KPI.

History Timezone string No Timezone used by KPI History. This is a Java timezone
identifier (for example, America/Los Angeles). It defaults
to the server timezone upon KPI create.

History Repeating Period
Duration

string No The repeating period duration. Valid values are "yearly",
"quarterly", "weekly", "monthly", and "daily".

Page 1275

History Display Target string No Flag to indicate if KPI Target should be displayed in the
KPI History widget. Valid values are "true" and "false". It
defaults to "false" upon KPI create.

Enable KPI Prediction Boolean No Flag to indicate if KPI Prediction is enabled. Valid values
are "true" and "false". This parameter is only available for
KPI Update. It defaults to "false" upon KPI create.

Default Prediction Model
ID

string No The ID for the default prediction model. This parameter is
only available for KPI Update.

KPI Metric Filter Array string No Array of filters of aggregated key performance indicators
(KPIs)

KPI Metric Filter ID string No The filter ID for each of the metric filters. This value is
used if provided. Otherwise, it is automatically generated.

Filter Metric ID string No The ID of the metric used for filtering

Filter Operator string Yes The filter operator. Valid values are "equals", "lessThan",
"lessThanOrEquals", "greaterThan",
"greaterThanOrEquals", "notEquals", "in", "notIn",
"isNull", "isNotNull", "like", "notLike".

Filter Operator Case
Sensitive

boolean Yes Whether the filter operator is case-sensitive or not when
using string-based metric filters. Valid values are "false"
and "true".

Filter Value string Yes* The filter value. For information on the format for each data type, see the
section on filtering. Required unless the operators isNull or isNotNull
are specified. The filter value can be specified as an array. For example,
a string would be represented as ["'Smith'"]. An array of values included
with the "in" operator would be represented as ["'Smith'", "'Jones'"].
Note that string values are surrounded by a single quotation marks for
the XPath formatting and double quotation marks for the JSON
formatting.

KPI Range Array array No Array to contain any KPI ranges

KPI Range ID string No The range ID for each of the key performance indicator
(KPI) ranges. This value is used if provided. Otherwise, it
is automatically generated.

KPI Range Display Name string Yes The key performance indicator (KPI) range display name

KPI Range Start Value number Yes The key performance indicator (KPI) range start value.
This value can be defined as an actual value or as a percent
of a target as defined by KPI Range Type. If KPI Range
Type is "percentage", use a value such as 100 to represent
100%. If duration KPI and if KPI Range Type is an
"actualValue", then the start value is in milliseconds

KPI Range End Value number Yes The key performance indicator (KPI) range end value. This
value can be defined as an actual value or as a percent of a
target as defined by KPI Range Type. If KPI Range Type is
"percentage" use a value such as 100 to represent 100%. If
duration KPI and if KPI Range Type is an "actualValue",
then the end value is in milliseconds

KPI Range Color string No The display color in key performance indicator (KPI)

Page 1276

gauges. Valid values are #000000 - #FFFFFF (omit the #
sign)

KPI Range Icon string No The key performance indicator (KPI) range icon display
icon in key performance indicator (KPI) tables, e.g.
images/kpi/monitorIcons/IBM_down_red.gif

This is a lot of data and some additional discussion is needed. Thankfully, all of these parameters
can be grouped into sections.

Time Filters

Time filters are used to define which data will be aggregated together to build a KPI. There are four
methods of filtering possibilities:

• <none>

• repeatingPeriod

• rollingPeriod

• fixedPeriod

The method of filtering used is store in the "Time Period Method" property. If this property
is NOT set then no time filter is assumed. Depending on which method is chosen, other properties
come into play:

• repeatingPeriod

◦ "Time Period Metric ID"

◦ "Repeating Period Duration"

▪ "yearly"

▪ "quarterly"

▪ "monthly"

▪ "daily"

◦ "Repeating Period Basis"

▪ previousPeriod

▪ periodInProgress

◦ "Repeating Period Timezone"

• rollingPeriod

◦ "Time Period Metric ID"

◦ "Rolling Period Duration"

▪ "years"

▪ "months"

▪ "days"

Page 1277

▪ "hours"

▪ "minutes"

◦ "Rolling Period Quantity" – a numeric

• fixedPeriod

◦ "Time Period Metric ID"

◦ "Fixed Period Start" – The date/time at which the fixed period begins. The format of
this value is "YYYY-MM-DDTHH:MM:SS"

◦ "Fixed Period End" – The date/time at which the fixed period ends. The format of this
value is "YYYY-MM-DDTHH:MM:SS"

◦ "Fixed Period Timezone"

Get Historical KPI data

This REST API can be used to retrieve the historical values of a specific KPI.
GET /rest/bpm/monitor/models/{modelId}/versions/{version}/kpis/history/{kpiId}

An example of the data returned is shown below:
{

"Model ID": "BUSMONMonitoringModel"
"Model Display Name": "BUSMONMonitoringModel",
"Version": 20140127161149,
"KPI Display Name": "A1",
"KPI ID": "A1ID",
"KPI Data Type": "decimal",
"KPI Description": "A1 Desc",
"Target": 200.0,
"Target Localized": "200.00",
"Range Start Timestamp": "2014-01-01T06:00:00",
"Range Start Timestamp Localized": null,
"Range Start Timestamp In Timezone": "2014-01-01T00:00:00",
"Range End Timestamp": "2014-02-19T06:00:00",
"Range End Timestamp Localized": null,
"Range End Timestamp In Timezone": "2014-02-19T00:00:00",
"DisplayFGSIndication": true,
"FGSSecurityFilterApplied": false,
"KPI Prediction Array": [],
"KPI Value Array": [

{
"KPI Value Localized": null,
"Target": 200.0,
"KPI Period Timestamp": "2014-01-02T06:00:00",
"KPI Value": null,
"KPI Period Timestamp In Timezone": "2014-01-02T00:00:00",
"Target Localized": "200.00",
"KPI Period Timestamp Localized": "Jan 1, 2014"

}
…

]
"KPI Range Array": [

{
"KPI Range Color": "#b22222",
"KPI Range Start Value": 0.0,
"KPI Range Icon": null,
"KPI Range End Value Localized": "100.00",
"KPI Range Display Name": "Low",
"KPI Range ID": "Low",
"KPI Range End Value": 100.0,
"KPI Range Start Value Localized": "0.00"

},
…

]
}

Page 1278

There are other options that can also be supplied. These include:

• granularity – This is definition of how many data points within a time range should be
returned. The values of this option are:

◦ hourly

◦ daily

◦ weekly

◦ monthly

◦ quarterly

◦ yearly

• timerangemethod – This definition determines the range of time over which the history
is retrieved. The values of this option are:

◦ repeatingPeriod

◦ rollingPeriod

◦ fixedPeriod

For timerrangemethod = rollingPeriod, the following apply:

• rollingperiodduration – This defines the duration of a rolling period unit. The
choices are one of the following:

◦ hours

◦ days

◦ weeks

◦ months

◦ quarters

◦ years

• rollingperiodquantity – A numeric value defining how "many" of the
rollingperiodduration intervals should be included.

For timerangemethod = repeatingPeriod, the following apply:

• repeatingperiodbasis – A choice of whether to include or exclude the current
period. Choices are one of:

◦ previousPeriod

◦ periodInProgress

• repeatingperiodduration – The repeating period duration. Allowable values are
one of:

◦ daily

◦ monthly

◦ quarterly

Page 1279

◦ yearly

• repeatingperiodquantity – The number of periods to include.

For timerangemethod = fixedPeriod, the following apply:

• timerangestart – The start of the time period in the format of either "YYYY-MM-DD"
or "YYYY-MM-DDTHH:MM:SS".

• timerangeend – The end of the time period in the format of either "YYYY-MM-DD" or
"YYYY-MM-DDTHH:MM:SS".

Get Dashboard Alerts

Monitor maintains a list of alerts to be shown to the user on a dashboard. This API call retrieves
that list.
GET /rest/bpm/monitor/alerts/dashboardalerts

The following is an example response:
{

"Record Count": 5,
"Page Size": 10,
"Dashboard Alert Array": [
{

"Creation Timestamp Localized": "February 4, 2014 10:48:09 AM",
"Model Display Name": "TestModel",
"Model ID": "TestModel",
"Status": "Available",
"Priority": 3,
"Creation Timestamp": "2014-02-04T16:48:09",
"Instance ID": "1",
"Acknowledged": true,
"ID": "508E2F5B25C5AFEA7C4F1AA2",
"Context ID": "P1",
"Subject": "Hi Amount to Left"

},
{

….
}],
"Page Number": 1

}

Get Alert Subscriptions

GET /rest/bpm/monitor/alerts/subscriptions

Create Alert Definition

POST /rest/bpm/monitor/situation/alerts/config

Model ID string The model ID this alert is based on

Version number The version of the model this alert is based on

Name string The display name given by the user

User ID string The owner of this situation. Only users with KPI-Administrator will be allowed
to create situations with an owner other then themselves.

State string The state of this situation. Possible states are: inactive, active, invalid.

Description string The display description given by the user

Page 1280

Subject string The subject line of the alert message

Body string The body of the alert message

GeneratedContent boolean This will indicate if the body and subject were system generated, Default is false.

View Access number This will control access to view and subscriptions to this alert. 0 = private, 1 =
public, Default is 0 (private).

TimingInterval string Describes the base timing interval, options are:
• MINUTE: indicates that minutes are the base timing amount

• HOUR: indicates that hours are the base timing amount

• DAY; indicates that days are the base timing amount

• WEEK: indicates that weeks are the base timing amount

• MONTH: indicates that months are the base timing amount

• PERIOD: indicates that the KPI period will be used

TimingStartOffset string When TimingInterval MINUTE: intervals will be calculated
starting at the specified minutes after the top of the hour.

When TimingInterval HOUR: intervals will be calculated starting
at the specified hours and minutes after midnight in the
TimingTimeZone property.

When TimingInterval DAY: will be the time of day in the
TimingTimeZone property to evaluate the conditions.

When TimingInterval WEEK: will be the time of day and the day
of the week in the TimingTimeZone property to evaluate the
conditions.

When TimingInterval MONTH: will be the time of day and the
day of the month in the TimingTimeZone property to evaluate the
conditions.

When TimingInterval PERIOD: does not offset the evaluation time,
the end of period time must be honored

TimingMultiple number Describes a multiple of the base timing interval, optional will
default to one.

When TimingInterval MINUTE: the number of minutes in the
interval. (only allow even factors of the hour, 1, 2,3, 4, 5, 6, 10, 12,
15, 20 ,30)

When TimingInterval HOUR: the number of hours in the interval
(only allow even factors of the day, 1, 2, 3, 4, 6, 8, 12)

When TimingInterval DAY: the number of days in the interval
(allow 1 to 365).

When TimingInterval WEEK: the number of weeks in the interval
(allow up to 52)

When TimingInterval MONTH: the number of months (allow up to

Page 1281

12).

When TimingInterval PERIOD: TimingMultiple property is not
used.

TimingRepeat string When the conditions will be allowed to send an alert.
REPEATING = whenever the condition evaluates to true

NONREPEATING = when the condition evaluates to true and not
again until the condition evaluates to false

ONCEINPERIOD = when the condition evaluates to true and not
again until the next KPI period

TimingKPI string Describes the ID of the KPI to use for the period time evaluations,
required when TimingRepeat=ONCEINPERIOD and
TimingInterval=PERIOD.

TimingTimeZone string Describes the Timezone to use in calculating the actual start time
and next evaluation times, must use the JAVA based time zone
strings, Optional, will use the server time zone.

TriggerArray array Describes a conditional trigger. All triggers will be 'anded' together
to determine if the situation will fire. Each trigger is described as an
array item of the following properties.

CheckKPI string Indicates which KPI should be used in this evaluation

CheckPrediction string Indicates which Prediction KPI to be used in this evaluation

CheckPredictionType string Indicates which Prediction KPI type to be used in this evaluation.

Types are:

end: for the end of the prediction period,

any: for any value within the prediction set

CheckCondition string Indicates which type of condition to use. The operations will be
done using the check KPI and the check field.

CheckFieldType string Indicates what type of field will to be compared against the KPI.

CheckField string Indicates actual value or where to get the value to use in the
evaluation.
When CheckFieldType is 'value' check field will be the actual value
to use.

When CheckFieldType is 'target' check field will be ignored."

When CheckFieldType is 'range' check field will be the name of the
KPI range.

Alert Subscription Array array Describes subscribers to this situation. Each subscription is describe
as an array item of the following setting.

User ID string The user who is subscribed to this alert

Page 1282

E-mail string The alert format is E-mail

Dashboard boolean The alert format is Dashboard

Cell boolean The alert format is Cell

Pager boolean The alert format is Pager

Useful Monitor/REST JavaScript
Here are some useful JavaScript fragments for working with monitor data in the context of a
JavaScript environment that is likely to be found within Web Browsers or Business Space Widgets.

Building a map of Instance data

The instance data returned by REST calls is an array format and not a "map". On occasion, map
formatted data is better to work with. This JavaScript function will take a REST returned instances
object and produce an Array of objects where each object is a map of name->value of instance
metrics:
/**
 * Given an instances object retrieved from monitor, build a map of the data
 *
 * @param instancesObject An object returned from a REST query against Monitor
 * @returns An array of instance objects
 */
function buildInstanceMap(instancesObject)
{

var retArray = new Array();
// Iterate over each instance
for (var i in instancesObject["Instance Data"])
{

var currentInstance = new Object();
// Iterate over each metric in the instance
for (var m in instancesObject["Metric ID Array"])
{

var metricName = instancesObject["Metric ID Array"][m];
currentInstance[metricName] = instancesObject["Instance Data"][i]["Metric Data"][m];

}
retArray.push(currentInstance);

}
return retArray;

}

Monitor Security
If security is enabled on the Monitor server, authorizations must be supplied to allow users to work
with the models.

In the Admin console under Security > Monitor Data Security

Page 1283

configuration panels can be found. From there we drill down to the mysterious "root" entry:

and finally get to where we need to be:

Page 1284

Selecting a category of permissions and then clicking either the users or groups buttons allows us to
add/remove users/groups from that category of permissions.

Permissions normally need to be set if when you create an Instances widget in Business Space and
no models are shown.

Advanced Model development
Expressions
The XPath functions available in Monitor are a subset of the XPath specification. The functions
supported are shown in the following lists.

Data functions

• fn:empty - Takes any type of argument and returns a boolean. The boolean is true if the
argument is an empty sequence, and false otherwise.

• fn:exists - Takes any type of argument and returns a boolean. The boolean is true if the
argument is not an empty sequence, and false if the argument is an empty sequence.

• fn:false – Always results in a false value.

• fn:not – Inverts a boolean value.

• fn:true – Always results in a true value.

Page 1285

String functions

• fn:compare

• fn:concat

• fn:contains

• fn:ends-with

• fn:lower-case

• fn:normalize-space

• fn:starts-with - Takes two strings and tests whether the first string starts with the second
string. For example, fn:starts-with("12345", "12345") returns true,
fn:starts-with("12345", "123") returns true, and fn:starts-
with("12345", "234") returns false.

• fn:string-length

• fn:substring

• fn:upper-case

Math functions

• fn:abs - Two variations. One for xs:decimal and one for xs:integer.

• fn:avg

• fn:max

• fn:min

• fn:round

• fn:sum

Time functions

Dates are formatted using XMLSchema format

See:

http://www.w3.org/TR/xmlschema-2/#date-lexical-representation

• fn:current-date

• fn:current-time

• fn:day-from-date

Page 1286

http://www.w3.org/TR/xmlschema-2/#date-lexical-representation

• fn:day-from-dateTime

• fn:days-from-duration – Returns the number of days in the specified duration.

• fn:adjust-date-to-timezone

• fn:adjust-dateTime-to-timezone

• fn:adjust-time-to-timezone

• fn:hours-from-dateTime

• fn:hours-from-duration – Returns the number of hours in the specified duration.

• fn:hours-from-time

• fn:minutes-from-dateTime

• fn:minutes-from-duration – Returns the number of minutes in the specified duration.

• fn:minutes-from-time

• fn:month-from-date

• fn:month-from-dateTime

• fn:seconds-from-dateTime

• fn:seconds-from-duration – Returns the number of seconds in the specified duration.

• fn:seconds-from-time

• fn:timezone-from-date

• fn:timezone-from-dateTime

• fn:timezone-from-time

• fn:year-from-date

• fn:year-from-dateTime

IBM Monitor extensions

• wbm:escape-special-characters - Returns the argument with occurrences of the
special characters <, >, &, ", '', <newline> replaced with the HTML equivalents <, >, &, ", ',

. Tabs are replaced with four non-breaking spaces (). For example, to format a shipping
address so that it displays in a Web browser, you might use "wbm:escape-special-
characters(wbm:serialize(newOrderEvent/orderPart/ord:shippingAdd
ress))".

• wbm:evaluate – Evaluate an XPath 2.0 expression on an XML document fragment and returns
a string.

• wbm:send-events

• wbm:serialize – Converts an XML document fragment from an event into a string
representation.

Page 1287

Authoring User Defined XPath functions
Custom XPath functions can be written in Java. Create a Java project in WID/RAD and define a
class. In that class, code methods that are to be executed as XPath functions. Each method should
be declared as static. Add the Monitor Runtime to the project's dependencies. To achieve this,
open the project's build path and switch to the Libraries tab. Click the Add Library button and
select Monitor Runtime Library from the list of options.

In front of each method that is to be exposed, add a Java annotation that looks as follows:

@XPathFunction(namespaceName = "http://mynamespace",

 localName = "myLocalName",

 description = "My Description",

 isSelfContained = true,

 isDeterministic = true)

Where:

• namespaceName is a namespace for the function

• localName is the name of the function as it will appear in the XPath editor

• description is a human readable description for the function. It is the description information
that shows up when the function is selected and hovered over with the mouse.

The annotations come from the import of com.ibm.wbimonitor.xml.expression.udf.XPathFunction.

Each function should return a value that will be the outcome of the expression. The functions can
also take parameters. When the functions have been written, export the Classes as a JAR file. The
JAR file should then be copied into the Monitor project.

Page 1288

In the ID editor, right-click on the Monitor project and select External Function Libaries... from the
menu.

In the dialog, select Add JARs and pick the JAR that was added to the Monitor project.

Next, open the Monitor model and in the User Defined XPath Functions, click the Edit... button.

Select each of the function libraries to be used in this project. For each library, a prefix must be
entered.

Page 1289

The custom user defined XPath function has now been added. In the XPath editors and expression
builders, the Java code can now be referred to by its prefix and localname. At runtime, the call to
the associated Java code will occur.

UDF Debugging Notes:

Getting an NPE during loading of the UDF usually means something is wrong. Currently there's not
a good error message to help id the problem. Check the annotation, types, etc. For instance,
accidentally setting a return type of boolean rather than Boolean will cause an NPE upon loading.

Make sure that you compile with the correct java compiler. 1.5 for 6.2. Trying to run code compiled
with a 1.6 compiler will give you the following error: Caused by:
java.lang.UnsupportedClassVersionError: (com/mts/BusinessDay) bad major version at offset=6

Data Types

Method return types

XML datatype Java return type

xs:string java.lang.String

xs:integer, xs:decimal java.math.BigInteger

xs:decimal java.math.BigDecimal

xs:boolean java.lang.Boolean

Page 1290

xs:date, xs:time, xs:dateTime javax.xml.datatype.XMLGregorianCalendar

xs:duration, xs:dayTimeDuration, xs:yearMonthDuration javax.xml.datatype.Duration

xs:dateTime java.util.Calendar

xs:string java.net.URI

xs:string java.util.UUID

Parameter Types

XML datatype Java return type

xs:string java.lang.String

xs:integer java.math.BigInteger

xs:decimal, xs:integer java.math.BigDecimal

xs:boolean java.lang.Boolean

xs:date, xs:time, xs:dateTime javax.xml.datatype.XMLGregorianCalendar

xs:duration, xs:dayTimeDuration, xs:yearMonthDuration javax.xml.datatype.Duration

Specific Notes

Duration

If a metric is defined as Duration, the value assigned to that metric must be cast to
xs:dayTimeDuration().

Two Stage Modeling
Choose which events you wish to propagate. For example, if we care about when a task starts and
ends, we need only publish an event on that concept.

Monitor and Cognos
IBM Business Monitor supplies a copy of IBM Cognos as part of the product solution. Cognos is a
Business Intelligence and Analytics engine. From a Monitor perspective, Cognos provides the
capability to define and view dimensional models.

It is the Business Space Report Viewer widget that displays the model.

See also:

• IBM Cognos Home Page

• IBM Cognos BI 10.1 Information Center

Page 1291

http://publib.boulder.ibm.com/infocenter/cbi/v10r1m0/index.jsp?lang=en
http://www-01.ibm.com/software/data/cognos/

Cognos has a bewildering number of components and tools. Many of these don't identify
themselves so you simply have to know which one is which. For example, when looking at the
Report Viewer widget, the Edit Report menu item:

Will bring up a web based tool called IBM Cognos Business Insight Advanced but there is nothing
on the page to let you know that this is what you are in. (Later: Actually, I take that back … in the
Help menu there is an about box).

Cubes, Categories, Dimensions and Levels

Experience has shown that the following topic can be difficult for many folks to understand. Let us
examine a scenario. Imagine a sales record that may contain fields as follows:

Page 1292

• US State of sale

• City of sale

• Amount of sale

• Sales rep

• Category of sale

◦ Hardware

◦ Software

◦ Services

Now imagine that over time instances of such records will arrive. After, say, 6 months worth of
data, we now want to perform some analysis of what we have found. What kinds of questions can
we answer? Here are some possibilities:

• How much revenue did we make? (Sum of all sales)

• Which state was the most profitable? (Sum of all sales by state)

• Which sales rep sold the most in New York?

• Which sells more in March, Hardware or Software?

Answering such questions from the examination of this data is where Cognos comes into play. In
order to also start answering these questions we need to delve into cubes, measures and dimensions.

Lets start with measures. Measures can be thought of as a roll-up of a metric such as sales amount.
This takes all the instance data values of the metric and has a function applied to them. The
functions available include:

• Minimum – Value is the minimum value of the metric over the range

• Maximum – Value is the maximum value of the metric over the range

• Sum – Value is the arithmetic sum of all of the values over the range

• Count – Value is the count of metrics that exist over the range

• Average – Value is the arithmetic average of the metric over the range

• Standard deviation – Value is the arithmetic standard deviation over the range

Measures are defined in the Dimensional Model tab of the Monitor Model editor. We define the
name of the measure to be created and which metric is used for its creation along with the
aggregation function to be applied to those metrics.

Page 1293

When charting, think of the measure as the value of the Y axis.

If measures are aggregates of metrics, dimensions can be thought of as the selections of which
measures to aggregate together. For example, if we have a measure that is the sum of sales amounts
and we have a dimension which is the US state in which the sale occurred, then we can determine
the value of all sales by state.

When we define a dimension, we also define levels. The Levels define the levels of drill down.
Every dimension must have at least one level. For example, if we imagine a dimension called
"location" used to define the location in which a sale occurred, we might define a level as being the
"US State". We will then be able to see all sales by US State. If we define a second level which is
"City", then we will be able to drill down each US State to the cities from that state which have
records.

Cognos Charting

There are an amazing number of chart types available in Cognos. To see a summary list, select the
Insert Chart icon and have a look:

Page 1294

Here are some key terms to help us understand charting.

Data Series

The Data Series can be thought of (loosely) as the X-Axis values in a bar chart. They are the entries
that have specific values. For example, a data series for sales may be 2009, 2010, 2011 where each
element in the series has a value (for examples, sales in that year). Each element in the Data Series
has its own color or distinguishing characteristic.

Primary Axis

The primary axis can be though of as the Y-Axis. This is where values will be plotted against the
elements in the Data Series. It may help to think of the X-Axis as holding qualitiative data (years,
regions, etc) while the Y-Axis holds quantitative data (sales, number of customers, etc).

Legend

The Legend is the key to the patterns or colors used to indicate the Data Series. The following
image illustrates a Legend.

Page 1295

Business Space Widgets for Monitor
The following widgets are supplied by Monitor for use in Business Space:

• Alerts

• Diagrams

• Human Tasks

• Instances

• KPIs

• KPI History and Prediction

• Report Viewer

• Reports

KPIs
The KPI widget looks as follows from the palette of available widgets:

once added to the page, it shows as:

indicating that it needs to be configured. We can configure it from the editing settings on the right.
When selected we are presented with a list of modeled KPIs:

Page 1296

from which we can select one or more. The KPI can be visualized a number of different ways that
can be selected from the icons at the bottom left of the widget.

Page 1297

Report Viewer Business Space Widget
When initially added to a page, this widget needs to be configured.

In its settings, it asks for a "report". This report is created/defined in the Report Designer widget.

Page 1298

When the Select button is pressed to select a report a tree dialog is displayed from which the report
can be found:

Once selected, a bar chart display is shown.

Page 1299

Generated Monitor Models for a Process Application
When a process application is built within Process Designer, we have the option of importing that
application into Integration Designer. Once available in ID, we can generate a Monitor Model
using that Process Application as a source. Right clicking on the Process App produces a menu
entry that includes:

If we select "Generate Monitor Model" a dialog is presented into which the names of the Monitor

Page 1300

Project and the Monitor Model can be entered:

Next we are offered the opportunity for the Monitor Model to be constructed for us.

Page 1301

Once we have a monitor model built, we can build the Java EE projects and deploy them as normal.

Instance Metrics

BPD level

• Active Step Names – A list of the steps currently active in the process. The list is a comma
separated set of values.

• Aux Active Step Instance Ids – A list of the ids for active steps in the process

• Aux Last Completed Step Instance ID – The id of the last completed step

Page 1302

• Aux Last Completed Step Name – The name of the last completed step

• Aux Last Started Step Instance ID – The id of the last started step

• Aux Last Started Step Name – The name of the last started step

• Aux Starting Process Instance ID – Private key for the monitoring context

• <BPD> Instance ID – The BPD instance ID

• COMPLETED

• CreationTime – The date/time that the monitor context was created

• End Time – The end time of the process

• Snapshot ID – The snapshot id of the process

• Snapshot Name - The snapshot name of the process

• Start Time – The start time of the process

• State – The current state of the process step – COMPLETED, RUNNING,??

• Steps Active – The number of currently active steps in the process.

• Steps Completed – The number of completed steps.

• Termination Time – The date/time that the monitor context was terminated

• Total Time (Clock) – The wall clock time of the process

• <BPD> Steps*

• <Variables> - Exposed tracked variables.

<BPD> Steps Level

Metric ID Name Description

Step_Instance_ID Step Instance ID Monitoring Context key

Aux Last Event Time

COMPLETED COMPLETED Whether or not the monitoring context has been closed/completed.

bmon_Cost Cost KPI cost of running this process step

CreationTime CreationTime The time the activity was created.

bmon_EndTime End Time End time of this process step

bmon_ExecutionTime_Clock Execution Time (Clock) Execution time for running this process step

bmon_LaborCost Labor Cost Labor cost of running this process step

bmon_PerformerID Performer ID The id of the person who performed the step.

bmon_PerformerName Performer Name The name of the person who performed the work

bmon_PotentialPerformerID Potential Performer ID The id of the user who can work on this step

bmon_PotentialPerformerName Potential Performed Name The name of the user who can work on this step

bmon_ResourceCost Resource Cost Resource cost of running this process step

Page 1303

bmon_Rework Rework Rework KPI

Snapshot_ID Snapshot ID The snapshot ID of this step

Snapshot_Name Snapshot Name The name of the snapshot of this step

bmon_StartTime Start Time Start time of this process step

bmon_State State The state of the step. Values seen include:

• COMPLETED

bmon_Step_Name Step Name The name of this process step

TerminationTime TerminationTime The time that the activity ended.

bmon_TotalTime_Clock Total Time (Clock) Total Time for running this process step

bmon_ValueAdd Value Add Value Add KPI

bmon_WaitTime_Clock Wait Time (Clock) Wait time for running this process step

bmon_f_<Variable> <Variable> Exposed variable.

KPIs

• <Step> Average Cost

• <Step> Average Resource Cost

• <Step> Average Labor Cost

• <Step> Average Total Time (Clock)

• <Step> Average> Wait Time (Clock)

• <Step> Average Execution Time (Clock)

• <Step> Average Rework

• <Step> Average Value Add

• <Step> Count

• <BPD> Average Total Time (Clock)

• <BPD> Count

Working with Changed Variables
Consider a BPD variable called "amount" that defines the amount of a sale within a process. This
variable is flagged as "tracked". Imagine we wish to fire an outbound event from Monitor when the
amount is changed to be greater than $5000.

This seems simple enough. We can define a trigger that is sourced when the value of the
"amount" metric changes. For example:

Page 1304

Unfortunately, there is a problem. The architecture of the events sent to Business Monitor is that
EVERY event contains the current value of the "amount" metric. This has the side effect of
causing the "amount" metric to flag as changed continuously. The "Value changed" moniker
of the trigger source is misleading as it is actually when the value is updated … even if the actual
value of the metric doesn't change.

This would mean that our trigger would fire every time BPM publishes an event which is at the start
and end of a BPD activity … even if that activity doesn't change the value of the "amount" variable.

Fortunately, there is a solution. What we do is introduce a new metric that contains the "old" value
of the variable. We will call this new metric "amount*".

Page 1305

We say that this metric is updated when our "AmountChanged" trigger occurs. Now we can add
a condition to our trigger which reads:

Page 1306

What this says is that we only fire the "AmountChanged" trigger when the old amount is not the
same as the new amount (i.e. when the value changes).

Sample Monitor Solutions
Here we capture some sample monitor solutions.

Task Escalation alerts
Consider the notion of a human task. We may wish this task to be completed within a certain
period of time. If it isn't, then we may wish to raise an alert to have it looked into. This is a good
use case for Business Monitor.

When a BPD runs, a model is built of each of the steps performed by the process. This includes
when the step starts and when it ends. Our design for the solution is broken into two phases. The
first will be the determination that a task is late and the second on how an alert will be issued.

To determine if a task is late, we will create a new trigger that will fire:

• One time after the escalation interval has passed

• Will check that the step name is one we are escalating

• Will check that the step has not yet completed

An example trigger definition would be:
<trigger displayName="Task Overdue" id="Task_Overdue" isRepeatable="false">

Page 1307

<evaluationTime hours="0" minutes="2"/>
 <gatingCondition expression="bmon_Step_Name = 'Receive Claim' and fn:empty(bmon_EndTime)"/>
</trigger>

with a corresponding outbound event definition off:
<outboundEvent displayName="Task Escalation" id="Task_Escalation"
extensionName="ActionServicesEvent" rootElement="cbe:CommonBaseEvent">

<eventPart displayName="escalation" id="escalation" path="cbe:CommonBaseEvent/tns2:escalation"
type="tns2:escalation"></eventPart>
 <map>
 <trigger ref="Task_Overdue"/>
 <outputValue>
 <assignments>
 <assignment leftValue="Task_Escalation/extendedData/BusinessSituationName"
rightValue="'Escalation'"/>
 <assignment leftValue="Task_Escalation/escalation/tns2:processId"
rightValue="../Process_Instance_ID "/>
 <assignment leftValue="Task_Escalation/escalation/tns2:taskId" rightValue="Task_ID "/>
 <assignment leftValue="Task_Escalation/escalation/tns2:stepName"
rightValue="bmon_Step_Name "/>
 <assignment leftValue="Task_Escalation/escalation/tns2:currentOwner"
rightValue="bmon_PerformerName "/>
 <assignment leftValue="Task_Escalation/escalation/tns2:processName"
rightValue="../Process_Name "/>
 </assignments>
 </outputValue>
 </map>
</outboundEvent>

When an alert is seen notifying someone that a task is overdue, we must now ask ourselves what
should that alert contain? Options include:

• The Process Instance ID that contains the task

• The Task ID for the actual task

• The name of the process

• The name of the step of the process

• The current task owner (if one exists)

Of these, the Process Instance ID, the Task ID and the name of the process are not generated
automatically by the BPM monitor model generation and need to be explicitly added.

See also:

• Alerts and Actions

• Capturing the Task ID of a task

• Capturing the Process ID of a process

• Capturing the Process Name of a process

Monitor Notes
The following area is not part of the book but is instead an area used to log the author's thoughts
and areas to consider.

Comparing QNames in expressions: http://ibmforums.ibm.com/forums/thread.jspa?
threadID=567118&tstart=0

see also: fn:resolve-QName

Page 1308

http://ibmforums.ibm.com/forums/thread.jspa?threadID=567118&tstart=0
http://ibmforums.ibm.com/forums/thread.jspa?threadID=567118&tstart=0

WebSphere Application Server
IBPM executes on a WebSphere Application Server environment. By and large there isn't much
that the users of the product have to know but this section of the book will list some of the more
pertinent areas in case the need arises.

Profile Management
Profiles are configurations of WAS servers. In general, profiles are created with the GUI PMT
(Profile Management Tool) utility. This provides a wizard driven configuration of the profile
instances. Through PMT WAS servers of a variety of types may be created.

References – Profile Management

• DeveloperWorks - The Support Authority: Take the confusion (and errors) out of managing profiles for WebSphere Application Server - 2010-
07-14

Command line profile management

A command called manageprofiles is available to manage profiles. This command has a number
of options:

manageprofiles -listProfiles

Will list the available profiles.

manageprofiles -delete -profileName Name

Will delete a named profile.

Switching a server from production to development mode

When profiles (including Process Center) are created, the servers are default defined to run in
production mode. This is useful (naturally) for a production system but while developing solutions,
this can get in your way. Running the server in development mode relaxes some constraints such as
the ability to install a new application while there are existing instances of the old application
already around.

From within the Admin console, there is a check box that specifies whether or not we run in
development mode (default is not development).

Page 1309

http://www.ibm.com/developerworks/websphere/techjournal/1008_supauth/1008_supauth.html?cmp=dw&cpb=dwweb&ct=dwnew&cr=dwnen&ccy=zz&csr=090910

Recovering from a failed adapter install
If we have a module in ID that is directly deployed to PS that contains a JCA adapter which
contains a configuration error and the module is deployed, the module will fail to deploy but will
leave artifacts in the run-time that prevents any subsequent re-installs of that application. This is
believed to be a bug and there is indeed plans for a fix. However, if it happens, here is a
workaround:

• Stop the WAS server

• Delete files under

<WAS_HOME>/profiles/profilename/config/cells/cellname/cus/<applicationName>

<WAS_HOME>/profiles/profilename/config/cells/cellname/blas/<applicationName>

• Delete all files under:

<profile_root>/wstemp/

<profile_root>/temp/

<profile_root>/config/temp

<profile_root>/logs/dmgr

• Restart the server

Recovering from XA recovery
In rare circumstances, XA recovery may fail. To clean in-flight transactions and transaction logs,
shutdown WAS and in the <Profile>/tranlog/Cell/Node/server/transaction
directory, delete the contents of the folders called partnerlog and tranlog.

WAS Security

Page 1310

WAS Security is the topic of how the WAS server itself manages security artifacts.

See also:

• DeveloperWorks - WebSphere Application Server V7 advanced security hardening, Part 1: Overview and approach to security hardening –
2010-12-01

• DeveloperWorks - WebSphere Application Server V7 advanced security hardening, Part 2: Advanced security considerations – 2010-12-01

• DeveloperWorks - IBM WebSphere Developer Technical Journal: SSL, certificate, and key management enhancements for even stronger
security in WebSphere Application Server V6.1 – 2006-12-06

• Redbook - WebSphere Application Server V7.0 Security Guide - 2011-04-25

• Redbook - IBM WebSphere Application Server V6.1 Security Handbook – 2006-12-28

Virtual Member Manager

The WebSphere Application Server (WAS) has a concept called the Virtual Member Manager.
This is a security model that allows federated access to multiple authentication and user
management systems. This is also known as the federated user repository.

Part of the concept of this is the notion of a realm. A realm is a domain of user identities. A VMM
instance corresponds to a realm. Associated with a realm is a base entry which forms the root of a
hierarchical structure for that realm.

Out of the box, WAS provides support for VMM to include three types of repository for users.
These are:

• A file based repository

• One or more LDAP repositories

• A JDBC database repository

There are some restrictions when using VMM:

• The userids found in each repository must be unique

• If a single repository in the realm is down, all access is denied (by design)

• Only a single realm is supported

Using wsadmin, we can create user definitions using VMM. See AdminTask.createUser().

See also:

• DeveloperWorks - IBM WebSphere Developer Technical Journal: Expand your user registry options with a federated repository in WebSphere
Application Server V6.1 – 2007-01-24

• DeveloperWorks - Sample virtual member manager custom adapter for WebSphere Application Server Version 6.1 – 2011-06

WebSphere Application Server WEB 2.0 Feature Pack
This feature pack is available for download here:

WebSphere Application Server Feature Pack for Web 2.0 and Mobile

At the time of writing (03-2012) the version available was 1.1 and had a download size of about
264 Mbytes.

To install the feature pack, extract the ZIP and run the command:

install -is:javahome <AppServer>\java

Page 1311

http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/web20-mobile/
http://www.ibm.com/developerworks/websphere/library/samples/vmmsampleadapter.html
http://www.ibm.com/developerworks/websphere/techjournal/0701_ilechko/0701_ilechko.html
http://www.ibm.com/developerworks/websphere/techjournal/0701_ilechko/0701_ilechko.html
http://www.redbooks.ibm.com/abstracts/sg246316.html
http://www.redbooks.ibm.com/abstracts/sg247660.html?Open
http://www.ibm.com/developerworks/websphere/techjournal/0612_birk/0612_birk.html
http://www.ibm.com/developerworks/websphere/techjournal/0612_birk/0612_birk.html
http://www.ibm.com/developerworks/websphere/techjournal/1005_botzum/1005_botzum.html
http://www.ibm.com/developerworks/websphere/techjournal/1004_botzum/1004_botzum.html

Page 1312

Page 1313

Following a successful installation, running the WAS versionInfo command will show that the
component is installed:

See Also:

• RedBook - Building Dynamic Ajax Applications Using WebSphere Feature Pack for Web 2.0 - SG24-7635-00

AJAX Proxy

Another feature provided as part of the Web 2.0 Feature Pack is known as the AJAX Proxy. This is
a reverse proxy technology that allows a client to pass a service request through the proxy that will
then be forwarded onwards to other servers. This effectively allows a web client to connect out to
controlled external servers bypassing the sandbox rule of the browser connections.

For full details of the AJAX proxy, consult the InfoCenter. Here we will describe using the AJAX
proxy as a stand-alone deployed application.

The AJAX proxy is governed by a control file with the name the proxy-config.xml. Within
IBM BPM, this file can be found in:
<Root>/BusinessSpace/mm.runtime/config

To route through the proxy, target:
http://<hostname>:<port>/mum/proxy/<protocol>/<host>:<port>/<url>

For example:
http://localhost:9081/mum/proxy/http/www.neilkolban.com

Page 1314

http://www.redbooks.ibm.com/abstracts/sg247635.html

By default, the proxy configuration is "locked down" to prevent access to the majority of target
servers. One can modify the file and update the configuration.
AdminTask.updateBlobConfig('[-clusterName "<Cluster Name>" -propertyFileName "<Path>/proxy-
config.xml" -prefix "Mashups_"]')
AdminConfig.save()

After running this command, it will report:
'updateBlobConfig is executed succesfully'

Here is a concrete example.

Imagine my BPM server is running on localhost:9081. Imagine my Business Monitor server
is running on localhost:9085. My browser, which is served from pages from BPM, wishes to
make REST calls to Monitor … how can this be achieved?

Here is an example REST call:
http://localhost:9085/rest/bpm/monitor/models

This needs to be made from a web page loaded from localhost:9081.

By using the Ajax proxy, we will end up sending the REST request to:
http://localhost:9081/mum/proxy/http/localhost:9085/rest/bpm/monitor/models

In the proxy-config.xml, we added the following:
<proxy:policy url="http://localhost:9085/*" acf="none" basic-auth-support="true">

<proxy:actions>
<proxy:method>GET</proxy:method>

</proxy:actions>
</proxy:policy>

Then the updateBlobConfig() command was run and the nodes synchronized. Now the request to
access the monitor models works.

This is an XML file with a number of types of entries.

See also:

• TechNote: Troubleshooting IBM Business Process Manager: "403 BMWPX0006E: The URL you tried to access through the proxy is not
allowed" – 2011-12-12

• Testing the AJAX Proxy in WebSphere Application Server 8.0 - 2013-01-22

proxy:mapping

JAX-RS – REST Services in Java
REST based services have become more and more common. The implementation of a REST based
service provider in Java was originally built upon the notion of Servlets but as REST became more
pervasive, a better solution was proposed. This became known as JAX-RS and is documented in
JSR-311.

This section provides a primer and notes on JAX-RS and, where relevant, how they might be
leveraged with IBPM.

To start, we will examine some of the core concepts of the JAX-RS standard. Firstly, JAX-RS is
based on Java annotations meaning it will only work in the later releases of Java.

We will start with the notion of the Root resources. A Root resource is a class that is associated
with the annotation of "@Path".

Page 1315

http://portal2portal.blogspot.com/2013/01/testing-ajax-proxy-in-websphere.html
http://www-01.ibm.com/support/docview.wss?uid=swg21570464
http://www-01.ibm.com/support/docview.wss?uid=swg21570464

For example:

@Path(value=”/myPath”)
public class MyClass
{
}

It appears that an annotation of:
@Path(value="/myPath")

is equivalent to:
@Path("/myPath")

Methods contained withing such a class can be flagged as the handlers for various HTTP requests.
These are termed resource methods. For example:
@Path("/myPath")
public class MyClass
{

@GET
public String myFunc()
{

...
}

}

Signifies that if an HTTP GET request were made to “/myPath” then the Java method called
“myFunc()” would be invoked.

An additional feature known as sub-resource methods can be defined that looks as follows:
@Path("/myPath")
public class MyClass
{

@GET
public String myFunc()
{

...
}

@GET
@Path("/myPart")
public String my2ndFunc()
{

…
}

}

In this case, an HTTP request to “/myPath/myPart” would cause the function called
“my2ndFunc()” to be invoked.

One further qualifier is provided that looks like:
@Path("/myPath")
public class MyClass
{

@GET
public String myFunc()
{

...
}

@GET
@Path("/myPart")
public String my2ndFunc()
{

...
}
@Path("/{myParam}/my3rdFunc")
public String my3rdFunc(@PathParam("myParam") String myParam)
{

Page 1316

...
}

}

Using this style, we can access the “my3rdFunc()” function using
“/myPath/someParam/my3rdFunc”. This style is known as a Sub-resource locator.

Another style of URL is known as matrix param:
@Path("/myPath")
public class MyClass
{

@GET
public String myFunc(@MatrixParam("fieldA") String fieldA,

@MatrixParam("fieldB") int fieldB)
{

...
}

}

would handle requests such as:
/myPath;fieldA=xyz;fieldB=123

Similar to the above, query parameters can also be supplied:
@Path("/myPath")
public class MyClass
{

@GET
public String myFunc(

@QueryParam("fieldA") String fieldA,
@QueryParam("fieldB") int fieldB)

{
...

}
}

which would handle requests such as:
/myPath?fieldA=hello&fieldB=123

For method annotations, the following may be supplied corresponding to the HTTP commands:

• @GET

• @POST

• @PUT

• @DELETE

• @HEAD

HTTP Header parameters can be obtained by name in a method signature:
public String myFunc(@HeaderParam("User-Agent") String userAgent, …)

When invoked, the value of the "User-Agent" HTTP Header will be passed in as the userAgent
parameter.

To access all headers, the following can be used:

public String myFunc(@Context HttpHeader headers, …)

When returning data, a return type of javax.ws.rs.core.Response can be used to set status
code as well as HTTP Headers.

A request provides an indication of the data being passed into it. This is passed in with the HTTP
header known as “Content-Type”. A matching method can be declared using the @Consumes

Page 1317

annotation:
@POST
@Consumes(value="text/xml")
public String doSomething()
{

...
}

Correspondingly, a method that returns a specific style of data can be declared to produce such with
the @Produces annotation. An HTTP request with an HTTP header of “Accept” will be used to
match the function.
@GET
@Produces(value="text/xml")
public String doSomethingElse()
{

...
}

Once the classes that are to be exposed as REST resources have been defined, they need to be
“packaged” into a group associated with the an application that actually exposes them.
public class MyApplication extends javax.ws.rs.core.Application {

public Set<Class<?>> getClasses()
{

Set<Class<?>> classes = new HashSet<Class<?>>();
classes.add(MyClassA.class);
classes.add(MyClassB.class);
return classes;

}
}

What we have here is a Java class that extends the JAX-RS Application class. This class overrides
the method called “getClasses()” which returns a set of classes that are to be exposed as JAX-
RS resources. In the example above, two classes are exposed.

The following maps the packages for various annotations:

Annotation Package

@Path javax.ws.rs.Path

@PathParam javax.ws.rs.PathParam

@HeaderParam javax.ws.rs.HeaderParam

@Context javax.ws.rs.core.Context

@MatrixParam javax.ws.rs.MatrixParam

@QueryParam javax.ws.rs.QueryParam

@CookieParam javax.ws.rs.CookieParam

@FormParam javax.ws.rs.FormParam

See also:
• WAS 8.5 InfoCenter – Overview of IBM JAX-RS

• RedBook - Building Dynamic Ajax Applications Using WebSphere Feature Pack for Web 2.0 - SG24-7635-00

• Wikipedia on JAX-RS

• JAX-RS: Developing RESTful Web Services in Java

• DeveloperWorks - Developing JAX-RS 1.1 RESTful Services in Rational Software Architect V8 for deployment to WebSphere
Application Server V8 – 2011-11-02

• DeveloperWorks - Develop an Apache HttpClient client for Android to a JAX-RS web service – 2011-10-11

• DeveloperWorks - Build RESTful web services with Java technology – 2011-10-07

• DeveloperWorks - Comment lines: Combining Dojo and JAX-RS to create a RESTful service – 2010-07-14

Page 1318

http://www.ibm.com/developerworks/websphere/techjournal/1007_col_haverlock/1007_col_haverlock.html
http://www.ibm.com/developerworks/training/kp/j-kp-rest/index.html
http://www.ibm.com/developerworks/xml/library/x-android-jax-rs/index.html
http://www.ibm.com/developerworks/websphere/tutorials/1111_chinoda/index.html
http://www.ibm.com/developerworks/websphere/tutorials/1111_chinoda/index.html
http://www.devx.com/Java/Article/42873
http://en.wikipedia.org/wiki/Java_API_for_RESTful_Web_Services
http://www.redbooks.ibm.com/abstracts/sg247635.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.doc/ae/cwbs_jaxrs_overview.html

• DeveloperWorks - Create RESTful Web services with Java technology – 2010-02-23

• DeveloperWorks - RESTful Web services: The basics – 2008-11-06

JAX RS in WebSphere Application Server

IBM WebSphere Application Server (WAS) provides an implementation of JAX-RS as part of the
Web 2.0 Feature Pack and also as part of the base WAS 8.5 environment.

Here is a sample of building a JAX-RS exposed service in IBM Integration Designer.

1. Create a new Web Project in IID. I called my project "MyRESTTest".

2. In the project settings, select "REST Services" as a template for project construction.

3. Change the URL mapping patterns to be "/*"

Page 1319

http://www.ibm.com/developerworks/library/ws-restful/
http://www.ibm.com/developerworks/web/library/wa-jaxrs/index.html

4. Create a Java class that implements a JAX-RS exposed service. This is the Java class that
contains the code that will be invoked when the incoming REST request arrive. Notice that
the class is annotated with the JAX-RS annotations.

Here is an example:
package com.ibm.demo;
import javax.ws.rs.GET;
import javax.ws.rs.Path;

@Path("/rating")
public class Rating {

@GET
@Path("/id")
public String getId() {

System.out.println("/rating/id has been called!");
return "Hi from /rating/id";

}
}

5. Open the Web deployment descriptor file called "web.xml". Add an empty
"Initialization Parameter" and save the file. There is no question that this feels
like an odd instruction. We could explicitly have added the values we need to the
parameters or have had a better way of adding the details, but it "is what it is".

Page 1320

6. Execute the "Quick Fix" wizard with the "JSR-311 2.3.2" warning selected.

7. In the resulting wizard, select the option to create a new JAX-RS Application class.

Page 1321

8. Define the new class name and package to be created. In my example I called the
Application class "JaxRSApp".

9. Implement the body of the newly created class. The Java source file generated is the
"bootstrap" for our JAX-RS solution. We need to override a method called
"getClasses" to return a Java Class reference to each of the implementations of JAX-RS
function.

In my example, I coded:
package com.ibm.demo;

import java.util.HashSet;
import java.util.Set;
import javax.ws.rs.core.Application;

public class JaxRSApp extends Application {
@Override
public Set<Class<?>> getClasses() {

Set<Class<?>> classes = new HashSet<Class<?>>();
classes.add(Rating.class);
return classes;

}
}

Note that the class called "Rating.class" is the name of my class which contains the
implementation of the exposed JAX-RS REST service.

10. (Optional) Examine the web.xml deployment description and see that it now points to our
App as the loader for the JAX-RS environment.

Page 1322

11. Deploy the application to a suitable WAS server.

12. Test the REST service. We can use either a browser or a tool such as soapUI.

Deploying Java EE applications to WAS
There are times when we may wish to deploy Java EE applications to the WAS server hosting
Process Server. We can use the WAS admin console to achieve this task but there is an intriguing
alternative. WAS provides a monitored directory concept. If a Java EE application is placed in that
directory, WAS installs that application for us. By default, this capability is disabled and must be
switched on. From the WAS admin console, switch to Applications > Global
deployment settings and switch it on:

Page 1323

After enabling this property, the server must be restarted.

For stand-alone servers, the default location for the monitored directory is:
<profileRoot>/monitoredDeployableApps/servers/server1

WAS Messaging

Foreign Connections

There are times when we wish to setup foreign connections between two SI Buses. Here are some
notes.

On Machine B we have a Bus called "MONITOR.win7-x64Node01Cell.Bus". This has a queue
defined on it called "TargetQ". We create a JMS Queue Connection Factor called "jms/Bus2QCF"
that points to the Bus. We also create a JMS Queue Definition called "jms/TargetQ" that points to
the "TargetQ" owned by SI Bus.

Property Bus 1 Bus 2

BOOTSTRAP_ADDRESS 9810 2814

SIB_ENDPOINT_ADDRESS 7278 7281

Hermes Settings

Bus 1 Bus 2

Session Name Bus1 Bus2

binding jms/Bus1QCF jms/Bus2QCF

initialContextFactory com.ibm.websphere.naming.WsnInitia
lContextFactory

com.ibm.websphere.naming.WsnInitia
lContextFactory

providerURL iiop://localhost:9810 iiop://localhost:2814

localhost:7278:BootstrapBasicMessaging

Page 1324

Page 1325

Enterprise Content Management Integration – ECM
There are many solutions involving BPM that involve working with document and file content such
as Microsoft Word, PDFs, Excel spreadsheets, image files and other pre-existing information items.
Instances of document types such as these may be needed as part of a process instance. Consider an
insurance claim for a car accident. This may involve an initial claim form, a police report, pictures
of the accident and faxes from garages with quotes for repair. To process a claim, a clerk may work
through a process instance which must make these documents available. Obviously these
documents have to be stored somewhere within an IT system and this is where the category of
software product called an Enterprise Content Management (ECM) system comes into play. An
ECM is a software product that explicitly manages the existence, organization, search and retrieval
of instances of documents. A variety of vendors make a variety of such ECMs. These include:

• IBM FileNet

• IBM Content Manager

• Alfresco

• EMC Documentum

• … others

In addition, the BPM product itself provides an in-built document repository.

In this section we will discuss the support provided by IBM BPM for integrating with ECMs such
that content from documents can be managed as part of the process solution.

See also:

• developerWorks - Integrating BPM and Enterprise Content Management - 2013-12-04

• developerWorks - Integrating IBM Business Process Manager V8 with an Enterprise Content Management system - 12-2012

Content Management Interoperability Services – CMIS
If we consider what we want from an arbitrary ECM we will find a common set of required
functions. Capabilities that we obviously want are:

• The ability to store documents

• The ability to get lists of documents

• The ability to retrieve documents

• The ability to delete documents

Historically, each provider of an ECM supplied their own sets of APIs to be able to interact with it.
Each API was perfect for interacting with a specific brand of ECM however if we wished to change
ECM providers, we would be stuck with the job of re-coding our applications to use the different
APIs. What we need is an API that is an industry standard that each vendor that implements an
ECM can expose. If we can define such an API then we need only write our application that
interact with an abstract ECM once and then simply choose an ECM provider to use based on other
qualities such as performance, capacity, price or other features.

Content Management Interoperability Services (CMIS) is an open standards protocol from the
standards body called OASIS. CMIS provides a vendor neutral API for interacting with ECMs.
CMIS is what IBM BPM uses to interact with back-end ECM systems thus insulating BPM from
any single provider. A number of ECM's support this standard including:

• IBM FileNet

Page 1326

http://www.ibm.com/developerworks/bpm/bpmjournal/1212_ramos/1212_ramos.html
http://www.ibm.com/developerworks/bpm/bpmjournal/1312_mcelroy/1312_mcelroy.html

• Microsoft SharePoint

• EMC Documentum

• Alfresco

CMIS provides the following functions and here we indicate which ones are supported by IBM
BPM:

• getRepositories – Not exposed

• getRepositoryChildren – Not exposed

• getTypeDescendants – Get type descendents

• getTypeDefinition – Get type definition

• getChildren – Get documents in folder

• getDescendents – Not exposed

• getFolderTree – Get folder tree

• getFolderParent – Not exposed

• getObjectParents – Not exposed

• getCheckedOutDocs – Not exposed

• createDocument – Create document

• createDocumentFromSource – Copy document

• createFolder – Create folder

• createRelationship – Not exposed

• createPolicy – Not exposed

• getAllowableActions – Not exposed

• getObject – Get document, Get folder

• getProperties – Not exposed

• getObjectByPath – Get folder by path

• getContentStream – Get document content

• getRenditions – Not exposed

• updateProperties – Update document properties

• moveObject – Move document, Move folder

• deleteObject – Delete document, Delete Folder

• deleteTree – Not exposed

• setContentStream – Set document content

Page 1327

• deleteContentStream – Not exposed

• addObjectToFolder – Add document to folder

• removeObjectFromFolder – Remove document from folder

• query - Search

• getContentChanges – Not exposed

• checkOut – Check-out document

• cancelCheckOut – Cancel check-out document

• checkIn – Check-in document

• getObjectOfLatestVersion – Not exposed

• getPropertiesOfLatestVersion – Not exposed

• getAllVersions – Get all document versions

• getObjectRelationships – Not exposed

• applyPolicy – Not exposed

• removePolicy – Not exposed

• getAppliedPolicies – Not exposed

• getACL – Not exposed

• applyACL – Not exposed

See also:

• CMIS Specification – Version 1.0

• WikiPedia – CMIS

• CMIS at Alfresco

Configuring IBM BPM for an external ECM
In order to integrate with an external ECM system using CMIS, you must define it within your
Process Application. Within Process Designer, within the Process App Settings, you will find a tab
called Servers. We create a new definition here ensuring the "Type" is "Enterprise Content
Management Server".

A definition of this type has a number of attributes associated with it:

• Hostname – The host-name or TCP/IP address on which the ECM server can be found.

• Port – The TCP/IP port number on the host-name where the ECM server is listening for
requests it should perform on behalf of the BPM system.

• Context Path – The relative URL part of the context path on which the ECM server is
willing to accept Web Service requests for ECM work.

Page 1328

http://wiki.alfresco.com/wiki/CMIS
http://en.wikipedia.org/wiki/Content_Management_Interoperability_Services
http://docs.oasis-open.org/cmis/CMIS/v1.0/os/cmis-spec-v1.0.html

◦ Alfresco – alfresco/cmisws

• Secure Server – Whether or not the HTTPS protocol should be used for
communications. HTTPS provides transport level security.

• Repository – The name of the repository.

◦ Alfresco – Main Repository

• Userid – The userid used to connect to the ECM server.

• Password – The password for the user used to connect to the ECM server.

The "Test Connection" button may be used to validate the information entered. If all is well,
the following dialog will be shown:

Here is a sample Alfresco definition:

In order to use ECM functions within a BPM solution, we must add an IBM supplied toolkit as a
dependency to our application. Add the content management toolkit which is called "Content
Management" which has an acronym ID called "SYSCM":

Page 1329

The Document List Coach View
After having defined a BPM process app with knowledge of an ECM, we would next turn our
attention to thinking about how a user would see managed documents from our solution. IBM has
supplied a number of Coach Views that perform such services.

To show documents to the user from a Coach, you can add a "Document List" Coach View to
the Coach. From the palette of controls, this looks as follows:

When added to the Coach, it looks like:

It has quite a few configuration parameters:

• Allow create – Allows a user to upload a new document. The document will be added
to the folder defined in the "Parent folder path" attribute.

Page 1330

• Allow update – Allows a user to update the content of a document.

• Open in new window – If selected and if a request to show the content of the document
is made, then the content is shown in its own browser window. If we don't check this option
and wish to show the content of the document then we will have to use a Document Viewer.

• Number of results to show – The number of results for a document search to
show in a page. The default is 10.

• Show all content – If not selected (default) then the result will show a fixed number
of rows on the page and paging will be enabled. If selected, then the fixed number of rows
will still show but paging will not be enabled.

• Configure for use with – Select the type of document provider. There are two
choices:

◦ ECM Documents – An external CMIS compliant document repository

◦ BPM Document – The IBM supplied internal document repository

• BPM document options – When the type of repository is the BPM Document Store,
these additional options apply:

◦ Display options – This section acts as a filter to be used when displaying items in the list

▪ Associated with process instance – By default, all documents are
shown. Selecting this option causes only documents created within the current
process instance to be shown.

▪ Display match rule – A selection of how matches are made. There are three options:

• None – Display all documents. No filter is applied.

• Any – Display documents that match any of the filters.

• All – Display documents that match all of the filters.

▪ Display properties

• Name – The name of a matching property

Page 1331

• Value – The value of a matching property

◦ Upload options

▪ Default upload name – Default name for an uploaded document.

▪ User editable – Defines whether or not the user can edit the upload name.

▪ Add properties – Should additional properties be added during an upload.

▪ Upload properties

• Name – The name of a property to be added to a document.

• Value – The value of a property to be added to a document.

▪ Hide in Portal – If selected, the document will not be visible in the document
list.

A BPM data type called BPMDocumentOptions is defined that models these settings. This data
type contains:

• displayOptions (BPMDocumentDisplayOptions)

◦ associatedWithProcessInstance (Boolean)

◦ displayMatchRule (BPMDocumentMatchRule)

◦ displayProperties (NameValuePair)

• uploadOptions (BPMDocumentUploadOptions)

◦ defaultUploadName (String)

◦ userEditable (Boolean)

◦ addProperties (Boolean)

◦ uploadProperties (NameValuePair)

◦ hideInPortal (Boolean)

• ECM document options – ???

• Search (user implementation required for ECM documents) – A
service which returns the documents to be shown to the user. See Document List – Search
service.

• Get all document versions – A script which gets the versions of each document
retrieved

• Get document – A script which retrieves an individual document

• Get type definition – A script which retrieves the types of all the documents
retrieved.

• Get type descendants – A script which retrieves the types of documents.

But what does this Coach View look like when it is shown within a Coach? The following is an
example screen shot:

Page 1332

What is displayed is a table containing details of the documents that are found within the ECM. If
there are more documents than can be display in the maximum allowable size, the table will provide
paging (if desired). As mentioned, the selection of columns included in the table can be
customized.

In the "Actions" column are click-able icons that can provide functions to be performed against
the document that a row represents. The magnifying glass icon allows us to view the document's
content in an associated content viewer widget.

The pencil icon allows us to edit the properties of the document. When clicked, we can change the
properties or upload a new version of the content. This option is only available if the "Allow
update" configuration option is checked.

The final icon in the Actions column allows us to view the previous revisions of the document. The
revision list is shown in the same view:

Also in the view are two further buttons associated with the view as a whole. The first is called

Page 1333

"Refresh" and simply refreshes the view from the content managed by the ECM. If new
documents have been added, or old ones deleted the view will reflect those changes after a refresh.
The second button is called "Create Document".

Here we can provide a number of parts including the type of document, the name we wish to give to
the document and a local file whose content will be uploaded and associated with the new
document. The newly created document will be created in the ECM folder defined by the
"Parent folder path" configuration attribute. The ability to create new documents is only
available if the "Allow creates" configuration option is selected.

The Coach View can be bound to a variable of data type "List of ECMDocumentInfo". This
list will be populated with information on the retrieved items. The selected item in the list will
change when the user selects a document to view.

See also:

• Description of Document Info (ECMDocumentInfo)

• The Document Viewer Coach View

Document List – Search service

When the Document List Coach View loads, it has to get the list of documents from the ECM. It
performs this task by delegating it to a Service defined by the Search configuration parameter.
The Search service is used to return the list of documents to be shown to the end user. The Search
service can be easily created by clicking the "New" button in the Document List configuration
parameters.

Page 1334

A new service with the correct signature will be created for you:

It is your responsibility as the builder of this service to return a searchResult object from your
execution. To achieve this, add a Content Integration component into the service as
shown:

In its implementation settings, select your server and the "Search" operation:

Map its required parameters from the signature of the service you are building:

Page 1335

In order to enable the Actions for the Document List shown rows, the search must include the
"cmis:objectId" as one of the returned items. This is used as the key to perform the action.
This is added by default unless you have chosen to build your own CMIS query. Failure to return
this query will result in the actions grayed with a helpful tool-tip hint shown here:

See also:

• Content Integration node - Search

The Document Viewer Coach View
A companion Coach View to the Document List is the Document Viewer. This Coach View's
purpose is to act as a container for showing the content of a selected document. From the palette,
this Coach View looks like:

When dropped on a Coach canvas, it looks like:

The Document Viewer Coach View has no configuration options. However, it should be be bound
to a variable of type "ECMDocumentInfo" that should be a variable also bound to a Document
List Coach View. The recommended way is to bind to the "listSelected" element in the
Document List Coach View bound list. When the user selects a document in the Document List
Coach View, the selected entry in the list changes which is noticed by the Document Viewer Coach
View and is the trigger to show the new content.

The height of the Document Viewer is not likely to be the size you want. This can be fixed by
changing the style:
.classDocViewFrame {

Page 1336

height: 500px;
}

See also:

• The Document List Coach View

• Description of Document Info (ECMDocumentInfo)

Content Integration node
We should now have a general idea that interaction with an ECM is achieved using a protocol
called CMIS and that there are Coach Views that can be used to present the documents to the user.
We have also seen that some of these Coach Views call Services in order for them to obtain data.
What has not yet been explained is how these Service arrange for the CMIS calls to the ECM
provider to be made. IBM BPM provides a node that can be included in a service called the
Content Integration node. This is the core to the story.

The Content Integration node provides CMIS access to the ECM provider. It can be added to a
variety of Service implementations. When seen in the palette, it looks as follows:

When added to the service implementation canvas, it looks like:

Once added to the canvas, the implementation details of the node must be defined. There are two
primary attributes. The first is the server against which the CMIS command is to be performed.
This server definition must be create in the Process Application Server options. The second
parameter is called "Operation Name" and defines which CMIS operation is to be performed
against the server.

Part of the goal of IBM BPM is to try and shield the developer from the worst details of CMIS
usage.

The operations that can be performed on a Content Integration node are:

• Add document to folder

• Cancel check-out document

• Check-in document

• Check-out document

• Copy document

• Create document

• Create folder

• Delete document

• Delete folder

• Get all document versions

• Get documents in folder

• Get document

Page 1337

• Get document content

• Get folder

• Get folder by path

• Get folder tree

• Get type definition

• Get type descendents

• Move document

• Move folder

• Remove document from folder

• Search

• Set document content

• Update document properties

The entries in red are not available to the IBM BPM Document Store.

Each of these commands will be covered in turn.

Depending on which command is selected, the input and output parameters of the Content
Integration node will change dramatically.

IBM provides some new Business Object data type definitions for some of those parameters. These
new data types are described next

Description of a Document (ECMDocument)

A document is described by the data type called "ECMDocument":

• objectId – The unique ID of the document

• serverName – The name of the server eg "Alfresco"

• repositoryId – The ID of the server hosting this document.

• objectTypeId – The type of the document eg. "cmis:document"

• name – The name of the document

• contentURL – A URL that can be used to extract the content of the document

• creationDate

• createdBy

• lastModificationDate

• lastModifiedBy

• versionLabel

• isLatestVersion

• isMajorVersion

• isLatestMajorVersion

• checkinComment

• properties

Description of a Search Result (ECMSearchResult)

When a search is executed, an object of type ECMSearchResult is returned. This object
contains:

• numItems – The number of records returned

Page 1338

• hasMoreItems – Are there more items to be returned?

• serverName – The name of the server against which the search was executed. For IBM
BPM Document Store this is "EMBEDDED_ECM_SERVER".

• repositoryId – An identifier for the repository.

• objectTypeId – The kind of data returned (eg. IBM_BPM_Document)

• propertyMetadata – An array of meta data describing the data returned

• resultSet – An array of records, one for each document. The property "row" is an array
of records of data type ECMSearchResultRow. This contains a single field called
"column" which is a list of ANY. The entries in the data correspond to each of the
propertyMetadata items.

Description of an ECMID

Description of Document Info (ECMDocumentInfo)

The ECMDocumentInfo contains a single property called "contentURL" which is the Web
URL used to retrieve the content of the document. This data type can be seen as a list of variables
bound to a Document List Coach View.

Note: It is odd to the author that the ECMDocumentInfo contains only the contentURL. It
would seem to have been useful for this data structure to also contain the objectId of the
selected documents.

See also:

• The Document List Coach View

Description of a folder/document property (ECMProperty)

• objectTypeId (ECMID)

• value (ANY)

Description of a folder (ECMFolder)

The details of a folder can be retrieved with "Get folder" or "Get folder by path". This data
structure represents the details returned.

• objectId

• serverName

• repositoryId

• objectTypeId

• path

• parentId

• name

• creationDate

Page 1339

• createdBy

• lastModificationDate

• lastModifiedBy

• properties

• subFolders

See also:

• Content Integration node - Get folder

• Content Integration node - Get folder by path

Description of a Content Stream (ECMContentStream)

When one uses the Get Document Content call, we get back an ECMContentStream. This looks as
follows (8.5):

Description of an object type definition (ECMObjectTypeDefinition)

• objectTypeId (ECMID)

• localName (String)

• localNamespace (String)

• queryName (String)

• displayName (String)

• description (String)

• serverName (String)

• repositoryId (ECMID)

• baseId (ECMID)

• parentId (ECMID)

• queryable (Boolean)

• propertyTypeDefinitions (List of ECMPropertyTypeDefinition)

• children (List of ECMObjectTypeDefinition)

For IBM BPM, the property type definitions are:

Name Type Updateable Queryable

IsReserved boolean No Yes

IsVersioningEnabled boolean No Yes

Page 1340

MajorVersionNumber Integer No Yes

MinorVersionNumber Integer No Yes

VersionStatus Integer No Yes

ReservationType Integer No Yes

DateCheckedIn Date No Yes

CmIsMarkerForDeletion Boolean No No

DateContentLastAccessed Date No Yes

ContentRetentionDate Date No Yes

CurrentState String No Yes

IsInExceptionState Boolean No Yes

ClassificationStatus Integer No Yes

IndexationId id No Yes

CmIndexingFailureCode Integer No Yes

DocumentTitle String Yes Yes

IBM_BPM_Document_DocumentId Integer When Checked Out Yes

IBM_BPM_Document_ParentDocumentId Integer On Create Yes

IBM_BPM_Document_UserId Integer When Checked Out Yes

IBM_BPM_Document_FileType String When Checked Out Yes

IBM_BPM_Document_HideInPortal Boolean On Create Yes

IBM_BPM_Document_ProcessInstanceId Integer On Create Yes

IBM_BPM_Document_Properties String[] When Checked Out Yes

IBM_BPM_Document_FileNameURL String When Checked Out Yes

IBM_BPM_Document_ContentMigrated Boolean When Checked Out Yes

cmis:name

cmis:objectId

cmis:baseTypeId

cmis:objectTypeId

cmis:createdBy

cmis:creationDate

cmis:lastModifiedBy

cmis:lastModificationDate

cmis:changeToken

cmis:isImmutable

cmis:isLastestVersion

cmis:isMajorVersion

cmis:isLatestMajorVersion

cmis:versionLabel

cmis:versionSeriesId

cmis:isVersionSeriesCheckedOut

cmis:versionSeriesCheckedOutBy

cmis:versionSeriesCheckedOutId

cmis:checkinComment

cmis:conentStreamLength

cmis:contentStreamMimeType

cmis:contentStreamFileName

cmis:contentStreamId

Page 1341

Content Integration node - Add document to folder

This function adds a Document already uploaded to an existing folder. The input parameters are the
DocumentId of the document to be added to the folder plus the FolderId into which the document
will be added.

Content Integration node - Cancel check-out document

Cancel a check-out of a previously checked-out document.

See also:

• Content Integration node - Check-in document

• Content Integration node - Check-out document

Content Integration node - Check-in document

Check in a checked-out document.

See also:

• Content Integration node - Cancel check-out document

• Content Integration node - Check-out document

Content Integration node - Check-out document

Check out a document. The input parameter is the DocumentId of the document to be checked-out.

When we check out a document, we are given a temporary DocumentId that we can then use to
work with it. It is possible to "lose" that DocumentId before we check the document back in. For
example as the result of a coding error or system crash. In this case, the original document will
remain locked and we will be prevented further access to it. To resolve that issue, we need a
mechanism that will allow us to retrieve the temporary document id so that we can unlock it again.

See also:

• Content Integration node - Cancel check-out document

• Content Integration node - Check-in document

Content Integration node - Copy document

Make a copy of a document.

Content Integration node - Create document

Create a new instance of a document. The input data for the document can also be supplied.

Content Integration node - Create folder

Create a new folder as a child of an existing folder. The parameters to this command are

• Object Type ID – The type of the new folder to be created (eg. "cmis:folder")

• Parent Folder ID – The ID of the parent folder which this new folder will be a child

• Name – The name of the new folder to be created

• Properties (Optional) – Properties of the new folder. An list of ECMProperty
objects

Page 1342

It returns a "Folder ID" that uniquely represents the new folder.

The Parent Folder ID can be retrieved by a prior call using the "Get folder by path" operation. This
will return an ECMFolder object. Contained within it is a property called "objectId" which is
the ID of the parent folder.

An error will be thrown if the folder already exists.

See also:

• Content Integration node - Get folder by path

• Description of a folder (ECMFolder)

Content Integration node - Delete document

Delete a document. The document to be deleted is supplied by a "Document ID". A Boolean
called "All Versions" can be used to delete all versions or just some.

Content Integration node - Delete folder

Delete a folder. This command will delete a folder. The folder is identified with its own folder ID.
If the folder contains content, it will not be allowed to be deleted. One solution to deleting folders
which contain content is to first delete the content and then delete the folder. This can be achieved
with the already existing primitives supplied as part of the Content Integration node suite of
operations. The algorithm is to get a list of all documents in the folder and then, looping over each
item, delete it. Once all the items have been deleted, we can then delete the folder.

CMIS provides a useful function called "deleteTree" which deletes the folder and all descendant
objects. Unfortunately, that operation is not mapped to the Content Integration node and can't be
used.

Content Integration node - Get all document versions

Retrieve all the versions of a document.

Content Integration node - Get documents in folder

This method takes a folder ID and returns a list of ECMDocument objects where each document

Page 1343

corresponds to a document found in the folder defined by the ID.

Content Integration node - Get document

Retrieve a specific document.

Content Integration node - Get document content

Retrieve the content of a specific document.

Content Integration node - Get folder

Retrieve the details of a specific folder.

See also:

• Description of a folder (ECMFolder)

Content Integration node - Get folder by path

This method takes the path to a folder as a String and returns an ECMFolder object which is
populated with the details of that folder. Importantly, this includes the ObjectID that uniquely
identifies the folder.

See also:

• Description of a folder (ECMFolder)

Content Integration node - Get folder tree

Content Integration node - Get type definition

Content Integration node - Get type descendents

Content Integration node - Move document

Content Integration node - Move folder

Content Integration node - Remove document from folder

Content Integration node - Search

The search mechanism is based on the CMIS Query language. Process Designer provides guidance
on creating such a search. If a service contains a Content Integration node, a new tab can be found
at the top of the definition. This tab is called "Content Filters" and is used to build a CMIS
query against the ECM. The query to be built has a number of properties and provides a number of
ways in which it can be constructed. Here is a screen shot of a basic setup.

Page 1344

The first thing we will discuss is the entry titled "Method of creating search". This has
two possible values:

• Content Filters – The search will be built by the developer visually from settings
contained within this page

• Data Mapping – The search will be built by hand using explicit CMIS query language
and defined in the data mapping parameters of the Content Integration node

By using Data Mapping, you have full low-level control over the query executed but in order to use
that, you will have to understand and test CMIS queries. The Content Filters setting allows you to
build the query "visually". Let us concentrate on how to build queries visually.

The Object Type area allows us to define which types of objects we wish to search upon. At the
highest level, there are two types of object we can list. These are:

• Document – Return a list of documents

• Folder – Return a list of folders

We can think of both Documents and Folders as base "types" of more specific types of document.
For example, consider a business which has multiple types of documents. Maybe it has "receipts",
"orders", "tax returns" and more. Each of these is indeed a "Document" but the ECM system can
define specializations of such documents against which constraints and other rules may be applied.
The types of documents (all based on the base "Document" type) is defined at the ECM server but
can be dynamically retrieved by IBM BPM.

Page 1345

Once the choice is made in the visual wizard builder as to whether we want to return Documents or
Folders, we then have the option to further refine the type of Objects to return by selecting a
specialization using the Select button. In the following screen shot we have selected that we
want Documents (one of the two allowable types) and from there we clicked Select. A query
was then made to the ECM provider to retrieve a list of the other types of Documents available.
From here we can select the root Document type or a more specialized variant. When the query is
finally made, only documents of that specific type (or which inherit from that type) are returned:

Once we have defined the types of Object to be returned by the search, the next aspect is to define
which properties of the Object we wish to return and/or display. In the middle of the editor a table
is shown. This table should be used as a mental aid to consider the data returned. Each column in
the table is an indication of the property of data from an object that will be shown. The Add and
Remove buttons can be used to add additional columns or remove existing columns.

Finally, we can define filtering information in the "Search Criteria" area. Here we specify
expressions which are applied to the data and only those expressions which evaluate to true are
returned to the user.

The Content Integration searching can be filtered by a variety of parameters including:

• Base Type Id

• Content Stream File Name – The underlying file name of the document

• Content Stream Length – The length in bytes of the data of the document

• Content Stream MIME Type – The MIME type of the document

• Created by

• Creation Date – The date the document was added to the ECM

• Last Modified By

Page 1346

• Last Modified Date

• Name – The name of the document as known to the ECM

• Object Id

• Object Type Id – The type of object eg, "cmis:document"

The return from a Content Integration search is an object of type ECMSearchResult which
contains:

• numItems

• hasMoreItems

• serverName

• repositoryId

• objectTypeId

• propertyMetadata

• resultSet

The result of building this query visually will be Data Mappings that are bound for us:

By changing the method of search from "Content Filters" to "Data Mapping", we now
have full control over the searching:

Page 1347

The main part of the Content Filters editor is now grayed to indicate that it is now editable while the
CMIS query data mapping is now modifiable. Here we can supply a valid CMIS query, the
result of which will be used as the query against the ECM provider.

The properties available for Documents are:

Property Queryable

cmis:name ●

cmis:objectId ●

cmis:baseTypeId ●

cmis:objectTypeId ●

cmis:createdBy ●

cmis:creationDate ●

cmis:lastModifiedBy ●

cmis:lastModificationDate ●

cmis:changeToken

cmis:isImmutable

cmis:isLatestVersion

cmis:isMajorVersion

cmis:isLatestMajorVersion

cmis:versionLabel

cmis:versionSeriesId

cmis:isVersionSeriesCheckedOut

Page 1348

cmis:versionSeriesCheckedOutBy

cmis:versionsSeriesCheckedOutId

cmis:checkinComment

cmis:contentStreamLength ●

cmis:contentStreamMimeType ●

cmis:contentStreamFileName ●

cmis:contentStreamId

The properties available for Folders are:

Property Queryable

cmis:name ●

cmis:objectId ●

cmis:baseTypeId

cmis:objectTypeId ●

cmis:createdBy ●

cmis:creationDate ●

cmis:lastModifiedBy ●

cmis:lastModificationDate ●

cmis:changeToken

cmis:parentId ●

cmis:path

cmis:allowedChildObjectTypeIds

See also:

• Document List – Search service

• Description of a Search Result (ECMSearchResult)

• CMIS Query Language (Alfresco Wiki)

Content Integration node - Set document content

Set the content of an existing document.

Content Integration node - Update document properties

This operation is used to update the properties of an existing document. The parameters to it are:

• Document ID (ECMID) – The id of the document to be updated

• Name (String) – The optional new name of the document

• Properties (List of ECMProperty) – An optional list of the new properties.

See also:

• Description of a folder/document property (ECMProperty)

Page 1349

http://wiki.alfresco.com/wiki/CMIS_Query_Language

Examples of Content Integration nodes

Here are some examples of using Content Integration nodes

Finding documents in a specific folder

Imagine we wish to find documents located in a specific folder. We know the path name to the
folder.

We create a service that looks as follows:

The first Content Integration node performs a "Get folder by path" command using a path
variable as input. This returns an ECMFolder object. Contained within that object is a property
called objectId which is the ID of the folder corresponding to the path. In the Search Content
Integration node, we build a specific CMIS query that looks as follows:

"SELECT cmis:name, cmis:creationDate, cmis:objectId FROM cmis:document WHERE
IN_FOLDER('" + tw.local.folder.objectId + "') ORDER BY cmis:name ASC"

This uses the CMIS function called "IN_FOLDER" which constrains the search to be documents
within a folder given by its ID. We now have that ID from the previous step and use it.

Inbound ECM events
In addition to being able to cause work to be performed in an external ECM system, IBPM can also
be informed when external work happens. This means that changes in the ECM can result in events
being sent to IBPM that inform it of interesting updates. An indication of a change in an ECM is
termed a "content event". It is the responsibility of the external ECM to generate and publish such
content events. This means that logic/code needs to be built and injected into the ECM. An
instance of such code is called an ECM event handler.

The content event story has some key concepts associated with it. The first is the "Event source
ID".

The following lists the events supported by BPM and what types of ECM object they apply to:

Even Type Allowable Object

CheckedIn Document

CheckedOut Document

CheckOutCanceled Document

ClassChanged Folder or Document

ClassifyCompleted Document

Created Folder or Document

Deleted Folder or Document

Filed Folder

Frozen Document

Locked Folder or Document

PublishCompleted Document

Page 1350

PublishRequested Document

SecurityUpdated Folder or Document

StateChanged Document

Unfiled Folder

Unlocked Folder or Document

Updated Folder or Document

VersionDemoted Document

VersionPromoted Document

IBM supplies an event handler for the IBM FileNet product. This is supplied in source form in a
file found at:

C:\IBM\WebSphere\AppServer\BPM\EventHandlers\ECM\FileNet\filenet-bpm-event-handler-51-
src.jar

ECM event REST requests

An Event Handler interacts with the BPM run-time by sending REST requests to the server.

The format of the request is:
POST /rest/bpm/wle/v1/event?eventSourceId=?&objectTypeId=?&eventType=?&objectId=?

The possibilities for eventType are:

CheckOutCanceled

CheckedIn

CheckedOut

ClassChanged

ClassifyComplete

Created

Deleted

Filed

Frozen

Locked

PublishCompleted

PublishRequested

SecurityUpdated

StateChanged

Unfiled

Unlocked

Updated

VersionDemoted

VersionPromoted

Debugging ECM calls

Page 1351

Since IBM BPM is making CMIS calls using the Web Services protocol, we can intercept those
calls and view the requests and the responses. To achieve this, Apache TCPMon can be used. In
the ECM Server definitions, specify the port number for TCPMon and have TCPMon forward those
requests to the final destination for the ECM provider.

Note: 2012-11-25 – It seems that the introduction of TCPMon is causing more problems than it
solves. TCPMon has been seen to truncate data and only pass a subset onwards... ouch!!

As an alternative to TCPMon, the IID TCP/IP Monitor view may be used. It seems unable to parse
the content as XML but a copy/paste of text into an XML editor seems to do the trick.

CMIS Tools

When learning or debugging interactions with ECMs through CMIS we can use a rich selection of
existing CMIS based tools. This section provides some notes on using these.

CMIS Workbench

The CMIS Workbench tool can be used to interact with an ECM Server using CMIS directly using
the CMIS protocol. CMIS Workbench is part of the Apache Chemistry project and can be found
here:

http://chemistry.apache.org/java/developing/tools/dev-tools-workbench.html

If you are going to be working extensively with IBM BPM and ECM, it is suggested that you
become familiar with this tool as it will reveal a wealth of information.

To access Alfresco, use:

The URLs are:

• Alfresco

Page 1352

http://chemistry.apache.org/java/developing/tools/dev-tools-workbench.html

◦ Web Services - http://localhost:8080/alfresco/cmisws/RepositoryService

◦ Atom - http://localhost:8080/alfresco/cmisatom

API Programming for ECM
The primary way for interacting with the ECM is via CMIS. However, there are other opportunities
to work with the ECM outside of this area.

Uploading a new document

The only legal way to upload a new document is through the Document List Coach View.
However, there appears to be a way to programatically achieve this but it is neither documented nor
supported. It has been found by reverse engineering how the Document List achieves the task.

The core appears to be an HTTP request to:

/portal/jsp/ecmDocument?operation=ajax_createDocument

This needs important HTTP header data including:

• Content-Type: multipart/form-data

The properties sent by the browser seem to include:

• objectTypeId – (Required) IBM_BPM_Document

• cmis:name – The CMIS name of the document in the CMIS store. This is shown in the
"Name" column of the document list.

• fileContent; filename

• snapshotId – (Required) eg. "2064.xxx"

• ecmServerConfigurationName – EMBEDDED_ECM_SERVER

• folderPath – eg. "/"

• versioningState – eg. "major"

• snapshotId – 2064.xxx

• IBM_BPM_Document_Properties

• IBM_BPM_Document_ProcessInstanceId – eg. -1

• IBM_BPM_Document_HideInPortal – eg. "false"

• IBM_BPM_Document_UserId – eg. 1002

• IBM_BPM_Document_FileNameURL – Name of the file as shown in the "File name or
URL" column in the document list.

• IBM_BPM_Document_FileType – FILE

ECM Providers

Page 1353

IBM BPM Document Store

Starting with version 8.5 of IBM BPM, a component called the "BPM Document Store" was
supplied with the IBPM product. This is an implementation of a CMIS aware document repository
that simply "exists" within the BPM product. For some purposes, this will provide all that is needed
to work with documents without having to have an external document management system
available to you.

It is important to note that the BPM Document Store does not support folder based operations. To
leverage those functions, a full function CMIS compliant ECM provider should be used.

A document managed by the BPM Document Store has a data structure associated with it that is
called "IBM_BPM_Document". It's properties are shown in the following table:

Property Type Description

IBM_BPM_Document_DocumentId Integer A unique Id for this document instance

IBM_BPM_Document_ParentDocumentId Integer A unique Id for the parent of this document instance

IBM_BPM_Document_FileType String What kind of document is this? Choices are:
• FILE
• URL

IBM_BPM_Document_FileNameURL String The original file name of the document

IBM_BPM_Document_HideInPortal Boolean ??

IBM_BPM_Document_ProcessInstanceId Integer ??

IBM_BPM_Document_Properties String[] Additional properties of the document. In a search
result, the data will contain an array of properties.
Each item will be of the format
"<name>,<value>".
For example, if a searchResult is returned, the the
following can be used to access a list of Strings for
each property:

searchResult.resultSet.row[i].column[j].value
[k]

Experience also seems to show that if there is only
ONE property, instead of an array of Strings being
returned, only a single string is returned. We need to
accommodate this in the logic.

IBM_BPM_Document_UserId Integer Creator or last modifier of the document

When building a CMIS query by hand, it seems that the query must execute against
"IBM_BPM_Document" as opposed to "cmis:document" which would be the normal CMIS
target. For example, the following is a valid CMIS query against the IBM BPM Document Store:
SELECT cmis:name, cmis:objectId, cmis:versionSeriesId, IBM_BPM_Document_FileNameURL,
IBM_BPM_Document_FileType, IBM_BPM_Document_Properties FROM IBM_BPM_Document ORDER BY cmis:name ASC

FileNet

FileNet Information Sources

• InfoCenter - FileNet v5.1

Page 1354

http://publib.boulder.ibm.com/infocenter/p8docs/v5r1m0/index.jsp

FileNet Installation

Microsoft WSE 3.0 was required to be installed on my box.

We start by using the WAS Profile Management Tool to create a basic WAS profile:

Page 1355

Page 1356

Page 1357

Page 1358

Page 1359

Page 1360

Page 1361

Page 1362

Page 1363

Page 1364

Page 1365

After this we select Create and the process of creating a WAS server profile begins.

Page 1366

Now that WAS is installed, we can open up FileNet Configuration Manager. Make sure that the
AppServer is already running. Also ensure that the following WAS environment variables are set
correctly:

Page 1367

Page 1368

Page 1369

Page 1370

Running this task produces the following output:

Starting to run Configure GCD JDBC Data Sources

Configure GCD JDBC Data Sources ******************
Finished running Configure GCD JDBC Data Sources

Page 1371

Starting to run Configure Object Store JDBC Data Sources

Configure Object Store JDBC Data Sources **************
Finished running Configure Object Store JDBC Data Sources

Page 1372

Starting to run Configure Login Modules

Configure Login Modules *************
Finished running Configure Login Modules

Starting to run Configure LDAP

Configure LDAP ********
Finished running Configure LDAP

Page 1373

Starting to run Configure Bootstrap Properties

Configure Bootstrap Properties ********************
Finished running Configure Bootstrap Properties

Starting to run Deploy Application

Deploy Application *************************

Finished running Deploy Application

Alfresco

Alfresco is an open source document management system. Details about this project can be found:

http://www.alfresco.com/

Alfresco Installation

Here is an installation walk-through for Alfresco. Ensure PostgreSQL is installed as that will be
used as the database for Alfresco's own operations. Next we will perform a walk-through of an

Page 1374

http://www.alfresco.com/

Alfresco installation.

Once launched, we are asked which language we wish to use during installation:

We are shown a welcome screen:

We are given the choice of what type of installation we wish to perform. The choices are Easy or
Advanced. I chose Advanced:

Page 1375

We select which components we wish to add:

We are asked where on the local file system we wish the product to be installed:

Page 1376

Next we are asked what port number should be used for the database:

Since Alfresco runs on Tomcat, we are asked to provide properties of the Tomcat environment:

Page 1377

We are asked which port for FTP should be used:

Now we are asked for the port for remote commands:

Page 1378

Now we supply an administrator password. I recommend admin/admin for testing purposes.

Next we are asked whether Alfresco should start at system start-up time:

Page 1379

We have now supplied all the information necessary for the installation and configuration to
proceed:

When the installation completes, we are presented with a next-steps screen:

Page 1380

We can now login to the Alfresco system dashboard. This can be accessed from a browser at:

http://localhost:8080/share/

Page 1381

http://localhost:8080/share/

The first start of an Alfresco server may take a little while as the databases appears to be created
and populated.

When documents are added to Alfresco, those documents are not immediately seen in a search.
This means that if we create a document and then perform a query, the new document may not
show up. This has serious implications for IBM BPM. The Document List Coach View allows us
to upload documents and then immediately refreshes its view by performing a search. If the search
does not show the document, the end user may not realize that the document has already been
uploaded.

Digging into this story, we find that the search engine used by default in Alfresco is called "solr".
This search engine periodically indices its data (by default once every 15 seconds). This means
there is a latency between a new document addition and it showing in a search. If we can not accept
this, we can ask Alfresco to utilize an alternative search engine called "lucene" that maintains a
constant index and hence searches for newly uploaded documents show immediately. Here is a
recipe to enable the "lucene" engine.

1. Stop Alfresco

2. Edit the alfresco-global.properties file found in
/tomcat/shared/classes

3. Change the line to

index.subsystem.name=lucene

Page 1382

4. Add the line to

index.recovery.mode=FULL

5. Remove the following lines (if present)

/alfresco/alf_data/solr
/tomcat/conf/Catalina/localhost/solr.xml
/tomcat/webapps/solr

6. Start Alfresco. It may take a while because the indices are building.

7. Stop Alfresco

8. Change the line to

index.recovery.mode=AUTO

9. Start Alfresco

Alfresco debugging

When calls are made to Alfresco and those calls fail, additional log information may be found in

<AlfrescoRoot>/tomcat/logs

specifically, the file called:

alfrescotomcat-stdout.<date>

seems to contain a wealth of goodness.

Page 1383

WebSphere Operational Decision Management - WODM
The IBM product called WebSphere Operational Decision Management (WODM) comes from the
heritage of two preceding products called JRules and WebSphere Business Events (WBE).

WODM Installation
The part numbers for WODM are:

Windows – 64 Bit – 8.0.1

Description Part Number

eAssembly CRKX8ML

Operational Decision Server CID9GML

Operational Decision Center CID9HML

Operational Decision Manager Disk 1 CID6UML

Operational Decision Manager Disk 2 CID6VML

Operational Decision Manager Disk 3 CID6WML

The Eventing engine requires IBM WebSphere eXtreme Scale to be installed.

Page 1384

Page 1385

Page 1386

Page 1387

Note: When installing WODM onto a IBPM Business Space, a problem was found (2012-01-01)
which said that Business Space was at the wrong level. A PMR was raised and a circumvention
was to edit the file called:

<WebSphere App Server>/BusinessSpace/bspace.versions

Page 1388

and change the line which read:

RTC.build.release=7.5.1

to

RTC.build.release=7.5.1.0

Creating an instance of a Decision Server
Decision Server is distributed as a Java EE EAR application that is installed on a Java EE server.
For our purposes, we will assume that this is WAS. There are a few instructions for performing this
task which are quite well documented in the InfoCenter.

A number of security resources are recommended:

Groups

• resAdministrators

• resDeployers

• resMonitors

Users

• resAdmin

• resDeployer

• resMonitor

Creating an instance of Decision Server Events
The Decision Server Events component requires a database to be configured for its use. This
database must be configured prior to the creation or augmentation of profiles. For example, to
create a DB2 database, first we create a DB called DSEVENTS.

With the database created, I open a DOS/DB2 command window. Next I change directory to
<WODM Install>/config/db

I execute the command:

DB2 CONNECT TO DSEVENTS USING db2admin

and then

db2 -tvf db2.sql

This creates the tables and other artifacts. No errors should be shown/listed. After completion a
query of tables should show similar to the following:

Page 1389

Augmenting an existing App Server with Decision Server Events

If a WAS App Server is already defined and we wish to augment that server with Decision Server
Events, we can do that through either the PMT tool or through the manageprofiles command. Here
is a walk-through of using the PMT tool.

After launching the PMT tool, we select the profile we wish to augment. In this example it
happened to be a Process Center server. Once the profile is selected, we click the Augment button
to start the activity.

A profile can be augmented in a number of ways. To augment it to run Decision Services Evets, we
select the "Decision Server Events" entry.

Page 1390

Next we are asked for the install location in which the code for Decision Server Events can be
found. This is the directory into which WODM was installed.

Decision Server Events uses a database at run-time. Next we define the database type and
connection details we wish to use.

Page 1391

Decision Services Events also uses messaging for its operation. We can use a variety of messaging
types including the default (SI Bus) or WebSphere MQ. Next we define which type of messaging
we wish to employ.

Page 1392

In order to perform certain configuration changes, the augmenter needs to know the WAS
administration userid and password.

Page 1393

Finally, a summary of installation options is presented.

Page 1394

Augmentation now proceeds. If all has gone well, then at the conclusion we will see the following
dialog:

Page 1395

WODM Documentation
IBM Product Documentation
The documentation for WODM can be found in the IBM InfoCenter. The installation guide is a
separate PDF found here.

Web Page Information Sources

• IBM Home page for JRules

Page 1396

http://www-01.ibm.com/software/integration/business-rule-management/jrules/
http://publib.boulder.ibm.com/infocenter/dmanager/v7r5/topic/com.ibm.decisions/pdf/wodm_installing.pdf
http://publib.boulder.ibm.com/infocenter/dmanager/v7r5/index.jsp

• IBM Support page for JRules

• IBM JRules InfoCenter- v7.1

• IBM Internal – JRules Experts

DeveloperWorks
• DeveloperWorks - IBM technology in the financial markets front office, Part 2: Invoke conditional business rules based on analyzing data

streams – 2010-08-05

• DeveloperWorks - Integrating WebSphere Commerce with ILOG JRules for dynamic rules – 2010-08-04

• DeveloperWorks - Integrate WebSphere ILOG JRules with IBM Content Manager Enterprise Edition – 2010-05-13

• DeveloperWorks - Building smarter event-driven business processes with the WebSphere BPM suite – 2010-05-03

• DeveloperWorks - Integrate IBM FileNet P8 BPM with IBM WebSphere ILOG JRules using Web services – 2010-04-29

• DeveloperWorks - Mapping rule-based decision services to rulesets – 2010-03-24

• DeveloperWorks - WebSphere ILOG rules for COBOL – 2010-03-20

• DeveloperWorks - Author and deploy rules using WebSphere ILOG JRules Business Rules Management System – 2010-03-02

• DeveloperWorks - Integrate ILOG JRules with WebSphere Process Server via asynchronous messaging – 2010-03-01

• DeveloperWorks - Test and simulate rules using WebSphere ILOG Business Rules Management System – 2010-03-01

• DeveloperWorks - IBM WebSphere ILOG Business Rule Management System applied in the financial industry – 2010-02-18

• DeveloperWorks - Overview of ILOG JRules and WebSphere Process Server integration – 2010-02-10

• DeveloperWorks - Synchronize WebSphere ILOG Rule Studio with Rule Team Server – 2009-11-17

• DeveloperWorks - Modify a decision table using WebSphere ILOG Rule Team Server – 2009-11-17

• DeveloperWorks - Synchronize WebSphere ILOG Rule Solutions for Office with Rule Team Server – 2009-11-17

• DeveloperWorks - Rule authoring using WebSphere ILOG Rule Solutions for Office – 2009-11-17

• DeveloperWorks - Modify a decision table using WebSphere ILOG Rule Solutions for Office – 2009-11-17

• DeveloperWorks - Use WebSphere ILOG Rule Team Server to query rules repository and work with rule history – 2009-11-17

• DeveloperWorks - Create a business object model using WebSphere ILOG JRules Rule Studio – 2009-11-16

• DeveloperWorks - Rule Authoring with WebSphere ILOG Rule Team Server - 2009-11-16

Redbooks
• Patterns: Integrating WebSphere ILOG JRules with IBM Software - SG24-7881-00

• Making Better Decisions using WebSphere Operational Decision Management – REDP-4836

• Proven Practices for Enhancing Performance: A Q & A for IBM WebSphere ILOG BRMS 7.1 - REDP-4755

WODM Architecture
WODM is composed of the following components

WebSphere Decision Center
Decision Center is the management repository for artifacts to be stored. It is accessed via browser
interfaces. It is designed for business users to work with.

WebSphere Decision Server
Decision Server is the run-time engine used to execute business rules.

This includes sub-components such as:

• WebSphere Decision Server Event run-time

Page 1397

http://www.redbooks.ibm.com/abstracts/redp4775.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/redp4836.html?Open
http://www.redbooks.ibm.com/abstracts/sg247881.html?Open
http://www.ibm.com/developerworks/offers/lp/demos/summary/ilog-brms-ruleauthoring.html
http://www.ibm.com/developerworks/offers/lp/demos/summary/ilog-brms-rulestudio.html
http://www.ibm.com/developerworks/offers/lp/demos/summary/ilog-brms-rulequeryhistory.html
http://www.ibm.com/developerworks/offers/lp/demos/summary/ilog-brms-decisiontableoffice.html
http://www.ibm.com/developerworks/offers/lp/demos/summary/ilog-brms-officeauthoring.html
http://www.ibm.com/developerworks/offers/lp/demos/summary/ilog-brms-officesynchronize.html
http://www.ibm.com/developerworks/offers/lp/demos/summary/ilog-brms-decisiontable.html
http://www.ibm.com/developerworks/offers/lp/demos/summary/ilog-brms-synchronize.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1002_duan/1002_duan.html
http://www.ibm.com/developerworks/offers/lp/demos/summary/ilog-brmsfinancial.html
http://www.ibm.com/developerworks/offers/lp/demos/summary/ilog-brms-testsimulaterules.html
http://www.ibm.com/developerworks/webservices/library/ws-ILOGJRulesWPS/index.html
http://www.ibm.com/developerworks/offers/lp/demos/summary/ilog-brms-authordeployrules.html
http://www.ibm.com/developerworks/offers/lp/demos/summary/ilog-rulesforcobol.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1003_berlandier/1003_berlandier.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-1004filenetbpmjrules/index.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1005_iyer/1005_iyer.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-1005ilogjrulescontentmanager/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-1008integrationblueprint2/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-1008integrationblueprint2/index.html
http://w3.ibm.com/connections/communities/service/html/communityview?communityUuid=91d4851b-2230-45de-a338-0a5b6103f8db&successMessage=label.action.confirm.community.join
http://publib.boulder.ibm.com/infocenter/brjrules/v7r1/index.jsp
http://www-947.ibm.com/support/entry/portal/Overview/Software/WebSphere/WebSphere_ILOG_JRules

•

WODM Terms
• BAL – Business Action Language

• DVS – Decision Validation Service

• IRL – ILOG Rule Language

• Verbalization – Creating a vocabulary that business users can use to edit the rules

Rule Designer
Rule Designer is the development component of WODM. It is built on the classic Eclipse
framework.

Once launched, Rule Studio exhibits the default Eclipse icon in the system tray:

Project Structure
When a new Rules Project is created, container folders are automatically added. The project itself
is decorated with an "R" for "Rules".

Page 1398

Learning WODM
The InfoCenter documentation contains a sample tutorial.

Page 1399

Rule Projects
A Rule Project is a project created within Rule Studio to hold/house the artifacts for the solution.

Page 1400

Running a test execution
In the Eclipse Run Configuration section, we have the ability to define a Rule Project

Page 1401

Integrating with WPS

http://www-01.ibm.com/support/docview.wss?uid=swg27017588

Defining a Rule Execution Server configuration
When a Decision Server is configured, we may want to deploy an application directly to it. One of
the easier ways to achieve this is to first create a server definition which can then be named and
referred to when we wish to deploy.

Page 1402

http://www-01.ibm.com/support/docview.wss?uid=swg27017588

Page 1403

Page 1404

Categories
Categories can be defined by opening the properties of the Rule Set project.

Page 1405

New categories can be added by pressing the Add button after which a dialog appears into which
the name of the new category to be created may be entered.

The Vocabulary
Consider the idea of rejecting a Loan. In Java, a Loan class may be coded as:

class Loan
{

...
public double amount;
...

}

if we want to reject a loan because the amount is too high, in Java we would code:

Loan myLoan = new Loan();
…
if (myLoan.amount > 100000)
{

// Reject the loan
}

This is all good for a programmer, but our goal with BRM is to be able to express rules at a higher

Page 1406

level allowing easier creation and customization.

Instead, we might want to code:

if
the amount of the loan is more than 100000

then
reject the loan

Examining this for a few minutes seems to show that there is a "mapping" between the language we
use and the data available. For example the English 'the loan' is a place holder for an instance of the
Java class "loan". And 'the amount' is a place holder for a field in the Loan Java class. What we
need to do is create what JRules calls a "Vocabulary".

The Vocabulary is how the rules are verbalized. These are the terms that can be used to construct
language rules. In Rule Studio, the vocabulary of an entry is defined in the BOM entry for an
object. In addition, Rule Studio provides a Vocabulary View that can be used to see the language
for an associated type:

The Business Term
The idea of the Business Term is the "class" or "container" for further data. Examples of a
"Business Term" include a "loan" or a "customer". The Business Term is edited in the "Class
Verbalization" section of the BOM model.

The idea of a Navigation phrase allows us to delve into the content of the business term item.

Page 1407

If the data type of the attribute is a boolean, then the phrase is termed a predicate phrase.

An Action phrase is an action that can applied to the object such as a setter on the data or an
execution of a piece of Java code.

When we look at a phrase, we see that the phrase is made up of two kinds of "things". These things
are either placeholders or text. For example, in the following phrase:

set the name of {this} to {name}

The elements I have marked in blue are text while those in red are placeholders.

Placeholders are marked by being surrounded in curly braces. When building rules, the
placeholders are replaced with instances of information.

A special placeholder called {this} refers to the current instance of the object.

Categories

Functions

Execution Object Model (XOM)
The Execution Object Model (XOM) is the description of the physical data supplied to the rules.
The XOM is mapped to the Business Object Model (BOM) and then the rules executed against the
BOM. The XOM can be described either through Java classes or through XSD.

Business Object Model (BOM)
The Business Object Model or BOM is the core of WODM. It allows us to describe data and the
vocabulary associated with that data to allow business rule editing to be user-friendly. Think of a
BOM entry similarly to a Java Class.

A BOM entry has some core attributes. These include a "Name" which is the unique name of the
BOM data. A BOM's name is further qualified by a "Name-space". The combination of name-
space and name must be unique in the environment. When a BOM entry is created in Rule Studio,
it shows up in the BOM folder as a Class icon:

Page 1408

When a BOM is opened in Rule Studio, it is opened in the BOM editor:

The BOM editor has a sequence of category tabs (shown at the bottom) which group together
aspects of a single BOM.

BOM Class category
The Class category contains various sections that describe the BOM class as a whole. These
include:

General Information

Class Verbalization

Members

Page 1409

Domain

Categories

Custom Properties

BOM to XOM Mapping

BOM Member category
The Member category contains various section that pertain to a single member of the BOM. These
include:

General Information

Member Verbalization

Arguments

Domain

Categories

Custom Properties

BOM to XOM Mapping

The details of an individual member of a BOM can be edited by selecting a Member in the Class
category and clicking the Edit button:

Once done, the BOM editor changes to the Member category page with the member selected for
editing:

Page 1410

BOM Data types

The data type of a member can be defined as an arbitrary Java type but care should be taken if the
project is to be integrated with other systems.

The concept of a domain is a constraint on the value of a given member. Think of the potential
values being taken from a "domain" or "set" of such values. Potential domains include:

• Literals – a named set of possible and fixed values

• Bounded – Upper and lower bounds for values

• Collection ….

• Static References ….

Page 1411

• Others

BOM implementation files
Inside Rules Designer, a single BOM definition is physically stored as three distinct files. These
are:

• The BOM file which describes the content and structure of the BOM being defined

• One or more VOC files that define the vocabulary used by the BOM. There will be one file
for each language in which the vocabulary is described

• The B2X file which describes the mapping to and from a BOM to a XOM

Working with XSDs
Assuming that we have an XSD file that describes some data, it must be made known to the rules
project before a BOM can be created from it.

From the project properties, we can select the Dynamic Execution Object Model and add an XSD
that is part of a project or add an external XSD. Imagine we have an XSD that defines a simple
Loan

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://MyBank/Loan/"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://MyBank/Loan/">

 <complexType name="Loan">
 <sequence>
 <element name="name" type="string" minOccurs="1"></element>
 <element name="amount" type="double" minOccurs="1"></element>
 <element name="age" type="int" minOccurs="1"></element>
 </sequence>
 </complexType>
</schema>

Page 1412

Once this has been done, we can then create a BOM from the XSD.

Page 1413

Because we previously defined the XSD to the project, it now becomes a choice in the known XOM
entries.

Page 1414

At the conclusion of this step, we now have a BOM created that was based on the definition of the
XSD.

Page 1415

Rule Sets
A Rule Set can be thought of as an executable that runs under the context of a rule engine. A Rule
Set is a collection of one or more rules. Before deployment, the rule set is turned into a rule set
archive.

At deployment time, one more concept comes into play namely that of a RuleApp. A RuleApp is a
collection of one or more Rule Sets.

A Rule Set contains the following:

• Action Rules

• Decision Tables

• Decision Trees

• Technical Rules

• RuleFlows

• Technical Functions

• Variable Sets

• Rule Projects

Rule Set Parameters
A Rule Set has associated with it the concept of parameters. It is the parameters of a Rule Set that
describe its "signature" to the outside world. Each parameter of a ruleset has the following
associated with it:

• name

• type

• direction

◦ IN

◦ OUT

◦ IN_OUT

Rule Set parameters are created for a Rule Set by selecting the properties for the enclosing project.

Page 1416

Rule Flow
A Rule Flow is a sequence of rules that include sequencing of execution.

Creating a Rule Flow

Page 1417

Rule Flow editor

Start node

End node

Rule Task

Action Task

When a Rule Flow has been created, it can be found in the project under the rules folder as shown
below:

The icon for a Rule Flow is a "flowchart" like tree.

Rule Tasks are the core work horses for a Rule Flow.

When a Rule Task is selected in the Rule Flow diagram editor, the Properties view changes to show
the details of the task.

Page 1418

Transitions are the explicit wires that link the rule nodes together. A transition is directional
meaning that it starts at one node and ends at another.

A transition can have a true/false expression associated with it. The transition will only be followed
in the expression condition evaluates to true during execution.

We can create fork and join actions to have tasks executed in parallel and then later resynchronized.

As an alternative to using explicit transition expressions, a choice or gateway activity may be used:

Page 1419

Initial actions are BAL or IRL that are executed before an activity is executed. Initial actions can
be applied to:

• Start nodes

• Rule tasks

• Action tasks

• Subflow tasks

Similarly, final actions are BAL or IRL that are executed upon completion of an activity. Final
actions can be applied to:

• End nodes

• Rules tasks

• Action tasks

• Subflow tasks

Business Policies
Think of a Business Policy as a decision that affects the operation of the business. These policies
can be expressed as:

• Business Rules

• Decision Tables

• Decision Trees

• Technical Rules

Business Action Language
The Business Action Language (BAL) is the language used to describe rules within WODM. Think
of it as a "near" English representation of logic or decisions that have to be made. Structurally, it

Page 1420

consists of four separate parts:

• definitions

• if

• then

• else

The first part is the optional "definitions" while the following three parts are the "conditions". Both
are discussed following.

BAL Definitions
In the BAL definitions section, you define variables that will be used in the rule. A definition is
made with the keyword "definitions" followed by assignments to variables. Variables are named
entities that can be set to either numbers, text or existing business terms. An individual definition
can be guarded with a condition expression using the format "where"

i.e.

set <variableName> to <value> where <expression>;

A variable can be defined to a list of values using the "all" option:

set <variableName> to all <values> where <expression>;

The variableName can contain whitespace if the name is bracketed with single quotes.

BAL Conditions
Within the BAL code we can define "conditions". Conditions are simply "if … then … else ..."
constructs such that the "if" part defines an expression and only when the expression evaluates to
true do we execute the "then" part. If the expression was false, then we execute an optional "else"
part.

Page 1421

The condition expression can use variables provided in the BAL definition section or as parameters
on the rule project itself.

The expression is built using a set of available building blocks. These are groups into three type
called:

• comparison

• existence

• set membership

Contains / does not contain Test for string containment within another string.

Ends with / does not end with Test for string ending with another string.

Equals / does not equal

Is / is not Test that one value equals another

Is between <number> and <number> Test for a number in a range.

Is empty / is not empty Test for the string being empty.

Is more than / is at least Test for a number being more than another

Is less than / is at most Test for a number being less than another

Starts with / does not start with Test for string starting with another string.

There is at least one

There is no

The number of

There are

There are at least

There are at most

There is one

Is one of

Is not one of

Contain

Do not contain

Multiple conditions can be linked together with the AND and OR constructs.

Rule Actions
Following the then part of the rule is the Rule Action section. A rule action is executed if the
condition evaluates to true. The action can either change the value of an object or execute a
method/function.

An optional else part can be used to define a rule action that is executed if the condition expression
evaluates to false.

Page 1422

Business Rules
A rule is added to a project from the add context menu on that project:

A rule creation panel is shown which allows the name of the new rule to be supplied:

The rule editor provides the place where the details of the rule can be edited.

Page 1423

The section called "Code" is where the rule details can be entered. This is added as BAL.

Decision Tables
We have already seen that decisions can be described as rules in the BAL language that read very
much like English. Expressing decisions in this rule language is very straightforward but there are
times when this may not be desired. Consider a business rule that wishes to capture the following
requirement:

"When customers order goods, we wish to give them an incentive to order more at one time. To
that end, we will offer discounts based on the value of an order. If they order more than $500, we
will give them a 10% discount. If they order more than $1000 we will give them a 15% discount
and if they order more than $5000 we will give them a 20% discount".

We could achieve this effect with three rules that might look as follows:

Unfortunately, this isn't as clear as it could be. In this example the logic is spread over three rules
and to get the whole picture would take some work on our part as we opened each rule and related it
to each of the others.

Page 1424

Now let us consider an alternative mechanism for capturing the rules that is called a Decision Table.
A decision table that captures our desired rule may look as follows:

Hopefully a quick look at this immediately shows how much more intuitive it is to describe our
rules in this structure.

Decision Trees
We have seen two previous decision description capabilities. We have seen decision rules as an
English language style description mechanism and decision tables as a tabular style and both serve
their purposes. WODM provides a third style of decision description called a decision tree.

Consider a decision that has a requirement expressed as:

"We are considering whether to approve a loan. If the client is under the age of 18, we will deny. If
the client is single, they will be approved only if their income is over $20,000."

Using the decision tree style of describing rules we can model this as follows:

The diamonds in the diagram represent decision expressions. The boxes represent actions to be
performed. The links coming out of decisions represent potential values of the expression.

In the nomenclature of the product, the decision diamonds are called "condition nodes". Double
clicking a condition node opens a dialog into which the label can be entered. The label appears
beside the condition node in the diagram:

Page 1425

To set the expression associated with a condition node, click that node. Its color will change to blue
to show that it is selected:

At the top of the editor, an expression can be entered to reflect the decision being asked:

When a condition node is selected, branches can be added. This can be achieve through the icon
that looks like:

This icon can be found on both the diagram and in the menu bar of the editor. An additional
condition node can be added to the left of the current condition or action by clicking on the other
icon:

Page 1426

Take care when deleting condition nodes as all their following branches will also be deleted.

Actions can be shown expanded to show their content:

or collapsed to just show their labels:

The decision tree diagram can be oriented in two ways, either vertically:

or horizontally

Page 1427

the choice of orientation can be made from the menu in the editor:

The branches following a condition node can be "collapsed" meaning that they are hidden from
view. This can be achieved by clicking on the box associated with the outgoing branches:

When defining branches, one of them can be flagged as an "otherwise" branch meaning it will be
followed if none of the other expressions associated with the condition node evaluate to true.

An action can be defined to perform multiple functions by adding additional actions resulting in an
"action set".

Hovering over any particular action will show the rule in more detail.

An area of the editor window can be set aside to always show the selected rule by clicking on this
icon shown in the editor menu bar:

The result looks as follows:

Page 1428

WODM – Event Processing
Prior to the release of WODM, IBM marketed a product called WebSphere Business Events (WBE)
which was itself an acquisition many years prior. WBE as a separate product is now been
consumed into WODM and has been significantly enhanced. The features of WBE that are now in
WODM are known as event processing.

Historically, a technology discipline known as "Complex Event Processing" or "CEP" dealt with the
arrival of events over time and performing actions based on patterns of those events. From a sales
and marketing perspective, the "C" in "CEP" was not acceptable so the term was renamed to
"Business Event Processing" or "BEP".

The feature of WODM that provides event processing is called "Decision Server Events" (DSE).

Event Processing Architecture
It is extremely useful to understand the architecture of Event Processing in order to get the most out
of it. We will start with the notion of an "Event". An event is a "message" that arrives from outside
of DSE. How those messages arrive and what they look like is a story for later but let us simply
assume that somehow these messages do arrive. The arrival of such a message corresponds to the
arrival of an "event". The message itself is "typed" to represent a type of event. In addition to an
event message having a type it can also carry data with in it. The content of this data is called "an
event object" and is comprised of a flat level of named fields.

The next thing I want to introduce is a concept called a "rule". A rule is triggered by the arrival of
an event. Rules are mapped to particular event types so a rule is not simply fired when any event
occurs but only when events of a specific type occur. The rule contains logic which again will be
discussed later. The logic determines what should happen as a result of the event arriving. At a
high level, the primary outcome of an event arriving and a rule being examined is the firing of an
action.

An action, similar to an event, is simply a "message". However, an action, unlike an event, is an
outbound message. The action is the message "pushed-out" from DSE as a result of a rule choosing
to do so. Similar to an event, an action message is also typed and can also carry an action payload.

Page 1429

Turning back to the notion of the rule, in order for the rule to determine what it should do, the rule
is supplied with data. Commonly, that data comes from the incoming event payload. IBM has
chosen to add a level of abstraction here. Instead of rules working directly against event payload
data, rules are written to work against a logical data description called a "Business Object". When
an event arrives, a business object is populated from the event object data and then the event object
is discarded leaving only the business object. It is the business object that the rule operates against.
Similarly, if a rule chooses to fire an action, the action is passed a copy of the business object and
the business object's content is used to populate the action fields for the outgoing action message.

DES solutions are built in an Eclipse environment called "Event Designer".

The runtime for DES is a Java EE EAR application called "wberuntimeear" that is deployed to a
WAS server. The DES runtime utilizes the services of a JDBC database to store its rules and event
history and also uses JMS as the source of events.

IBM Decision Server Events – Knowledge

InfoCenter

The InfoCenter for IBM Decision Server Events can be found here:

http://publib.boulder.ibm.com/infocenter/dmanager/v7r5/index.jsp

Installing the Event Processing Business Space widgets
Business Space widgets are supplied for working with Event Processing. These must be installed.
The widgets can be found in the <Install>/widgets folder.
AdminTask.installBusinessSpaceWidgets([

'-nodeName', '<nodeName>',
'-serverName', '<serverName>',
'-widgets', '<InstallDir/widgets>'])

This can be run from wsadmin after starting it with:

wsadmin -lang jython -conntype NONE

After installing, a reboot of the server is recommended. The widgets can be validated as having
been installed by examining Business Space and seeing that there is a new "Events" category with
six new widgets:

Creating an Event Project
An Event Project can be created from the Event Perspective:

Page 1430

http://publib.boulder.ibm.com/infocenter/dmanager/v7r5/index.jsp

once created, it looks like:

The DES console
http://localhost:9080/wbe/common/login.jsp

The Rule Execution Server
When design and development of the rule solution has completed, the solution has to be made
runnable so that client can make use of the decisions. This is achieved by deploying the solution to
a Rule Execution Server.

The Rule Execution Server is the core run-time component of WODM. It is deployed on a
WebSphere Application Server.

The Rule Execution Server is itself broken down into a series of logical components:

• Execution Unit (XU)

• Java EE execution components

• Java SE execution components

• JMX management and execution model

• Management console

• Transparent decision services

Rule Execution Server Console
Once the Rule Execution Server has been installed, a console can be launched to perform various
management functions against it. The console can be launched at:

http://localhost:9080/res

An initial login window is shown:

Page 1431

http://localhost:9080/res
http://localhost:9080/wbe/common/login.jsp

after login, the main window shows the available options:

Page 1432

Hosted Transparent Decision Services – Web Services
Imagine that we want decisions to be made from calling applications which are remote from a
Decision Server. In order to do this, we can expose rules as Web Services and have the rules
executed when a Web Service call is made.

To activate this function install the EAR found at:

<Install>/executionserver/applicationservers/WebSphere7/jrules-res-htds-WAS7.ear

After installing this component rules are then exposed as Web Services for invocation.

Within the Rules Execution Server console, if we drill down to a particular rule project, we can
access the Hosted Transparent Decision Services (HTDS) options. This includes the ability to
retrieve the WSDL description of the exposed Web Service.

Selecting the option to retrieve the WSDL file results in a further panel:

from here, additional options can be supplied.

Rule Application
The Rule Application (RuleApp) is the deployable component to the Rule Execution Server. The
RuleApp is defined in Rule Designer as a new project (of type RuleApp). To create a RuleApp
project, open the Rule Designer file menu and select New > Project.

In the dialog of allowable project types, the RuleApp Project type can be found in the Rule

Page 1433

Designer catalog.

Selecting to create a new Rule Designer project opens a new dialog into which the name of the new
RuleApp project may be entered.

At this time the project's creation can be completed or else Rule Projects may be added.

Page 1434

Once done, the RuleApp has now been created and has its own editors for configuring the primary
attributes of a RuleApp project.

Page 1435

Deploying a RuleApp
Once a RuleApp has been created, it can be deployed from Rule Designer directly into a Rule
Execution Server. This may be useful for development testing but is unlikely to be desirable in a
production system. Instead, a Rule App can be exported as an "archive" which can then be
deployed either from the Rule Execution Server console or from an Ant task called res-deploy.

To deploy the RuleApp to the Rule Execution Server from Rule Designer, we can select Deploy
from the RuleApp Project:

Next we are asked how we want to augment or replace any existing version that may already be on
the server:

Page 1436

Finally, we are asked about the location of the Rule Execution Server to which we wish to deploy:

For the other deployment solutions, a Rule App must first be exported from the Rule Designer. The
result of an export is a new file on the file system. This file contains everything needed to deploy
the RuleApp to a Rule Execution Server. The file is a ".jar" file.

Page 1437

One the deployment archive has been created, we can deploy it to a Rule Execution Server through
the Rule Execution Server console.

Page 1438

Page 1439

RuleApp Properties

WODM – Decision Center
Decision Center is where business users can manage rules executed by Rules Execution Servers. In
previous releases of the product, the function known as Decision Center used to be called "Rule
Team Server". This still surfaces from time to time in the documentation and commands.

Configuring Decision Center
Decision Center requires the following security configurations:

Groups

• rtsAdministrator

• rtsConfigManager

• rtsUser

• rtsInstaller

• Validator

• Eligibility

A JDBC Data Source must be defined called jdbc/ilogDataSource

The EAR file for deployment of Decision Center is:

<Install>/teamserver/applicationservers/WebSphere7/jrules-teamserver-WAS7.ear

After installation, when the Decision Center is first opened, a set of configuration options are
presented:

Page 1440

Page 1441

Page 1442

Page 1443

Business Process Management scenarios
A common request is to show IBPM performing some specific role. This request is made by

Page 1444

prospective consumers of the product. IBPM is not the only BPM offering in the marketplace so it
seems only natural to ask for such a comparative demonstration. Since IBPM is not a turn-key
solution but is instead middle-ware that is to be used to build a solution, such demonstrations of
capability need to be built. To build a new demonstration each time a customer asks for one is
going to be too expensive. Instead, what we should look to do is to create a portfolio of existing
demonstrations that can be reused. The characteristics of these demonstrations are:

• Be well documented

• Include a presentation to describe what is to be seen

• Be executable on the very latest versions of the product

• Include a video presentation to be shown when no execution environment or demonstrator is
available

It is also my belief that these scenarios should also have the following additional characteristics

• Be short

• Be simple

• Be as industry agnostics as possible

Scenario: Exception Handling
In many processes, handling of work requests can be mostly automated or else follows a very well
oiled sequence of steps that has been well tuned over time. What has been seen as a great expense
to businesses is what is known as exception handling. Exception handling is the task of handling
process work requests that didn't follow the desired or expected path. Here are some examples:

• A customer's credit card is declined in an on-line purchase

• A medication to be sent to a patient has an adverse interaction with another medicine also
supplied to the customer

• A stock purchase can not be fulfilled because the stock being purchased has been suspended

• An insurance form is missing information. The VIN of the vehicle being insured has not
been supplied.

In these examples, the process can not be completed until some other steps have been performed.
These steps are usually manual in nature involving a staff member being told of the nature of the
problem and that staff member deciding what should happen next.

One of the primary characteristics of exception handling is determining which staff members would
be appropriate for resolving a particular issue. A simple solution would be to assign the exception
processing to all members of a particular team or group. In many cases however, this will not be
satisfactory. Instead, the request should be sent to a set of folks who have the skills or
responsibility to perform the work. In this case, the determination of which users should be
included may be a function of the nature or details of the exception being processed.

Advanced IBPM Troubleshooting
Data Studio
For the BPM v8.5 release and onwards, DB2 is now at v10. This saw the replacement of the DB2
Control Center tool with the IBM Data Studio product. This component is available for download
for free here:

Page 1445

http://www-03.ibm.com/software/products/us/en/data-studio

Here is an installation walk-through

Page 1446

http://www-03.ibm.com/software/products/us/en/data-studio

Page 1447

Page 1448

Page 1449

Page 1450

Page 1451

Page 1452

See also:

• DeveloperWorks - Migrating from DB2 Control Center to IBM Data Studio - 2012-01-19

DB2 Troubleshooting
db2admin was found to be consuming 100% CPU after a power outage and restart. A recipe was
found to "reset" it with the following recipe:

db2admin stop
db2admin drop
db2admin create /user=db2admin /password=db2admin
db2admin start

To display the message text associated with a SQLSTATE error, open a DB2 command window
and enter:

? nnnnn

Where nnnnn is the SQLSTATE value. A human readable description of the message will be
displayed.

To explicitly grant authorities to a DB user for debugging, run the following script:

Page 1453

http://www.ibm.com/developerworks/data/library/techarticle/dm-1201migctrlctrdatastudio/

CONNECT TO PDWDB;

REVOKE ACCESSCTRL,DATAACCESS ON DATABASE FROM USER KOLBAN;

GRANT
CREATETAB,BINDADD,CONNECT,CREATE_NOT_FENCED_ROUTINE,IMPLICIT_SCHEMA,LOAD,CREATE_
EXTERNAL_ROUTINE,QUIESCE_CONNECT ON DATABASE TO USER KOLBAN;

CONNECT RESET;

Insufficient DB2 connections

If things start to fail and we get error code SQLSTATE 57032, this means that we have too many
databases open. Using the db2 get dbm config command, look for the entry called:

Max number of concurrently active databases (NUMDB)

The default appears to be 8.

The entry can be changed in the DB2 configuration

Page 1454

After making this change, DB2 must be stopped and restarted which means stopping all the
servers too.

Page 1455

Eclipse
The Open Source Eclipse project can provide a wealth of tools that can be used in conjunction with
IBM BPM:

• soapUI - http://www.soapui.org/eclipse/update/site.xml

• Java EE and Web Tools

The Java EE and Web Tools package is ideal for building Java EE WAR applications for
deployment into a WAS server.

• Class Locator Plugin

Page 1456

http://sourceforge.net/projects/classlocator/
http://www.soapui.org/eclipse/update/site.xml
http://www.soapui.org/IDE-Plugins/eclipse-plugin.html

Unix Notes
X-Windows
When working on Unix systems, it is sometimes useful to install an X-Windows server on a
Windows environment. A good free version is called Xming:

http://www.straightrunning.com/XmingNotes/

When a client wishes to send an X-Window to an X-Server, the X-Server needs to allow the
incoming client. For testing purposes, Xming can be started with the "-ac" flags which allow all
connections, effectively disabling security. This is not recommended for a long term solution but
useful in a demo or PoC environment.

Database Installation
MS SQL Server 2008 Installation
An evaluation copy of MS SQL Server 2008 was obtained from the Microsoft web site.

When executed, it prompted for a directory into which to extract the installation image.

Page 1457

http://www.straightrunning.com/XmingNotes/

Page 1458

Page 1459

Page 1460

Page 1461

Page 1462

Page 1463

Page 1464

Page 1465

Page 1466

Page 1467

Page 1468

Page 1469

Page 1470

Page 1471

Page 1472

Page 1473

Page 1474

Page 1475

http://www.microsoft.com/download/en/details.aspx?id=2505

C:\Program Files (x86)\Microsoft SQL Server\MSSQL10_50.MSSQLSERVER\MSSQL\Binn

Page 1476

http://www.microsoft.com/download/en/details.aspx?id=2505

Page 1477

Java Programming
When working on a WebSphere Application Server environment, sooner or later some Java code
will need to be written by someone. There are thousands and thousands of books and articles
written on general Java and its use and this book will not be another. It simply would not belong in
such a book. However, that said, there are sometimes Java oriented topics that may crop up in
conjunction with IBPM that are of value. This section of the book is where these will be captured.

Writing XML documents
We all know what an XML document is and there is no need to go into that again. What if we wish
to generate an XML document from Java code? There are many ways to achieve that task. This
section talks about one one them … the javax.xml.stream package.

First we will look at javax.xml.stream.XMLOutputFactory.

This has a static method called newInstance() which will return an instance of an
XMLOutputFactory.

Given one of these, we can now obtain an XMLStreamWriter object using the
XMLOutputFactory createXMLStreamWriter() method.

Now that we have an XMLStreamWriter object, we can invoke its methods to write XML parts
… part by part.

Working with Apache POI
Apache POI is a set of Java libraries that provide access to Microsoft Office based documents
including Excel and Word. The home page for this project can be found at:

http://poi.apache.org/

Reading an Excel Spreadsheet with POI

Writing an Excel Spreadsheet with POI

Page 1478

http://poi.apache.org/

Demo – Book Order Fulfillment
This demonstration is a comprehensive solution of a fictitious company (Books-2-U) that sells
books over the internet. The scenario was chosen not to represent any particular industry but rather
to be illustrative of how to use the IBM BPM product to solve problems using a story that should be
familiar to all readers.

Most of us will have ordered books over the internet by now. The usual pattern is that we visit a
web site, browse or search for books, create an order for the books we wish, provide shipping and
billing information and then hit the submit button. Within a few weeks, a box arrives on our
doorstep containing the books we ordered.

What this story considers is what happens when an order arrives at our Books-2-U company?

What do we have to do to fulfill our customer's order?

!!
Think through what you might steps you might imagine to be involved in fulfilling orders before
you continue. See if what you imagined is close to what we imagined. There isn't necessarily a
right or wrong answer.

When designing a solution, gather your staff together and have them start to describe what happens
today. A process capturing tool such as IBM's Blueworks Live might be a good candidate for this
step but if that is not available, consider a white board or a generic drawing package such as

Page 1479

Microsoft's Visio.

After a short while, we came up with the following:

• Receive the order

• Charge the customer

• Ship the books

This is about as simple and understandable as it can get. Much later on we will find that there is
more to the story than this, but for now, let us assume this is what we have.

Part I – A simple start
Now we create a Business Process Definition (BPD) called Book Order Fulfillment that looks as
follows:

These activities mapped exactly from our thinking of our process. We can easily see the flow of
work. First we charge the customer and then we ship the books. That was pretty easy. Our
thinking here is that if we now implement the two activities, we will have completed our task.

The next step we need to consider is the data associated with our process. All processes have data
associated with them. They have to. It is the difference in data content that will differentiate one
instance of a process from another. In our scenario, what data items are we working with?

After some thought, we decided on the following:

• A Book

◦ Title

◦ Author

◦ Price

• Shipping

◦ Recipient name

◦ Address

• Billing

◦ Card number

◦ Card expiry

◦ Card holder name

◦ Billing address

• An Order

◦ A list of Books

◦ Billing details

Page 1480

◦ Shipping details

The last data type (order) is the core. An order is considered to be a list of books desired by the
customer plus the details of how they are going to pay and finally to where they want the books
delivered.

By having made this list, we can again map this to capabilities of the BPM product. The following
BPM Business Object data types were built. Business Objects are data types that are created in the
Process Designer.

Book Address ShippingDetails

BillingDetails Order

Now we can start looking at the implementation of the activities. The first activity we will examine
is Charge Customer. This activity is meant to charge an amount against a customer's credit card.
We will assume that this is a new implementation and we don't have an existing similar service.
Thinking about what such a service needs in order to perform its work, we determine that it needs
the amount of money to bill plus the details of where to bill via a credit card. Looking at the data
already available to us, we find that we do not have a total amount to charge. Instead we have an
order which contains a list of items where each item has an associated price. This means that we
would like to calculate the total order amount. However, adding a technical step to perform that
task would seem to clutter our process diagram. What we do not want to end up with is the
following:

This intermixes clean and high level business steps with technical necessities which is not what we
want. A solution to this type of issue is the creation of a sub-process which will encapsulate
technical steps while leaving the top level BPD pristine:

A sub-process is a sequence of BPD activities that are contained within the parent BPD but which
are not immediately visible. Think of a sub-process as a "box" that owns other activities. Notice in
the diagram above that the Charge Customer activity has a small icon in its lower right that
indicates that it is a sub-process holder.

Notice that the Charge Customer step was changed from a system task to a sub-process. Drilling
down into the sub-process, we can now define the following steps within that sub-process:

Page 1481

The true benefit of this is that we maintain our high level story while at the same time defining the
next level down to have more details.

So far we have not defined any variables in our process. Thinking about its nature, we see that all
process instances start with the receipt of an Order. We model this by defining an input variable
on the process. This variable is called order of type Order.

Now we turn our attention to calculating the total amount to be charged against the customers credit
card. The Order contains a list of books the customer wishes to purchase and each book has a
price associated with. We define a local variable to the sub-process called totalAmount of type
Decimal.

Note that because this is defined as private on the sub-process, it will not be visible on the parent
process. This is goodness as it is only needed locally to the sub-process and doesn't dirty our parent
process space of variables.

The implementation of the Calculate Total activity will be an in-line script. We could have chosen
to create a separate service but since there appears to be no other obvious consumers, we don't see a
need for this to be implemented in a re-usable fashion. The script itself is a simple loop over the
books in the order.

tw.local.totalAmount = 0;
for (var i=0; i<tw.local.order.books.listLength; i++)
{

tw.local.totalAmount =
tw.local.totalAmount + tw.local.order.books[i].price;

}

Making a charge against the customer's credit card will be a service. As a current place holder, we
will define a general service to achieve that task but first we must decide what its input will be. To
make a charge against the customer, we need the customer's billing details as well as the amount to
charge.

The service we create is called Charge Card and has the following interface:

Page 1482

For now, its implementation is nothing more than a log that it was called:

In the BPD, the activity called Charge Customer (2) is implemented using the Charge Card general
service and the data mappings mapped as follows:

Now we return our attention to the activity called Ship Books. Again, this will be a technical
service that will cause the books to be shipped. For now we will create a general service to
implement this step. We will call this general service Ship Books. Its interface will look like:

The Ship Books BPD activity will be implemented by the Ship Books general service. The mapping
from the variables to the input parameters will look as follows:

We are close to completing the first pass of our initial build. We see that the process needs some
initial input in order to run. It is extremely good practice to create some default content for input
variables for services and processes. This way we can unit test each one easily. When creating
default/test content, always make sure that it looks like test content and couldn't accidentally be
used as real content that would cause confusion in the future. At this point, defining some sample
data for the order variable will be needed for testing.

Page 1483

We are now able to run our process through Process Designer and look at its result in the inspector.
After a run, we should see:

In the WAS console, we should also find the information logged by our stub services:

>>> Charge Card
Charge amount: 12.34
--- Billing details
Card holder name: John Q Sample
Card number: 9999
Card expiry: 2099-09-09
- Address
Street: 123 Anystreet
City: Anytown
State: AA
Zip: 9999
<<< Charge Card
>>> Ship Books
--- Books
Sample - The color of magic, Terry Pratchet
--- Shipping details
Street: 123 Anystreet
City: Anytown
State: AA
Zip: 9999
<<< Ship Books

This completes our first pass at a basic process.

Page 1484

Part II – Billing problems
Our solution so far seems to work nicely but is about as trivial as it gets. Unfortunately, really
simple scenarios rarely reflect real world situations. Let us imagine that we put our process into
production and almost immediately we find our first problem. If a customer orders books and they
provide in-valid billing information, the situation is not handled. At best, the process terminates
and the order is abandoned. We think we can do better than this. If the billing fails, we want to try
and re-contact the customer and inform them of the problem. It could be they made a typo when
they entered their card number or they temporarily had insufficient funds. These are correctable
situations and, if we take new billing information, we can recover the process. This benefits the
customer as they will get their desired order and it also benefits us as we get the desired revenue.

When we detect a problem with an attempt to charge the customer's credit card, we will take an
alternate path. We will ask one of our clerks to examine the order and contact the customer. This
may resolve the issue. It may also result in the order being canceled if we don't hear from the
customer or else they wish to explicitly cancel their order.

Our first pass at a design for this looks as follows:

We add an exception handler to our Charge Customer activity. This now implies that if there is a
problem with billing, an exception will be thrown indicating this. A new activity called Billing
Problem is defined which will handle the billing issue. This will have an outcome indicating
whether or not the billing issue was resolved. If it was resolved, then we progress to the shipping of
the books, if it wasn't resolved, we perform some action to cancel the order.

With this in mind, let us now turn our attention to what is needed to implement these steps. The
first activity we examine is the Billing Problem step. We can see that it will be a human task as a
clerk must work upon it. The input to the clerk must be the complete order which contains all the
details needed to contact the customer and talk with them about their order. The output will be an
indication on whether or not the billing issue was resolved. If we spend time looking further at this
design, a thought should strike us … a side effect of resolving the billing issue must include
actually charging the customer's credit card but that capability is owned by the Charge Customer
activity. In addition, our nice clean top level business process is starting to look a little complex.
Maybe there is an alternate design.

Here is a second pass at our design.

Page 1485

In this story, the Charge Customer will either succeed or fail and, if it fails, the order will be
canceled. The handling of an invalid card is now owned by the Charge Customer sub-process.

The following shows a possible implementation within the Charge Customer sub-process.

Again we assume that the Billing Problem activity will also charge the customer's card if all is well.
There is rarely an absolute correct design for a business process and in many cases, the quality of
the design will be subjective. The thought behind this, our final design, is that billing is now
contained solely within the billing sub-process. Let us now turn our attention to the implementation
of some of these steps.

First we notice that Charge Customer (2) throws an exception. Currently, our implementation does
not do that. For testing purposes, we will say that if the account number on the card is 9999 then
that will be our indication that the card is invalid. The new Charge Customer (2) implementation
now looks like:

Now we get to look at the Billing Problem human task activity. Its input will be the Order and
the Total billing amount. Its output will be an indication of whether or not the charge was
resolved. An initial pass at the implementation of Billing Problem looks as follows:

Page 1486

There appears to be a lot to this so let us take some time to walk through it. First we reach a coach
called Contact Customer. When displayed, it looks as follows:

Here we will contact the customer and discuss new charging information. We can either cancel the
order or charge the card. If we select Charge, we attempt to charge the card with the newly
entered information. This can again fail and, if it does, we tell the clerk that it failed again. The
clerk can again talk with the customer. If the charge succeeds, we tell the clerk that the charge has
been made. A variable is set to indicate whether or not the charge has been processed before the
end of this human service. The Charge Card step is an instance of a nested service that invokes the
Charge Card service we built earlier.

Back in our process diagram, we can now associated the Billing Problem activity with its
implementation of Billing Problem human service.

Having completed these steps, go back and re-run the solution and validate that it now does what
you expect.

Do you see a problem with the solution as currently described? It appears that we missed gathering
the customer's contact information such as email and phone number. We can go back to the Order
data structure and add these missing fields.

Page 1487

The Billing Problem Human Service was also updated to reflect the new fields.

Part III – Starting process instances
So far we have been testing our processes by running them from within Process Designer and using
the default values of the variables to be the input to the process. In reality, we will be starting these
instances as a result of orders submitted through the Internet. In our story, we also are able to
receive orders that are called in to us via the phone. This means that we need to create a mechanism
where clerks can enter the orders manually. We will start by building a human service that allows
us to enter the details of an order. We will call this human service Order Entry.

The Order Entry human service must do three things for us. It must allow us to select the books the
customer wants, it must allow us to enter the shipping information and it must allow us to enter the
billing information. Once this information has been entered, it must be able to start an instance of
the process.

A first pass at the screens in the solution looks as follows:

Page 1488

In this screen, the clerk is talking to the customer who is providing titles of books to order. The
clerk searches for these by entering the title in the search box and clicking Search. A list of titles
that match the search is shown. These can be added to the order. When the desired books have
been entered, the clerk clicks Next to move to the next page which is the Shipping coach.

Here the clerk captures the shipping details of the customer. When done, Next is selected which
takes us to the Billing coach.

Page 1489

Finally the billing information is requested. This is the last step before the order is ready. Once
done, the clerk clicks Order and an instance of the process is started. The Human Service called
Order Entry that accomplishes these steps is shown next:

Let us spend some time on this. Notice the three coaches colored in yellow. These correspond to
the three previous screens. The primary component of interest to us now is the one labeled Start
Process. This is an Invoke UCA step. By the time it is reached, an Order business object has
been constructed and we have all we need to start an instance of the process.

The process itself has to be augmented to allow it to be started by the corresponding UCA. The top
level Book Order Fulfillment process now looks like:

Page 1490

By flagging the Order Entry as Exposed to be a startable service, we can now launch the Order
Entry from the Process Portal.

In the shipping and billing steps, we had the opportunity to enter an address in both screens. Rather
than re-code the interface twice, this became a good opportunity to create a reusable visual called a
Coach View. We created a Coach View that was called Address that looked as follows:

Part IV – Check Stock
As our business carries on, we find that we are not managing the stock of books on hand very well.
Specifically, when a customer orders a book and we don't have it in stock, we don't know quickly
enough that we have to order more from our supplier. In addition, when the new supplies arrive, we
are slow in fulfilling the order. To this end, we now introduce a new component in our solution that
we call Compile Order. This step will determine that we have the books on hand to fulfill the order

Page 1491

and, if not, order more stock from the supplier. We will only exit the Compile Order step when we
have all the books necessary to ship. Looking at our new BPD below, we see the location of the
Compile Order sub-process.

The refinement of the Compile Order sub-process looks as follows:

Here we take the list of books that the customer desires and compare those to the inventory of books
on hand. If we have stock of all of our books, we have completed our step. In the event that we are
missing some books from the order, then we execute the Order Books step which will contact our
supplier requesting the books be sent to us. This is an asynchronous step. It could take some time
for the supplier to provide us our books. Because of this, we must wait for the books to be
delivered. Here we use a Message Event to achieve that task. A Message Event is an event
indication sent to us by some other activity in the BPM system. That message will be generated by
an un-specified separate process that is handling the inventory of books received from suppliers.

Let us not forget that there could be many parallel instances of these processes in existence. There
could be multiple separate orders for different customers all waiting on different books from
different suppliers. Because of this we need to ensure that the correct instance of the process is
informed when books associated with it become available and not when books for a different order
become known. To achieve this, we introduce the concept of an OrderID. An OrderID is a unique
identifier for each order that can be used to distinguish one order from another. We will assume
that the OrderID has been generated when the initial order was provided by the customer. We will
add this as a new property of the Order data structure which now looks as follows:

The Determine Stock step will again be a technical step. This will compare the current order with
available in-house stock and build a new list of out-of-stock books. For our purposes, we will again
stub this out. We will simply say that any book that has a title beginning with "Z" is considered out
of stock. We will implement Determine Stock as a general service. The interface to the Determine

Page 1492

Stock service will look as follows:

The Order Books step will execute a request to order books from the supplier. The inputs to this
step look as follows:

Again we will implement this service as a stub merely logging the fact that we are requesting books.

The Books Arrived step is interesting. It blocks the process until a corresponding message has been
delivered. The message will come from a UCA. We will match the incoming message content's
orderId value to the one contained in the process. If the matching message arrives, we now have
the books in stock and can proceed.

A UCA called Books Arrived was built to be associated with this message event.

Part V – Advanced UI

<TBD>

Part VI – Business Monitoring

<TBD>

Page 1493

POC Considerations
Choice of server hosting environment
IBM BPM is typically installed and executed on a Windows environment although Linux can be
used as an alternative. The amount of RAM should be 4GBytes or better. 8GBytes is ideal.
During solution development, the logs of the WAS server will need to be consulted frequently.
This can cause problems if the developer's workstations hosting PD are remote from the Process
Center/Process Server. The ideal solution is to export the directory hosting the logs on a network
share so that they can be mounted/accessed remotely. This is easier if Process Center is installed on
Windows but much more difficult if the Process Center is installed on Linux. Technology options
exist to share files on Linux such as Samba but they need to be explicitly set up and we need to
ensure that the evaluator has the skills to do this.

Choice of developer environment
The developer's environment should be a Windows machine for installation of Process Designer
and/or Integration Designer. 4GBytes of RAM is sufficient for this task. Screen resolution should
be as large as possible. Process Designer assumes high screen resolutions and the larger the better.
The developer's environment should mount the directory from the server to show the logs from the
server. This is also affected by the choice of hosting environment.

Software choices
Even if IBM BPM Standard is the edition of the product being evaluated, install IBM BPM
Advanced. The reason for this is to recognize that even though IBM BPM Advanced is being
installed, we can trivially create profiles for IBM BPM Standard. Although having Advanced
installed will consume additional disk space that is a small price to play. Experience has shown that
as a PoC progresses, the evaluator may wish to see Advanced or, alternatively, a decision that
Standard would suffice turns out to be incorrect. The penalty of installing Standard and then
wishing to move up to Advanced is huge if Standard was what was installed in the first place.

When it is time to install the software, ensure that all possible packages are in your possession
before starting out. Never assumes that additional packages or parts can be download while at the
evaluators location. This includes the latest maintenance. Don't assume that Installation Manager
can "reach out" to the Internet to download additional parts.

If all things are equal, use IBM DB2 as the database. Although the product is supported on a
number of databases, it is a good bet that the developers who build the product are using DB2 on a
constant basis. It is extremely likely that DB2 has been more thoroughly tested as a database than
the other database types.

Bring any additional software packages that may be used with you. This includes any "tail tools"
such as BareTail or LogExpert. If Web Services or REST APIs are to be used, brining
soapUI is also strongly recommended.

Environment Checklist

DB

Item Example Reality

DB Type DB2, Oracle ...

DB Hostname myhost.ibm.com

DB Port 50000

Page 1494

DB Admin Userid db2admin

DB Admin Password db2admin

PDW DB Name PDWDB

Process Center

Item Example Reality

Hostname myhost.ibm.com

Admin userid admin

Admin password admin

Page 1495

Kolban's Projects

Apache Velocity Integration

Apache Velocity is an Open Source template engine that takes as input a text string and a set of
variables and returns the original text string with variable references replaced with their values. In
addition to simple name/value mapping, Velocity has many other features and options which makes
it an extremely versatile template language including conditionals and looping.

Seeing the capabilities of velocity, the goal of this project was to see how it could be integrated into
a IBPM solution. A Java Connector was written which wraps the Velocity template library and
exposes it as a trivially invocable service from a BPD activity or as a nested call within the another
service component.

The input to the Velocity Service are two parameters.

One parameter is a text string that is an instance of a velocity template. This can be hard coded,
retrieved from a managed file or retrieved from a URL. The second parameter is a IBPM Map
variable. The keys in the map are the velocity variable names and the values are the IBPM
variables.

This component is an alternative to the JavaScript functions supplied as core as part of the product.
It has advantages in a number of circumstances such as repeating iterations, conditions as well as
having the definition of macros and other powerful capabilities. The details and value proposition
of the Apache Velocity project can be read about here:

• Apache Velocity Project

• Apache Velocity User's Guide

Making use of this wrapper removes the need for anyone to have to know Velocity coding APIs and
makes its functions immediately available for use.

The Velocity Template Language

The Velocity Template Language (VTL) is a simple yet powerful language that is used to process
text. Here is a quick summary

Variable references

A variable name prefixed with a $ symbol will be expanded during rendering.

Here is some text $name will replace the name variable

An alternative style is to place the variable name in curly braces

$name

Page 1496

http://velocity.apache.org/engine/releases/velocity-1.7/user-guide.html
http://velocity.apache.org/

and

${name}

are identical

Function invocation

$classVariable.methodName()

Directives

#if (expression)
…
#elseif (expression)
…
#else
…
#end

#set($variable = "value")

Comments

This is a comment

#*
This is a multi line comment
*#

#foreach ($variableName in $listVariable)
…
#end

These are only some of the more commonly used capabilities. The VTL is much richer and one
should examine the VTL user guide and reference for more details. The reference for VTL can be
found at the "VTL Reference".

In order to run, velocity needs the following mandatory pre-reqs

• Commons collections – Supplied with WLE (eg. <WLE>/twinit/lib/commons-collections.jar)

• Commons Lang – Supplied with WLE (eg. <WLE>/twinit/lib/commons-lang.jar)

Unfortunately, with the latest levels of Velocity, these won't work. The latest versions of these
classes need to be added to the packaging.

Links

The Apache Velocity Project

Page 1497

http://velocity.apache.org/
http://commons.apache.org/lang/
http://commons.apache.org/collections/
http://velocity.apache.org/engine/releases/velocity-1.7/vtl-reference-guide.html

XSLT DataHandler
Although not supplied with WPS by IBM, this section describes a project that constructed an XSLT
DataHandler.

XSLT can be used to construct output from an input XML document and an XSL template that
describes how the transformation should work. This can be used to convert one XML document
format to another. If we had an XSLT DataHandler, then the output data generated by the
DataHandler could be generated by the XSLT processing.

If the incoming data were an XML document but not of a format suitable for converting to a
Business Object, the XSLT DataHandler could be used to transform the incoming XML to BO
format XML before building the BO.

The XSLT DataHandler has one configuration parameter which is the name of an XSL Template
file. This file should be packaged as part of a deployed project.

At a technical level, and usually not seen be consumers of the datahandler, the input formats support
by the DataHandler can be:

• InputStream

• String

• StringReader

• DataObject

To use the DataHandler, obtain the XSLTDataHandler.jar file. This contains the implementation of
the solution.

Add the JAR into the WID project or library that is to use it.

<Info Needed>

In WID, add the new DataHandler in the BindingRegistry.

Converting a BO to a plain XML

The following stylesheet can be used to transform a BO to a plain XML:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0">

<xsl:output standalone="omit" encoding="UTF-8"
omit-xml-declaration="yes" media-type="text/xml" method="xml" indent="yes"
version="1.0" />

<xsl:template match="/child::element()">
<xsl:element name="{local-name(.)}">

<xsl:copy-of copy-namespaces="no" select="child::*" />
</xsl:element>

</xsl:template>
</xsl:transform>

Author: Neil Kolban

Date: 2011-01-02

EMail: kolban@us.ibm.com

Page 1498

IBM BPM 7.5 Coach Auto-save
Consider a coach screen being shown to a user. The user enters a bunch of data and then goes for
lunch. The system then crashes or his browser crashes … and he has lost his work. The question
becomes … how could we have saved his work?

At a high level, let us imagine that periodically we wish to save the current state of data entered into
fields. We will assume that we have some external mechanism to do just that. Next we should
assume that if a page is re-loaded, we have a way to determine the uniqueness of the page and re-
load any saved data that was auto-saved.

The saving of data will be accomplished by an Ajax call passing in the name/value pairs of the
fields we wish to save.

Process and Task Data Explorer
This is a project that I flag as "experimental". I have chosen to make it available now just in case
anyone may have some use of it. The project is a BPM v8 Process App that, when installed,
provides the user with a table of all the process and tasks found in the system. Clicking on a row in
the table shows the details of that particular task.

Page 1499

The application is launched from Process Portal within the Dashboards section:

Page 1500

There are some context menu options available by right clicking on a row but these haven't been
fully polished yet.

The solutions is implemented in a combination of Coach Views and Dojo.

It is available for download from here:

http://www.neilkolban.com/IBM/DataFiles/Process_and_Task_Data%20-%202012-07-24.twx

Out of Office support
Consider a user being out of the office or away on vacation or being out sick. He may wish any
new tasks that were routed to him to be re-routed to someone else for a period.

One way of achieving this is to have a demon process that runs every period (say every 15 minutes).
This process could look for new tasks that have been assigned to our user. If found, they could be
re-assigned to another user.

Turning this into a generic story … we could have an algorithm that reads as follows:

Every 15 minutes, run the following:

Find the set of tasks that have been created since last time we looked and are not yet in the Closed
state;
For each unique user owner of the tasks
{
 Retrieve the out of office instructions for the userid (if present)
 Execute the out of office instructions for the userid for each of the tasks owned by this userid
}

Page 1501

http://www.neilkolban.com/IBM/DataFiles/Process_and_Task_Data%20-%202012-07-24.twx

Tutorials
In the following sections we work through some illustrative tutorials demonstrating some functional
areas of the product.

Starting a business process on a schedule
There are times when we want a Business Process to be started on a repeatable schedule. Perhaps
we want to run a process to start re-stocking at the end of each day. Fortunately, IBPM provides an
elegant solution for just this capability. UCAs can be triggered to start at defined intervals and
using a Start Message Event activity in a BPD allows a BPD to be associated with a UCA such that
when the UCA is fired, the process instance can run.

___1. Define a General Service to be triggered by the UCA

Create a new General System service called Scheduled Start. Define an output variable called
"correlId" of type string. Define a Server Script node to set the value of the output variable to
be "XXX".

This will be the General Service that is started by the Scheduled UCA.

___2. Define a scheduled UCA to be fired

Add a new Under Cover Agent (UCA) called Scheduled Start and associate this with the General
Service that we just created (also called Scheduled Start)

Page 1502

In the UCA implementation, selected all the entries in the right column that says that the start time
for the UCA will be every 5 minutes:

___3. Define a BPD to be triggered by the UCA

Page 1503

Create a new BPD called Scheduled BPD. Build an wire the BPD as follows:

Add a private variable called "correlId" of type String.

For the implementation of the Log activity, define it to be a piece of in-line JavaScript that logs that
the BPD was started:

For the Start Message Event, associate it with the Scheduled Start UCA. For the UCA output
mapping, map to the "correlId" variable.

Page 1504

In the Pre & Post settings of the Start Message Event, give the correlId variable an initial value of
"XXX":

___4. Deploy the application to a Process Server

Create a snap shot of the Process App and deploy to a Process Server (not the Process Center).

___5. Watch/test the solution

If we now start a Process Admin session and visit Event Manager → Monitor, we will see a
scheduled entry for our new Process App:

This shows the next time it will fire.

BUG!!! It seems that I have to create a new snapshot and deploy twice before it works.

Page 1505

Building a Monitor Model for BPMN events
In this tutorial we are going to walk through the construction of a Monitor Model from scratch to
handle the processing of incoming Tracking Group events. This techniques does not start with a
generated monitor model. It is assumed that you have skills in:

• BPD modeling

• Tracking groups

• Monitor model editing

• Business Space

This is not a tutorial for newbies to either IBPM or Business Monitor.

___1. Build the BPD

In our story, we want to generate tracking events. To start we assume a new process application.
Into this we create a new Tracking Group that, in this story is called "sale":

The fields that we want to monitor when the process instances run are:

• usState – The state to which the order is to be shipped

• orderAmount – The sales amount in dollars

• saleDate – The date of the sale

After having constructed this Tracking Group, we next build a BPD that includes an Intermediate

Page 1506

Tracking Event to externalize the event for monitor consumption:

The fields of the tracking group are populated from a variable (not shown in this diagram).

___2. Start Integration Designer and open the Monitoring Perspective

The construction of the Monitoring Model is performed in Integration Developer. Start a copy of
that and open the Business Monitoring Perspective. This perspective owns all the editors
and views needed to build the model.

Page 1507

___3. Create a new Business Monitoring Project

We start by creating a Business Monitoring Project to hold all our artifacts.

We choose to call the project "OrdersMon".

Page 1508

___4. Build and import the three XSD files

The incoming events that arrive from IBPM are in an XML data format. In order for Monitor to be
able to work with these events, we need to describe the format of the events through XSD
descriptions. The XSD descriptions are surprisingly not supplied with the products. Instead they
are found in the InfoCenter here:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r5mx/topic/com.ibm.wbpm.admin.doc/topics
/rmon_eventschemaext.html

These three XSD files should be added into the Event Definitions section.

___5. Create a new Monitor Model

An individual Monitor Project can contain multiple Monitor Models. We have now created our
project and now need to build our model. In the Monitor project, we create a new Monitor Model.

Page 1509

http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r5mx/topic/com.ibm.wbpm.admin.doc/topics/rmon_eventschemaext.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r5mx/topic/com.ibm.wbpm.admin.doc/topics/rmon_eventschemaext.html

We call our new model "OrdersMM".

___6. Add the event definition references

Although we have added our event descriptions to our project, we have not yet said that they are to
be associated with the model. In the model editor, select the Event Model tab and add each of the
XSDs to the model. It appears that order of addition is important so add them in the order shown:

Page 1510

___7. Add the namespace prefixes

As we build out the XPath entries later on in the model, we will refer to some namespaces that need
to be explicitly defined with their own prefixes.

Prefix Namespaces

Page 1511

wle http://www.ibm.com/xmlns/prod/websphere/lombardi/7.5

___8. Rename the context key

When the model was created, it was given a default key and name. We want the key of this
monitoring context to be the Process ID instance. We rename the ID of the key to be
"processId"

And then rename the Name field to be "Process ID".

Page 1512

___9. Add the Process Started inbound event

We are now at the point where we start to add the core artifacts into the model. We start with an
inbound event that signifies a new instance of a BPD process has started. We add a new inbound
event.

And call it "PROCESS_STARTED".

The input data is an "eventPointData" object

Page 1513

and we need to take care to explicitly say where this eventPointObject can be found within the
incoming event. Notice the addition of the "mon:monitorEvent" part as shown in the
following figure.

Page 1514

The final event types definition looks as follows:

Next comes the Filter Condition. It is the Filter Condition which specifies whether or not the
incoming message is an instance of this kind of event.

We look at the mon:kind field of the EventPointData and check to see if it is a
PROCESS_STARTED event. If it is, we have a match.

xs:string(PROCESS_STARTED/EventPointData/mon:kind) =
'{http://www.ibm.com/xmlns/bpmnx/20100524/BusinessMonitoring}PROCESS_STARTED'

Page 1515

Next comes the correlation. Here we ask if we have seen this event before for an instance of a
process. If all is well, we will NOT have an existing instance and we create a new monitoring
context as a result.

PROCESS_STARTED/EventPointData/mon:correlation/wle:starting-process-instance =
processId

___10. Update the Process ID key

In the preceding definition, we added a new inbound event type. Now we update the key metric to
when an instance of this event is found. The expression used to source the process instance will be:

PROCESS_STARTED/EventPointData/mon:correlation/wle:starting-process-instance

Page 1516

___11. Create the Process Completed inbound event

We have previously defined what constitutes a start process event and seen how this creates a new
monitoring context when seen. Each creation of a monitoring context should have a mechanism to
complete that context. Now we define an inbound event that will be an indication that the process
has completed. We call this event PROCESS_COMPLETED. We define the event type details the
same as we defined for the PROCESS_STARTED event.

The filter condition which indicates that this is a Completion event is shown next.

xs:string(PROCESS_COMPLETED/EventPointData/mon:kind) =
'{http://www.ibm.com/xmlns/bpmnx/20100524/BusinessMonitoring}PROCESS_COMPLETED'

Page 1517

Finally, we need to correlate to the correct monitoring context.

PROCESS_COMPLETED/EventPointData/mon:correlation/wle:starting-process-instance =
processId

Now when a process completes, the monitor model will see it as a PROCESS_COMPLETED
event.

___12. Create a termination trigger

The way we terminate a monitoring context is through a trigger. We create a new trigger definition.

we call the new trigger "Terminate Context".

Page 1518

We next say that the trigger is fired when a PROCESS_COMPLETED event is detected.

Finally, in the definition of the trigger, we flag it as causing the termination of the monitoring
context.

Page 1519

___13. Create the Tracking Group inbound event

Now we are able to detect the start and end of the process in a monitoring model. It is possible that
the recipe we have followed up until now will be repeated in many monitor models.

Now we build out more definitions specific for our sample. If we think back we have an
intermediate tracking event in our process. We want to be able to catch this type of event so once
again, we create a new inbound event definition. We will call this new inbound event
"TRACKING GROUP SALE"

Just as before, we add an Event Part for the EventPointData but this time we add a second Event
Part for the tracking point definitions. We call this event "TrackingPoint".

Page 1520

The path to this entry will be:

cbe:CommonBaseEvent/mon:monitorEvent/mon:applicationData/wle:tracking-point

Page 1521

The final result for the events parts looks as follows:

The filter condition that should be applied to an incoming event to see if this is an instance of our
tracking event is more superficially complex but at a high level, it is true when:

• The event is an EVENT_THROWN event

• The source of the event in the BPD is an intermediate tracking group

• The tracking group associated with the intermediate tracking group activity is 'sale'

xs:string(TRACKING_GROUP_SALE/EventPointData/mon:kind) =
'{http://www.ibm.com/xmlns/bpmnx/20100524/BusinessMonitoring}EVENT_THROWN' and
xs:string(TRACKING_GROUP_SALE/EventPointData/mon:model[1]/@mon:type) =
'{http://schema.omg.org/spec/BPMN/2.0}intermediateThrowEvent' and
TRACKING_GROUP_SALE/TrackingPoint/@wle:groupName = 'sale'

Page 1522

As before, we want to determine which of the possible process instances and hence monitoring
contexts the event should be associated with.

TRACKING_GROUP_SALE/EventPointData/mon:correlation/wle:starting-process-instance
= processId

Now we are at the point where we can detect our tracking group event. This is the last of the
inbound events we need to work with.

___14. Create the "orderAmount" metric

In our model, we wish to create a metric to hold the "orderAmount". We create a new metric.

and give the metric the name "orderAmount" and set its type to be "Decimal".

Page 1523

The metric's value will be taken from the following expression. Note that it names the Tracking
Group event as the source and hence will only be evaluated when a Tracking Group event is
detected.

xs:decimal(TRACKING_GROUP_SALE/TrackingPoint/wle:tracked-
field[@wle:name='orderAmount'])

___15. Create the "US State" metric

We create a second metric to hold the US state in which the sale occurred.

TRACKING_GROUP_SALE/TrackingPoint/wle:tracked-field[@wle:name = 'usState']

___16. Generate and deploy the project

Having completed all the steps in our model's development, what remains for us to do is generate
the JEE artifacts and deploy them to a Monitor server.

Page 1524

At the completion of this step, the JEE projects will have been built and will be ready for
deployment. We then deploy the project to a Monitor server through the Servers view.

Page 1525

After deployment we will see the application representing the monitor model deployed to the
server.

Page 1526

___17. Run the process to generate some data

Our construction is finished and now what remains is for us to run an instance of the BPD process.

___18. Examine the results in Business Space

After having run an instance of the process, we can bring up Business Space and an a monitoring
instances widget to a page. In the configuration of the widget, select the metrics that we build in the
model for display.

Page 1527

If all has gone as planned, we will see the following in the widget populated with data.

And this concludes the tutorial. At this point we have a Business Monitor model that is as clean as
can possibly be and contains no superfluous processing. The construction of KPIs, diagrams, cube
views and the other powerful capabilities of monitor usage are now as standard with the product
with no involvement in its linking to IBPM.

Page 1528

Glossary
• BPD – Business Process Definition

• BPMN – Business Process Modeling Notation

• EPV – Exposed Process Values

• UCA – Under Cover Agent

Ideas
Here we have ideas for fun projects when otherwise idle:

• There are cases when a process step is to be "worked" offline. Write an application that can
obtain an External Activity data, write it to a file … let some off line app work it … and then
write the file back to the External Activity for completion.

• If a complex object has some of its fields changed, it might be useful to know which ones
changed. What we need is a routine that will compare two complex Objects and see what if
anything has changed in their content between each other. This could be a Java utility.

• Build a PDF report using the tracking data contained within the Performance Data Warehouse
tables. Ideally this should be wizard driven allowing the user to select what kinds of data to
output.

◦ See: Forum post: STEW Mailing List: Report on the process variables after the process
completion

Areas to write about and work to do
• Build the "Work" Dashboard using the Coaches

• Run performance testers against Coaches including

◦ Firefox Yslow

◦ Chrome PageSpeed and Network

• Consider a Coach View widget that has no visuals but instead performs an Ajax call to retrieve
data. This could then set its binding data which would then be picked up by another widget
such as the the GridX Coach View.

• Create a launcher for Process Designer that uses a list of Process Centers

• How do we dynamically set the timer of a BPD activity? How can it subsequently be changed?

• Research "Groovy" and "Spring"

• Handling the close of a Coach Window – see
https://www.ibm.com/developerworks/forums/thread.jspa?threadID=426313&tstart=0

• Imagine I add a field to a BO and then migrate an in flight process... what if I remove one?

• There is a REST Performance API … what is that all about?

• Imagine a process has failed … it is in the failed stated. Is there any way I can make it alive
again?

Page 1529

https://www.ibm.com/developerworks/forums/thread.jspa?threadID=426313&tstart=0
http://w3.ibm.com/connections/communities/service/forum/topicThread?topicUuid=fafa46c1-b756-4ebb-b7f2-ba5ee50e58ef&communityUuid=dd36ba2d-3985-4887-aa2a-58973fe272f9
http://w3.ibm.com/connections/communities/service/forum/topicThread?topicUuid=fafa46c1-b756-4ebb-b7f2-ba5ee50e58ef&communityUuid=dd36ba2d-3985-4887-aa2a-58973fe272f9

• How do I change the Due Date of a process or task from within JavaScript?

• Fascinating notion on MIL Loops to be studied here:
https://www.ibm.com/developerworks/forums/thread.jspa?threadID=425272&tstart=0

• In this thread (https://www.ibm.com/developerworks/forums/thread.jspa?
threadID=417448&tstart=0) there is discussion on returning Java Lists or string[] from Java
code. Play with this and see how it works.

• How do we get the content of an attached document through the REST APIs?

• What does it mean to attach a document to a task that has no Process ID???

• In coaches, we seem to be able to suspend/postpone a task and then loop back to it and the data
is saved … can we do something similar with REST APIs?

• There is talk of APIs to “Suspend” processes. What does this mean? What is the state of a
process if it is suspended? What of tasks, can they be suspended differently?

• There are questions on generating XML directly from the BOs … see
https://www.ibm.com/developerworks/forums/thread.jspa?threadID=411762&tstart=0

• Look into a tool to dynamically show documentation based on the new asset list technology

• The WAS server appears to have the ability to allow client applications to obtain console logs
remotely. How is this done and how can it be used?

• Build a comprehensive Reporting sample that can be used as a tutorial as well as a
demonstration that can be explained from soup to nuts

• How to use the SOAP Connector (raw) supplied service?

• How to handle page flow solutions using Custom UI?

• What free CSS editors are out there?

• What is HermesJMS and how can it be used with IBPM?

• How can I make certain rows in a Coach table not to be editable?

• It appears that if I have two tables in two separate sections, only one table's selection is
honored, the other is ignored.

• What is involved in writing a VMM plugin

• When a BPD executes, how can I see the list of the activities in the BPD that were actually
executed?

• Add into IBPMExplorer the ability to assign/re-assign tasks

• The sendData REST API allows us to change the data in a service. What has to be sent in to
change the data for a date/time based variable?

• The Alert functions need re-researched … are they or are they not part of the product?

• Look into what would be involved in creating a Java Object in one service and making that
object available in another service. One possible idea would be the use of the WAS Caching
technology:

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.express.doc/i
nfo/exp/ae/tdyn_distmap.html

Page 1530

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.express.doc/info/exp/ae/tdyn_distmap.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.express.doc/info/exp/ae/tdyn_distmap.html
https://www.ibm.com/developerworks/forums/thread.jspa?threadID=411762&tstart=0
https://www.ibm.com/developerworks/forums/thread.jspa?threadID=417448&tstart=0
https://www.ibm.com/developerworks/forums/thread.jspa?threadID=417448&tstart=0
https://www.ibm.com/developerworks/forums/thread.jspa?threadID=425272&tstart=0

• Date manipulation from JavaScript escaping through LiveConnect

• Sending and receiving help through Process Portal

• Configuring WLE with LDAP

• Using CDL to create a chart background image

• Talk about how scoreboards are visible only by role

• Write about showing work queues for users. We want to see how much work is associated with
a particular user … who is over used or under used. What if a user needs emergency leave,
how do we re-own the tasks.

• There is a new feature in 7.2 called "Critical path management". What is that all about?

• We need to go back and add a LOT more flesh on using JMS with WLE

• We can invoke a service from a coach with tw.coach.callService. How can this be leveraged
from Dojo? This appears also to be able to return a Java Object instead of XML … how does it
achieve this?

• Build a Dojo list with height

• What is the difference between a Role and a Participant Group

• WSDL Web Service fault handling

• What is a "Task Narrative"?

• Document the use of the interface called "Teamworks" for Java. See:
http://www.ibm.com/developerworks/forums/thread.jspa?threadID=360457&tstart=0

Quick Links
Here are some links to areas in the book that I find especially useful and need to get to in a hurry:

• REST Integration

• Google Web Toolkit – GWT

The End?
This PDF is always a work in progress. There will always be more to come so check back regularly
to see what updates may be found. The plan is to release a new version of the PDF each month
usually on the 1st of the month.

Hope you found something useful in here.

Neil

Page 1531

http://www.ibm.com/developerworks/forums/thread.jspa?threadID=360457&tstart=0

	About this book ...
	Book Release History
	What is Business Process Management?
	Overview of IBM Business Process Manager
	History of IBM Business Process Manager
	IBPM Usage
	Modeling a process
	Integrating with IT Systems

	Architecture
	Process Applications
	Process Instances
	Archiving Process Applications
	Process Applications state management
	Changing Process Application settings

	Toolkits
	Tasks
	Task Priority

	IBPM Components
	Component – Process Server
	Component – Process Center
	Starting Process Center

	Component – Process Designer
	Play back sessions
	Starting IBPM Process Designer
	Working in the Designer view
	Working with the Library
	Adding managed files
	Tagging
	Smart Folders
	Validation errors
	Working as part of a team

	Component – Performance Data Warehouse
	Component – Process Center Console
	Component – Process Portal
	Component – Process Admin Console

	IBPM Knowledge
	Product Documentation
	Web Sites
	Public Forums
	IBM RedBooks
	IBM Community
	developerWorks on IBM BPM
	TechNotes
	Requirements and Enhancements

	Product Installation and Configuration
	Part Numbers
	Prerequisites
	Installing Integration Designer
	Installing Business Process Manager Advanced in typical mode
	Performing a custom Install of Process Manager Advanced
	Using BPMConfig to create servers
	Using the PMT to create servers
	Using the command line to create server profiles
	Installing to (DBA) managed databases
	DB2
	MSSQL
	Common for all Databases

	Installing Process Designer
	Starting BPM
	Stopping BPM
	Resetting the databases
	Un-configuring BPM
	Hiding the sample applications
	Frequently Asked installation Installation Questions

	Business Process Definition - BPDs
	Pools and Lanes
	Sequence Lines
	Activities
	Activity Appearance in the BPD diagram
	Data Mapping
	Conditional Activities

	Start Event
	End Event
	Message Start Event
	User Task
	Automatic Flow
	Assigning Activities – Mapping staff to work
	Re-Assigning Tasks and changing group members
	Assignment Examples
	The Four Eyes Example
	Assigning a task to a named user

	Timer Events
	Tracking Intermediate Event
	Ad-hoc Start Event
	Message Intermediate Event
	Message End Event
	Terminate Event
	Error Intermediate Event
	Error End Event
	Gateways, Conditionals and Joins
	Modeling sub-processes
	Modeling Linked Processes
	Modeling Event Sub-processes
	Script Activities
	External Implementation
	Completing an External Implementation – REST API
	Completing an External Implementation – Web Service API

	Application Loops
	Simple Looping
	Multi-Instance Looping
	Looping through a map data type

	BPD Diagram Notes
	Due dates for process and activities
	Time and Holiday Schedules

	Generating Reports
	BPD Settings
	Exposing the Process
	Process Instance Name

	BPD and BPMN
	Concept of a Token
	Deviations from BPMN

	BPD Flow Control
	Rework a set of steps

	Services
	Caching the results of a service
	Human Service
	Exposing the Human Service for starting
	Canceling outstanding Human Tasks
	Informing a user that their task has been canceled
	Timing out a Human Service
	Escalating a Human Task
	Notifying a user that a task is ready for work
	Semantics of closing a browser window

	Ajax Service
	Integration Service
	Advanced Integration Service
	General System Service
	Decision Service
	Business Action Language (BAL) Rule
	Decision Table
	Integrating with WODM

	Service Components
	Coaches
	Server Scripts
	Server Scriptlet
	Modify Task
	Postpone Task
	Decision Gateway
	End Event
	Note
	Error End Event
	Error Intermediate Event
	Invoke UCA
	Catch Exception
	Intermediate Tracking Event
	Stay On Page Event
	Nested Service
	Send Alert
	Web Service Integration
	Java Integration
	Stay on Page Event

	Variables – Process and Service
	System of Record data vs Business Intelligence data
	Creating new Data structures
	Simple Types
	Business Object Types

	List Variables
	Setting defaults on variables
	Making variables search-able
	Defining and using shared objects
	BPD Variables and Service Variables - Mapping
	Variable identity and UUID
	Exposing Business Data for Searches
	Accessing variables from JavaScript
	Environment Variables
	Exposed Process Values (EPVs)
	Pre and Post Assignments
	Variables and XML
	Using Variables
	Determining the type of a variable
	The case of the mysteriously changing variables

	User Interfaces and User Interaction
	Coach Views
	General Coach View settings
	Visibility Coach View Settings

	IBM supplied stock Coach Views Controls
	Button
	Checkbox
	Date Time Picker
	Decimal
	Horizontal Section
	Image
	Integer
	Output Text
	Radio Buttons
	Select
	Select Sample 1 – Selection based on other selection

	Table
	Tabs
	Text
	Text Area
	Vertical Section
	Content Box
	Custom HTML

	Styling with CSS
	Making Left Labels
	Adding a TextBox icon
	Styling a Dojo button for BPM

	Data Validation
	Boundary Events
	Dynamically controlling visibility based on user
	IBM sample Coach Views
	Data Change Boundary Trigger
	Data Change Boundary Trigger - Updating one list when another changes

	Building new Coach View types
	Coach View Event Handlers
	Load event handler
	View event handler
	Unload event handler
	Change event handler
	Validate event handler

	Coach View Context
	context.bindingType()
	context.bpm.system
	context.bpm.team
	context.broadcastMessage()
	context.cancelBoundaryEvents()
	context.containDiffLoopingContext()
	context.createView(domNode, index, parentView)
	context.deleteView(domNode)
	context.element
	context.getDomNode()
	context.getInheritedVisibility()
	context.getSubview(viewId, requiredOrder)
	context.htmlEscape(<string>)
	context.isTrustedSite()
	context.parentView()
	context.refreshView()
	context.setDisplay(isDisplay, domNode)
	context.setUniqueViewId()
	context.subscribeValidation()
	context.subview[viewid]
	context.trigger(callback)
	context.triggerCollaboration(payload)
	context.unsubscribeValidation()
	context.viewid

	Coach View global data
	com_ibm_bpm_global.topLevelCoachViews
	com_ibm_bpm_global.coachView.byControlId()
	com_ibm_bpm_global.coachView.byDomId()

	Coach View data binding and configuration
	Working with Coach View list data
	Dis-allowed Coach Binding data types

	IBM supplied Coach View utility functions
	Generated HTML
	Custom JavaScript in Coach Views
	Using JavaScript libraries other than Dojo
	Generated content in a control
	Making Ajax and REST requests from a Coach View
	Navigating and access to Coach Views on a Coach page
	Learning resources to build new Coach Views
	Debugging Coach Views
	Coach View Construction Tips
	DOM root access in a Coach View
	Editing JavaScript for Coach Views
	Adding a label
	Working with visibility
	Using a Dijit Widget in a Coach View
	Including a custom Dijit Widget in a Coach View
	Describing a Dojo based page declaratively
	Accessing images by CSS
	Commonly used AMD loaders

	Sample Coach Views
	Sample Coach View – trivial "hello world"
	Sample Coach View – Data Change Boundary Trigger

	Coach View Templates

	Dashboard Coach Views
	Batch Modify Dialog Control
	Chart Control
	Chart with Time Selector Control
	Dialog Control
	Floating Layout Control
	Gantt Chart Instance Details Control
	Gantt Chart Process Overview Control
	Navigation Controller Control
	Process Diagram Control
	Process Due Date Control
	Process Instances List Control
	Process Summary Control
	Search Control
	Stream Control
	Task List Control
	Tasks Due Control
	Team Roster Control
	Team Summary Control
	Zoom Control

	Exposing a Human Service as a portlet
	Page Flow/ Screen Flow Solutions
	Screen Flow using BPD

	User Interface fragments
	Embedding another HTML page

	Error Handling
	Error Handling in JavaScript

	BPD Events
	Undercover Agents (UCAs)
	Event Initiated UCAs
	Schedule initiated UCAs
	UCAs and queued events
	Disabling UCA processing
	UCAs and Toolkits

	Token Management
	Security
	Security Groups
	Teams
	Securing Access to the repository
	Securing development of a Process Application
	Securing the ability to start an application
	Securing ability to work with tasks (Human Services)
	Securing Process Portal capabilities
	Securing access to publish Integration Designer projects
	Lightweight Directory Access Protocol - LDAP
	Tivoli Directoy Server
	Apache Directory Server
	Installation of Apache Directory Server

	Apache Directory Server Studio
	Installation of Apache Directory Studio
	Installation of Apache Directory Server Studio Eclipse Plugins

	Installation of JXplorer
	Getting locked out of WAS
	Configuring WAS for LDAP
	Configuring LDAP for IBPM
	Debugging LDAP

	User Attribute Definitions
	Process Admin Console
	Process Admin - IBM BPM Admin
	Task Cleanup

	Process Admin - User Management
	Group Management
	Bulk User Attribute Assignment

	Process Admin - Monitoring
	Process Admin - Event Manager
	Event Manager > Monitor
	Event Manager > Blackout Periods
	Event Manager > Synchronous Queues
	Event Manager > Event Managed JMS Error Queue
	Admin Tools > Manage EPVs

	Process Admin – Saved Search Admin
	Process Admin – Process Inspector
	Process Admin - Installed Apps
	Customizing the Process Admin Console

	Process Portal
	Process Portal – My Tasks
	Process Portal – Saved Searches
	Starting Ad-Hoc entry points
	In-line Tasks in process portal
	Team Performance
	Team Tasks

	Process Performance
	Quick Stats
	Turnover Rate
	Average Duration
	Instances In Progress
	Diagram View
	Gantt View
	Set Path View

	Searching in Process Portal
	The data used to populate the Process Performance dashboard
	Customizing Process Portal look and feel
	Customizing the login screen

	Versioning Solutions
	Snapshots
	Managing Snapshots
	BPMDeleteSnapshot
	BPMSnapshotCleanup
	BPMShowProcessApplication

	Migration of in-flight BPMN process instances

	BPD Integrations
	Outbound Web Services
	Setting up security for outbound Web Services

	Inbound Web Services
	Testing an Inbound Web Service with soapUI
	Invoking a BPD as a Web Service
	Invoking an IBPM Web Service from a Java POJO
	Web Services and data types
	Simple Data Type
	Complex Data Type
	Nested Complex Data Type
	Array of Complex Data Type

	Java Message Service – JMS
	JMS – Sending and receiving from queues
	JMS – Triggering a UCA
	JMS Client Tools
	Hermes JMS

	WebSphere Default Messaging

	REST Integration
	The REST Functions
	Handling REST errors
	The REST API Tester
	Working with REST Search Queries
	Working with REST Task Instance Queries
	Working with REST Task Instances
	Getting Task and Instance details through REST
	Getting a template for a task
	Finishing a Task
	Starting a Task
	Claiming a task
	Re-assigning a task
	Getting Task variable values
	Getting the client details of a task

	Working with REST Processes
	Starting a process from REST
	Getting details of a process instance using REST
	Getting details of a process model from REST
	Starting a UCA from REST
	Moving a token within a process using REST
	Retrying a failed instance
	Listing and starting Ad-Hoc Events from REST

	Working with REST Services
	Starting a service from REST
	Getting data from a Service
	Setting data into a Service
	Getting a Service Model using REST

	Working with Exposed Items
	Getting Exposed Processes

	Working with REST Users and Groups
	Working with Process Apps
	Working with REST and heritage process document attachments
	Heritage - Adding a document to a process instance using REST
	Heritage – Getting a list of attached documents

	Working with REST Asset Lists
	Getting Project branchIds and Snapshots
	Getting Business Object definitions

	Working with REST retrieved diagrams
	Process Visual Model

	Executing JavaScript in the context of a process from a REST request
	Calling REST from Java
	REST encoded UUIDs/GUIDs
	REST input and output data types
	REST Security

	Database Integration
	Integration with supplied DB connectors
	Using LiveConnect and JDBC
	Example – Selecting rows from a table
	Security with Database Interaction
	JDBC definitions needed to access databases
	Service to Insert a row
	Service to Delete a row
	Service to Update a row
	Calling stored procedures
	Mapping IBM BPM Data types to DB data types

	Java Integration
	Java source level Debugging

	eMail
	Sending an email
	Receiving an email
	Send an email and receive a response
	Installing hMailServer as a test EMail provider

	WPS and SCA
	Asynchronous Invocation of an SCA Module

	Process Scheduling with Job Scheduler
	The nature of a IBPM Job
	The Job Scheduler Java API
	An illustrative solution

	Debugging
	Debugging with Inspector
	Debugging the environment
	Browser tabs and Process Inspector
	Logging
	Tracing Web Service SOAP traffic
	Working with IBM Defect Support
	Raising defects with IBM

	Development
	Sharing projects with others
	Naming conventions and recommendations
	Documentation

	Operations
	Configuration Files
	Networking
	WAS Server
	Stopping the server
	Windows Services
	Port Numbers
	WAS Admin Console
	JDBC Resources
	WAS Security
	The wsadmin command
	Java programming for admin commands

	Changing Passwords
	File Structures
	Operational Databases
	Process Server Database
	Performance Data Warehouse Database
	Defining custom databases

	SI Bus Resources
	Cleaning/removing completed processes
	Adding and removing Process Servers from Process Center
	Deployment of applications to servers
	Offline Application Deployment
	Un-Deployment of applications from servers

	Modification of Process Instance data
	Performance
	The Event Manager - Tuning attributes
	Monitoring using the Process Admin Console
	Process Admin Console – Monitoring > Instrumentation
	Process Admin Console – Monitoring > Process Monitor

	DB2 Database Performance
	Monitoring DB2

	Useful scripts and tools
	Viewing database table contents

	Recovery options

	JavaScript in IBPM
	Editing JavaScript
	IBPM JavaScript name spaces
	Reusing JavaScript
	BPD Data Types
	Data Type – ConditionalActivity
	Data Type – Map
	Data Type – NameValuePair
	Data Type – ProcessSummary
	Data Type – Record
	Data Type – SQLResult
	Data Type – String
	Data Type – TaskListData
	Data Type – TaskListItem
	Data Type – TaskListInteactionFilter
	Data Type – TaskListProperties
	Data Type – Team
	Data Type – TeamDashboardSupport
	Data Type – TWAdhocStartingPoint
	Data Type – TWDate
	Data Type – TWDocument
	Data Type – TWHolidaySchedule
	Data Type – TWLink
	Data Type – TWManagedFile
	Data Type – TWModelNamespace
	Data Type – TWObject
	Data Type – TWParticipantGroup
	Data Type – TWProcess
	Data Type – TWProcessApp
	Data Type – TWProcessAppSnapshot
	Data Type – TWProcessInstance
	Data Type – TWProcessPerformanceMetric
	Data Type – TWReport
	Data Type – TWRole
	Data Type – TWSearchColumn
	Data Type – TWSearchColumnMetaData
	Data Type – TWSearchCondition
	Data Type – TWSearchOptions
	Data Type – TWSearchResults
	Data Type – TWSearchResultRow
	Data Type – TWService
	Data Type – TWServiceTypes
	Data Type – TWStep
	Data Type – TWTask
	Data Type – TWTeam
	Data Type – TWTimePeriod
	Data Type – TWTimeSchedule
	Data Type – TWTimerInstance
	Data Type – TWUser
	Data Type – XMLDocument
	Data Type – XMLElement
	Data Type – XMLNodeList

	JavaScript Libraries
	JavaScript package - tw.system.*
	Method: executeServiceByName(name, inputValues)
	Method: retrieveTaskList()

	JavaScript Package - tw.system.step.*
	JavaScript Package - tw.system.org.*
	JavaScript Package - tw.system.model.*
	Getting a list of Process Apps

	JavaScript Package - tw.object.*
	JavaScript Package - tw.system.model

	Creating Business Object instances in JavaScript
	Variables in a service
	The Dojo Toolkit for JavaScript
	Searching for processes and tasks from JavaScript
	Calling Java through LiveScript
	Working with XML in JavaScript
	Working with document attachments in JavaScript
	Working with JSON in IBPM
	JavaScript Fragments
	Starting a new process
	Getting the current process instance
	Getting the current userid
	Starting an external application
	Returning the owner of a task
	Extracting a managed file
	Generating a Random Number or string

	Key Performance Indicators (KPIs)
	Custom KPIs
	Associating KPIs with BPD activities

	Service Level Agreements (SLAs)
	Creating SLAs

	Dash-boarding
	Architecture
	Tracking data
	Tracking Groups Overview
	Database Structure for a Tracking Group
	Database Structure for TRACKINGGROUPS view
	Database Structure for TRACKINGPOINTS view
	Database Structure for TASKS view
	Database Structure for PROCESSFLOWS view

	Miscellaneous Tracking Data Notes
	Removing tracking data tables
	Minimizing Tracking Group entries

	Timing Intervals
	Performance Data Warehouse (PDW) SQL Snippets
	How many have started but not finished (in progress)
	Number of items of different types/day
	Getting the last state of a process
	Breakdown of how many in which step
	Last Autotracked row
	Counts of processes started vs completed over an interval

	General DB/SQL useful functions for reports
	Date formatting
	Mapping BPM date types to DB TIMESTAMP types
	Number of items in the current week
	Counting when a column equals a value
	Selecting records within a date range

	Reporting with Microsoft Excel

	Developing Custom Dash-boards
	A Sample Dashboard

	Generating sample data

	Simulation and Optimization
	Defining simulation values
	Fixed distribution type
	Uniform distribution type
	Normal distribution type
	Gateways and simulation

	Arrival rate of simulation items
	Simulating the cost of execution
	Available staff members for tasks
	Simulation Analysis Scenarios
	Simulation Profiles
	Running Simulations
	Optimizing a Process
	Simulation Tutorials
	Experiment 1 – A basic start
	Experiment 2
	Experiment 3
	Experiment 4 – Path analysis

	IBPM Web API – Web Services API Access
	Starting a Process
	Notes on Object Factory

	Executing a search
	Getting the details of a task.
	Web API Data types
	CustomProperty
	ExternalActivity
	ExternalActivityAttachment
	ExternalActivityData
	Parameter
	Process
	Search
	SearchColumn
	SearchColumnMetaData
	SearchCondition
	SearchMetaData
	SearchResults
	SearchResultRow
	Task
	TaskStatus
	User
	Variable

	Variable
	Exposed item types
	Testing Web API services with soapUI
	Building a Java Client
	Building a Flex Client

	System Data Toolkit
	IBM Supplied Business Process Definitions
	Send SLA Violation Email

	IBM Supplied General System Services
	Default BPD Event
	Default System Service
	Extract XML Validation Results

	IBM Supplied Historical Analysis Scenarios
	IBM Supplied Human Services
	Default Human Service
	lsw Conditional Activity Selection Coach
	Fire Default BPD Event

	IBM Supplied Integration Services
	Read Text File
	Send E-mail via SMTP
	SLA Send Alert Email
	SQL*
	Update ALL SLA Statuses
	Update SLA Status
	Write Text File

	IBM Supplied KPIs
	IBM Supplied Layouts
	IBM Supplied Participant Groups
	IBM Supplied Server Files
	Integration.jar

	IBM Supplied Tracking Groups
	IBM Supplied Undercover Agents
	IBM Supplied User Attribute Definitions
	IBM Supplied Variable Types

	Cookbook Scenarios
	Scenario - Asynchronously starting one process from another
	Scenario – Making a process extensible by others
	Scenario – Starting a process from an external browser

	Additional Toolkits
	Kolban JavaScript Toolkit

	Blueworks Live
	Creating a Space
	Creating a Process
	Discovery Map
	The Process Diagram
	Working with Sub processes
	Editing mode vs Viewing mode
	Sharing the solution
	Creating a Process from a Template Library
	Automating a Process
	Accessing processes from Blueworks in Process Designer

	IBM Business Process Manager – Advanced
	Information Sources
	Redbooks
	DeveloperWorks
	Other

	Integration Designer
	Inter-operating between a BPMN process and an SCA module
	Interface Types Exchange
	Data Types Exchange
	BPDs exposed to an AIS
	Deploying for testing from ID
	Returning faults from an AIS
	Manually un-deploying an SCA module

	Service Component Architecture
	SCA Interfaces and References
	The SCA Import Component
	The SCA Export Component
	SCA Interfaces
	SCA Business Objects
	SCA Event Sequencing
	SCA Store and Forward
	SCA Versions
	Installing an SCA Module through scripting

	SCA Java Components
	Calling a Reference
	Java Component Error Handling
	Client Programming with Java Components

	BPEL - Business Process Execution Language
	BPEL Activities
	The notion of a BPEL Process
	Variables in BPEL
	Receive Activity
	Reply Activity
	Invoke Activity
	Assign Activity
	Wait Activity
	Choice Activity
	While Loop Activity
	Repeat Until Loop Activity
	For Each Loop Activity
	Parallel Activities Activity
	Scope Activity
	Generalized Flow Activity
	Terminate Activity
	Throw Activity
	In-line Human Task Activity
	Snippet Activity

	BPEL Transactionality
	BPEL and AIS
	BPMN compensations using BPEL

	Mediations and ESB
	Service Message Object (SMO)
	Mediation Primitives
	Input primitive
	Callout primitive
	Business Object Map primitive
	Custom Mediation primitive
	Data Handler primitive
	Database Lookup primitive
	Endpoint Lookup primitive
	Event Emitter primitive
	Fail primitive
	Fan In primitive
	Fan Out primitive
	Flow Order primitive
	Gateway Endpoint Lookup primitive
	HTTP Header Setter primitive
	JMS Header Setter primitive
	Message Element Setter primitive
	Message Filter primitive
	Message Logger primitive
	Message Validator primitive
	MQ Header Setter primitive
	Policy Resolution primitive
	Service Invoke primitive
	Set Message Type primitive
	SLA Check Primitive
	SOAP Header Setter Primitive
	Stop primitive
	Subflow primitive
	Trace primitive
	Type Filter primitive
	UDDI Endpoint Lookup Primitive
	Mapping primitive
	Core transformations
	XSLT and XPath functions
	Calling Java
	The catalog of Data Maps

	The Service Gateway pattern
	Proxy Gateways

	SOAP Message Attachments
	Tracing

	Business Calendars
	JCA Adapters
	Flat File Adapter
	Sample – Reading a Flat File with delimited data

	JDBC Adapter

	Advanced Web Services
	WS-Notification
	Subscribe Request
	Publishing a message
	Topics for WS-Notification
	Simple Topic Expression
	Concrete Topic Expression
	Full Topic Expression

	Building a Notification Subscriber
	A WS-Notification Sample
	Implementation notes
	Bugs and Fixes
	References – WS-Notification

	WS-Addressing
	WS-Security
	Building a secure Web Service
	Testing Web Services security with TCP/Mon

	JAX-WS
	JAX-WS Java SE stand alone Service Provider

	Business Space
	Administering SCA Modules
	Exercises and Case Studies
	Exercise – Education class enrollment

	Looking for home ….
	Human Task Manager
	Work Baskets
	Work Basket Roles
	Work Basket Business Space widgets
	Human Task Definition for Work Baskets

	Business Categories
	Parallel Tasks
	Completion Selection

	Work Items
	Authorization and Staff Resolution
	Staff Resolution Criteria (aka Verbs)
	Verb Descriptions
	Group Search
	Group Members

	Dynamic user selection
	Staff Resolution plugins
	Custom Human Task staff resolutions
	Staff resolution plugin language – The Staff Query
	User registry queries
	LDAP queries

	XSLT Mapping to Staff Resolution plugin language
	Programming tips

	Caching of staff resolutions
	Tracing Staff resolution
	Worked Examples
	Group and User List intersection
	Group and Group intersection

	StaffQueryResultPostProcessorPlugin
	Replacement Expressions
	Stand-alone Expressions
	Getting data from Tasks

	Human Task User Interfaces
	Human Task API Event Handlers

	Query Tables
	Query Table Editor
	Installation of Query Table Editor

	Query Table programming
	Using Query Tables with Business Space

	Business Objects
	SDO Programming Model v1.0
	SDO Programming Model v2.0
	Recording changes
	Splitting namespaces across projects
	Business Object Programming
	Sequenced Objects
	Nested BOs

	Business Object Inheritance
	Application Specific Information (ASI)
	SDO Programming
	Walking a DataObject
	Create and Populate a DataObject
	IBM DataObjectUtils

	SCA Business Objects
	Creating an SCA Business Object
	Converting to/from XML
	XML documents with no namespace

	SCA
	Asynchronous processing
	SCA Import and Export protocol bindings
	Web Services
	SOAP/HTTP
	SOAP/JMS

	JMS
	HTTP
	MQ
	MQ Correlation messages
	Testing MQ bindings
	MQ messages and XML

	EJB SCA Bindings
	Auto-generated WSDL to Java Bridge Component

	DataHandlers
	XML Data Handler
	Default XML Data Handler serialization
	XML Documents that are different from Business Objects

	Fixed Width DataHandler
	Custom DataHandlers
	DataHandler/DataBinding properties
	BindingContext
	Creating a Business Object
	The Binding Registry
	Calling a DataHandler from a DataBinding
	Creating a UI Configuration class
	HTTP DataBinding
	References

	DataObjects
	Creating an SCA Business Object
	Converting to/from XML
	XML documents with no namespace

	Advanced BPEL
	Variable initialization
	Scope
	BPEL - Java Mapping
	Variable Properties
	Endpoint References
	BPEL Endpoint Reference variable type
	JavaSnippet access
	getServiceRefFromPartnerLink

	Query Properties
	Implementation
	Performance

	Activities
	Inline Human Tasks
	Previous task owners

	Invoke
	Expiration

	JavaSnippet
	Standard Functions

	Custom Properties
	References

	BPEL Process Migration
	References

	Versioning
	User Interfaces
	Business Space
	Events
	Custom Widgets
	iWidget Mode
	iWidget Structure
	iWidget Modules/Data Structures
	Misc
	iWidget editor
	BSpaceWidgetRegistry
	BSpaceGeneralHelper
	Registering Widgets
	The Catalog File
	Registry Endpoints XML
	JavaScript for a new widget
	Modes
	HTML rewriting
	Debugging iWidget JavaScript
	Event handling
	Dojo Level Workarounds
	Debugging and Problem determination

	Custom Widget Walk through
	Using RAD 8.0.3 to create an iWidget
	Mashup Center
	Multiple Browser instances and BPM

	Business Space Supplied Widgets
	Business Configuration
	Business Rules

	Human Task Management
	Escalations List
	Human Workflow Diagram
	My Team's Tasks
	My Work Organizer
	Process Definitions List
	Processes List
	Task Definitions List
	Task Information
	Tasks List

	Problem Determination
	Solution Administration
	Solution Operation
	User Management
	Viewers
	Web Viewer
	Script Adapter

	Visual Step

	JSPs
	WebSphere Portal
	Liferay
	Installing Liferay on WAS
	Using the Liferay Tomcat bundle
	Developing Liferay Portlets

	Lotus Forms
	Dojo
	Custom Dojo development environment

	Flex and Business Space
	Widgets that use Flex
	Flex Custom Widgets in Business Space
	Building a new Custom Widget for Flex
	Environment of the Flex application
	Widget Instance Configuration
	var attributes:Object
	event: endConfigure

	Making REST requests
	Handling returned XML
	Cross domain security
	Problems with PUT and DELETE requests
	Widget to Widget Event Handling
	Sending Events
	Receiving Events

	Working with WPS Human Task / Process Data
	Mapping Data types and controls
	String
	Int
	Date

	Working with repeating/array data
	Working with AnyType
	Performing input validation
	Single User Workflow
	Flex related REST Problems
	Elixir
	References – Elixir
	References – Flex Widgets

	Custom Process Portals
	Types of Custom Portal
	Generic Widgets for Custom Portals
	The Task List Widget
	The Task Table Widget
	The CoachViewer widget
	Determining when the current Coach has completed
	Using the Custom Portal widgets

	Writing custom portals using Coaches

	Apache Flex
	Flex for Mobile
	Installing FlashDevelop

	Google Charts
	Providing data to Google Charts
	Google Chart – Gauge

	Google Web Toolkit – GWT
	Making REST calls from GWT
	Working with JSON in GWT
	Building GWT Apps in Eclipse
	Notes on GWT Widgets
	RootPanel
	DockPanel
	DialogBox
	DisclosurePanel
	Composite
	ListBox
	FlexTable
	Grid
	HTML
	PushButton
	FileUpload

	GWT Cell processing
	Cell Selection
	Adding Data to a Cell widget
	CellList notes
	CellTable notes
	DataGrid Notes
	Cell Tree Notes

	GWT Modules
	Naming conventions and recommendations
	The Entry-Point class
	Source Path
	Public Path
	Module declaration files
	Working with resources

	GWT Layouts and resizing
	RootLayoutPanel
	StackLayoutPanel
	TabLayoutPanel
	Things that seem to scroll ok

	UIBinder – XML descriptions of screens
	Using CSS for changing the appearance of UI
	The GWT Editor Framework – Mapping data to widgets
	Working with XML in GWT
	Integrating with native JavaScript
	Building custom GWT Widgets
	Adding Event Handling

	Using Google Charts with GWT
	Deploying a GWT application
	Debugging and Logging GWT applications
	GWT Libraries – Smart GWT
	Smart GWT – ListGrid
	Smart GWT – DataSource
	Smart GWT – Drawing

	Integrating GWT with IBPM Coaches
	Using tables with GWT

	Kolban's GWT BPM Utils
	Visual Task Lists
	REST wrappers and helpers
	Examples
	Showing a visual data table
	Starting a process from GWT
	Showing a Coach within GWT

	IBM Business Monitor
	Installation of Business Monitor
	Creating a profile
	Augmenting an existing profile with Business Monitor

	Information Sources for Business Monitor
	InfoCenter for Business Monitor
	Redbooks
	DeveloperWorks for Business Monitor

	Introducing the Monitor Model
	Monitoring Context
	Key Fields

	Inbound Event
	Metric
	Key
	Counter
	Stopwatch
	Trigger
	Outbound Event

	Key Performance Indicators
	Alerts and Actions
	Action Service templates
	Notification Templates

	Monitor SVG Diagrams
	SVG Action – Set Color
	SVG Action – Set Text
	SVG Action – Hide Shapes
	SVG Action – Set Diagram Link
	SVG Action – Send Human Task Notification When Clicked
	SVG Action – Send Notification When Clicked

	Generating events from a BPMN process
	The IBM_BPM_EMITTER_SERVICE application
	Diagnosing problems
	BPM side definitions
	Monitor side definitions
	Configuring CEI on BPM

	Configuring for remote Monitor ↔ BPM
	Event data format
	Common patterns

	Examining events issued from BPM
	Capturing additional data from BPM
	Capturing the Task ID of a task
	Capturing the Process ID of a process
	Capturing the Process Name of a process

	Compiling Monitor Models
	Versioning Monitor Models

	Building Monitor models using the Model Editor
	Monitor Process Start event
	Correlating BPMN process events
	Monitor Tracking point data
	Closing the Monitoring Context
	Removing monitor 'Problems' view errors and warnings

	Debugging Monitor Models
	Recorded Events Management
	Using the Monitor Model debugger
	Integrated Test Client

	Uninstalling Monitor Apps
	Using Monitor REST APIs
	The Monitor REST Event catcher
	The Monitor REST request
	The Monitor REST response
	Sending a Monitor REST request from Java
	Monitor REST Security

	REST API Components
	Getting models
	Getting monitoring contexts
	Get Metrics
	Get instances
	Getting KPI Contexts
	Getting KPI Lists
	Getting KPI Value
	Creating new KPI definitions
	Time Filters

	Get Historical KPI data
	Get Dashboard Alerts
	Get Alert Subscriptions
	Create Alert Definition

	Useful Monitor/REST JavaScript
	Building a map of Instance data

	Monitor Security
	Advanced Model development
	Expressions
	Data functions
	String functions
	Math functions
	Time functions
	IBM Monitor extensions

	Authoring User Defined XPath functions
	Two Stage Modeling

	Monitor and Cognos
	Cubes, Categories, Dimensions and Levels
	Cognos Charting

	Business Space Widgets for Monitor
	KPIs
	Report Viewer Business Space Widget

	Generated Monitor Models for a Process Application
	Instance Metrics
	BPD level
	<BPD> Steps Level

	KPIs
	Working with Changed Variables

	Sample Monitor Solutions
	Task Escalation alerts

	Monitor Notes

	WebSphere Application Server
	Profile Management
	References – Profile Management
	Command line profile management
	Switching a server from production to development mode

	Recovering from a failed adapter install
	Recovering from XA recovery
	WAS Security
	Virtual Member Manager

	WebSphere Application Server WEB 2.0 Feature Pack
	AJAX Proxy

	JAX-RS – REST Services in Java
	JAX RS in WebSphere Application Server

	Deploying Java EE applications to WAS
	WAS Messaging
	Foreign Connections

	Enterprise Content Management Integration – ECM
	Content Management Interoperability Services – CMIS
	Configuring IBM BPM for an external ECM
	The Document List Coach View
	Document List – Search service

	The Document Viewer Coach View
	Content Integration node
	Description of a Document (ECMDocument)
	Description of a Search Result (ECMSearchResult)
	Description of an ECMID
	Description of Document Info (ECMDocumentInfo)
	Description of a folder/document property (ECMProperty)
	Description of a folder (ECMFolder)
	Description of a Content Stream (ECMContentStream)
	Description of an object type definition (ECMObjectTypeDefinition)
	Content Integration node - Add document to folder
	Content Integration node - Cancel check-out document
	Content Integration node - Check-in document
	Content Integration node - Check-out document
	Content Integration node - Copy document
	Content Integration node - Create document
	Content Integration node - Create folder
	Content Integration node - Delete document
	Content Integration node - Delete folder
	Content Integration node - Get all document versions
	Content Integration node - Get documents in folder
	Content Integration node - Get document
	Content Integration node - Get document content
	Content Integration node - Get folder
	Content Integration node - Get folder by path
	Content Integration node - Get folder tree
	Content Integration node - Get type definition
	Content Integration node - Get type descendents
	Content Integration node - Move document
	Content Integration node - Move folder
	Content Integration node - Remove document from folder
	Content Integration node - Search
	Content Integration node - Set document content
	Content Integration node - Update document properties
	Examples of Content Integration nodes
	Finding documents in a specific folder

	Inbound ECM events
	ECM event REST requests

	Debugging ECM calls
	CMIS Tools
	CMIS Workbench

	API Programming for ECM
	Uploading a new document

	ECM Providers
	IBM BPM Document Store
	FileNet
	FileNet Information Sources
	FileNet Installation

	Alfresco
	Alfresco Installation
	Alfresco debugging

	WebSphere Operational Decision Management - WODM
	WODM Installation
	Creating an instance of a Decision Server
	Creating an instance of Decision Server Events
	Augmenting an existing App Server with Decision Server Events

	WODM Documentation
	IBM Product Documentation
	Web Page Information Sources
	DeveloperWorks
	Redbooks

	WODM Architecture
	WebSphere Decision Center
	WebSphere Decision Server

	WODM Terms
	Rule Designer
	Project Structure
	Learning WODM
	Rule Projects
	Running a test execution
	Defining a Rule Execution Server configuration
	Categories

	The Vocabulary
	The Business Term

	Categories
	Functions
	Execution Object Model (XOM)
	Business Object Model (BOM)
	BOM Class category
	BOM Member category
	BOM Data types

	BOM implementation files

	Working with XSDs
	Rule Sets
	Rule Set Parameters

	Rule Flow
	Business Policies
	Business Action Language
	BAL Definitions
	BAL Conditions
	Rule Actions

	Business Rules
	Decision Tables
	Decision Trees
	WODM – Event Processing
	Event Processing Architecture
	IBM Decision Server Events – Knowledge
	InfoCenter

	Installing the Event Processing Business Space widgets
	Creating an Event Project
	The DES console

	The Rule Execution Server
	Rule Execution Server Console
	Hosted Transparent Decision Services – Web Services

	Rule Application
	Deploying a RuleApp
	RuleApp Properties

	WODM – Decision Center
	Configuring Decision Center

	Business Process Management scenarios
	Scenario: Exception Handling

	Advanced IBPM Troubleshooting
	Data Studio
	DB2 Troubleshooting

	Eclipse
	Unix Notes
	X-Windows

	Database Installation
	MS SQL Server 2008 Installation

	Java Programming
	Writing XML documents
	Working with Apache POI
	Reading an Excel Spreadsheet with POI
	Writing an Excel Spreadsheet with POI

	Demo – Book Order Fulfillment
	Part I – A simple start
	Part II – Billing problems
	Part III – Starting process instances
	Part IV – Check Stock
	Part V – Advanced UI
	Part VI – Business Monitoring

	POC Considerations
	Choice of server hosting environment
	Choice of developer environment
	Software choices
	Environment Checklist
	DB
	Process Center

	Kolban's Projects
	Apache Velocity Integration
	The Velocity Template Language

	XSLT DataHandler
	Converting a BO to a plain XML

	IBM BPM 7.5 Coach Auto-save
	Process and Task Data Explorer
	Out of Office support

	Tutorials
	Starting a business process on a schedule
	Building a Monitor Model for BPMN events

	Glossary
	Ideas
	Areas to write about and work to do
	Quick Links
	The End?

